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Abstract 

Background: The diagnosis of epilepsy frequently relies on the visual interpretation of the 

electroencephalogram (EEG) by a neurologist. The hallmark of epilepsy on EEG is the interictal 

epileptiform discharge (IED). This marker lacks sensitivity: it is only captured in a small percentage of 

30-minute routine EEGs in patients with epilepsy. In the past three decades, there has been growing 

interest in the use of computational methods to analyze the EEG without relying on the detection of IEDs, 

but none have made it to the clinical practice. We aim to review the diagnostic accuracy of quantitative 

methods applied to ambulatory EEG analysis to guide the diagnosis and management of epilepsy. 

Methods: The protocol complies with the recommendations for systematic reviews of diagnostic test 

accuracy by Cochrane. We will search MEDLINE, EMBASE, EBM reviews, IEEE Explore along with 

grey literature for articles, conference papers and conference abstracts published after 1961. We will 

include observational studies that present a computational method to analyze the EEG for the diagnosis of 

epilepsy in adults or children without relying on the identification of IEDs or seizures. The reference 

standard is the diagnosis of epilepsy by a physician. We will report the estimated pooled sensitivity and 

specificity, and receiver operating characteristic area-under-the-curve (ROC AUC) for each marker. If 

possible, we will perform a meta-analysis of the sensitivity and specificity and ROC AUC for each 

individual marker. We will assess the risk of bias using an adapted QUADAS-2 tool. We will also 

describe the algorithms used for signal processing, feature extraction and predictive modeling, and 

comment on the reproducibility of the different studies.  

Discussion: Despite the promise to unveil epileptiform patterns that cannot be seen by the naked eye, 

computational analysis of ambulatory EEG has not yet been successfully translated to the clinical setting. 

We hope to produce recommendations for future studies on computer-assisted EEG interpretation for the 

diagnosis and management of epilepsy. 

Systematic review registration: PROSPERO #292261 

Keywords: Epilepsy – Electroencephalogram – Machine Learning – Diagnosis – Computer-assisted – 

Biomarker 
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Background 1 

Epilepsy is characterized by an enduring propensity towards epileptic seizures—transient neurological 2 

manifestations provoked by a state of abnormal and excessive neuronal activity in the brain1. Epilepsy 3 

affects over 65 millions of people worldwide, and 10% of the population will experience at least one 4 

seizure in their lifetime2,3. Epileptic seizures can lead to fractures, road accidents, isolation, anxiety, 5 

cognitive decline, and death4. In specialized-care settings, the first anti-seizure medication (ASM) 6 

achieves seizure freedom in approximately 47% of patients5. A prompt diagnosis is key in the prevention 7 

of epilepsy-related morbidity and mortality4. 8 

A history of epileptic seizures or a high recurrence risk after a single seizure are the basis for the 9 

definition of epilepsy by the International League Against Epilepsy (ILAE)1. Ancillary tests are often 10 

needed to estimate seizure recurrence risk after a single seizure. These include the neurological 11 

examination, neuroimaging, and the electroencephalogram (EEG).  12 

An EEG records the electrical activity of the brain. It is recommended that all patients who present with a 13 

first unprovoked seizure or with new diagnosis of epilepsy undergo an EEG6,7. The initial EEG is 14 

generally performed with electrodes applied to the patient’s scalp (scalp EEG or routine EEG) for a 15 

duration of 20–40 minutes8. The EEG tracing is then interpreted visually by a neurologist, who attempts 16 

to identify interictal epileptiform discharges (IEDs; aka spikes). IEDs are brief (20–200ms) sharp 17 

discharges, clearly emerging from background oscillations, often negative in polarity and sometimes 18 

followed by a typical slow wave8. The presence of interictal spikes on the EEG is considered a hallmark 19 

of epilepsy, as it represents a strong predictor of seizure recurrence9,10. Furthermore, the identification of 20 

interictal spikes can help localize an epileptic focus that may be amenable to surgical resection, and can 21 

guide the withdrawal of ASMs in patients after a prolonged period of seizure freedom11,12. 22 

The interictal spike has several limitations. It occurs very sporadically: in patients with epilepsy, only 29 23 

– 55% of routine EEGs will capture these transient abnormalities8. After a first unprovoked seizure in 24 
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adults, the sensitivity of a single routine EEG for detecting epileptiform abnormalities is only 17%9. 25 

Furthermore, their identification is somewhat subjective: the percent agreement between EEG experts is 26 

around 76%13. Many physiological transient discharges can be misinterpreted as epileptiform spikes. This 27 

can lead to the erroneous diagnosis of epilepsy, with sometimes important consequences14,15. In patients 28 

labelled with drug-resistant epilepsy, over 25% may have had an erroneous diagnosis as a result of both 29 

inadequate history taking and misinterpretation of the EEG16. Despite the abundant information on brain 30 

activity recorded by the EEG, no other interictal anomalies have been validated for use in clinical 31 

settings1,17,18. 32 

Compared to other neuroimaging modalities, a scalp EEG is inexpensive, easy to acquire, and confers 33 

functional information with high temporal resolution19,20. Moreover, great effort was put in the last decade 34 

by the ILAE in standardizing the equipment, recording and storage of EEG data10,21. Decades of research 35 

have demonstrated that the automated analysis of EEG can identify hidden differences between with 36 

epilepsy and non-epileptic subjects in terms of connectivity22–24, signal predictability and complexity25,26, 37 

spectral power27,28, and chaoticity29. Computational analysis of EEG holds the promise of extracting 38 

information that is invisible to the naked eye of the human interpreter, in an objective and reproducible 39 

manner. Discovering new, non-visible markers of epilepsy could increase the diagnostic yield of the EEG, 40 

improve its accessibility, and reduce costs, especially in settings where the expertise of a fellowship-41 

trained neurophysiologist is unavailable18,30. In spite of this, none of the proposed non-visible markers of 42 

epilepsy have made it into clinical practice10,31. 43 

We will perform a systematic review of diagnostic test accuracy for automated methods of EEG analysis 44 

to distinguish between patients with and without epilepsy without relying on the detection of spikes and 45 

seizures. The questions that this review addresses are the following: What is the current evidence on the 46 

performances of automatically extracted hidden markers of epilepsy for the diagnosis of epilepsy? And 47 

what are the different algorithms that have been tested and how does their diagnostic accuracy compare? 48 
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Methods 49 

Study design 50 

This will be a systematic review and meta-analysis following guidance from the Cochrane Diagnostic 51 

Test Accuracy group. We will report the results according to the PRISMA statement for diagnostic test 52 

accuracy (PRISMA-DTA)32. 53 

Study selection criteria 54 

Type of studies 55 

We will include all studies that describe a computed marker of epilepsy on routine (scalp) EEG which 56 

does not explicitly rely on the identification of interictal spikes or ictal activity (seizures). Studies must 57 

compare the EEG signal of individuals with and without epilepsy. We will include retrospective or 58 

prospective comparative studies enabling the assessment of diagnostic accuracy (cohort or case-control 59 

studies). We will exclude studies reporting data on non-human animals only, studies that include only 60 

intracranial or critical care EEG recordings, studies that do not include both individuals with and without 61 

epilepsy, and studies that are focused solely on seizure/spike detection or on short-term (<24h) seizure 62 

prediction. For studies that include multiple EEG types, we will only extract data that meet the inclusion 63 

criteria. We restricted the search to studies published after 1961 (the first use of digital EEG)33. There are 64 

no restrictions for language. 65 

Population 66 

Our population of interest is individuals undergoing routine EEG in a clinical or research setting. A 67 

routine EEG is defined as a 20- to 60-minute scalp recording using the international 10–20 electrodes 68 

system, with or without prior sleep deprivation. There is no restriction for age groups or diagnoses. 69 
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Reference standard 70 

We defined the reference standard as the diagnosis of epilepsy by a physician based on criteria specified 71 

by the authors (clinical or para-clinical). These criteria must accord with the definition of epilepsy by the 72 

ILAE: having had at least one seizure and long-term enduring predisposition to other unprovoked 73 

seizures1,34. 74 

Index test 75 

The index test is a characteristic or feature which is computationally extracted from the EEG signal to 76 

identify patients with epilepsy, without relying on detecting IEDs or seizures. These include measures of 77 

connectivity, entropy, chaoticity, and power spectrum density35. Also included are statistical models that 78 

combine several features or models that take as input the raw or processed EEG. 79 

Search strategy 80 

The search strategy (Appendix 1) was developed by two medical librarians specialized in systematic 81 

reviews (BN and RP), and peer-reviewed by a senior colleague. We will search MEDLINE (Ovid), 82 

EMBASE (Ovid), EBM reviews (Ovid), IEEE Explore along with grey literature for articles, conference 83 

papers and conference abstracts. We will use the Covidence platform (Melbourne, Australia) to manage 84 

our data for eligibility assessment, selection, and data collection. Two independent reviewers (EL, and 85 

either JNB or BR) will screen the records for eligibility using their title and abstract. Any item selected by 86 

either reviewer will proceed to the next phase. This process will be repeated on the screened items, this 87 

time by consulting the items’ full text. A third, senior reviewer (EBA) will settle conflicts as necessary 88 

during the final selection. 89 

Data items 90 

Data collection will be performed using Covidence by two independent reviewers (EL and JNB/BR), and 91 

conflicts will be resolved by a third author (EBA). Authors of the primary study will be contacted if the 92 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.05.22275999doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.05.22275999
http://creativecommons.org/licenses/by/4.0/


 7 

required data are not available in the original publication. Data collection will include the following 93 

information:  94 

1. Title and authors of the study, country of sampling, year of publication; 95 

2. Study type: retrospective vs. prospective, design (cohort, case control); 96 

3. Study sample: exclusion and inclusion criteria, number of screened and included patients; 97 

4. Data collection: 98 

a. Number of patients, number of EEGs, duration of EEG recordings, use of activation 99 

procedures (hyperventilation, photic stimulation, sleep deprivation), setting of recording 100 

(hospitalized or ambulatory), whether the same protocol was used for all patients; 101 

b. Number of electrodes, sampling frequency; 102 

c. If public dataset: reference to the original dataset, dataset name, exclusion/inclusion 103 

criteria used on the EEG segments from the dataset; 104 

d. Participant characteristics: age, sex, comorbidities, number of ASM, age of first seizure; 105 

5. Reference standard: whether a predefined reference standard was used, definition of reference 106 

standard, whether all patients underwent the same reference standard, time lapse between 107 

reference standard and EEG; 108 

6. Index test: 109 

a. Pre-processing: artifact detection and removal (automated or manual), filtering method, 110 

filtering frequencies, segmentation protocol (whole EEG vs. EEG segments, window 111 

size, overlapping vs. non-overlapping segments, manual vs. automated selection of 112 

segments), channel selection; 113 

b. Feature extraction and selection: multi-channel vs. single channel, number of channels 114 

selected, whether feature selection was performed, feature extraction algorithm, feature 115 

selection method, whether feature selection was applied to data before vs. after excluding 116 

testing data; 117 
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c. Classification: algorithm(s) used for classification, testing methodology (cross-validation 118 

vs. held out testing set); 119 

d. Metric used to report diagnostic performances: ROC AUC, 120 

accuracy/sensibility/specificity, F1-score, reporting of confidence intervals (CI); 121 

7. Diagnostic performances: number of true positives, number of true negatives, number of false 122 

positives, number of false negatives, reported accuracy, reported sensitivity, reported specificity, 123 

reported F1-score, reported ROC AUC (if more than one index test is performed on the same 124 

patient, we will only consider the first test); 125 

8. Reproducibility: whether every data processing step is detailed, whether methods can be 126 

reproduced easily, data availability, code availability, open-source computer libraries referenced. 127 

Risk of bias 128 

The risk of bias of all included studies will be assessed through an adapted version of the QUADAS-2 129 

tool36. Risk of bias for each of the following four elements will be evaluated by two independent 130 

reviewers (EL and JNB/BR) as low, high, or unclear. Conflicts will be resolved by a third author (EBA). 131 

In addition, all publicly available datasets used by at least one of the included studies will be evaluated 132 

with the same tool. The following items will be assessed: 133 

1. Patient selection 134 

a. Is the population representative of clinical practice?  135 

b. Are inclusion and exclusion criteria identical for cases (patients with epilepsy) and 136 

controls? 137 

c. Are withdrawals explained and appropriate? If individual EEG segments were excluded, 138 

were the same criteria used for all segments? 139 

2. Index test 140 

a. Were the protocols used for recording the EEG identical in all patients, irrespective of the 141 

epilepsy diagnosis? 142 
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b. Was the index test validated on an independent sample of patients (patients which were 143 

not used to identify the index test’s threshold or train the learning algorithm)? 144 

3. Reference standard 145 

a. Are the criteria used for the diagnosis of epilepsy specified and acceptable (likely to 146 

correctly classify the target condition)? 147 

b. Was the reference standard assessment independent and blinded to the index test? 148 

4. Flow and timing 149 

a. Did the whole sample undergo the reference standard? 150 

b. Did the whole sample undergo the same reference standard? 151 

c. Was the time lapse between reference standard and EEG acceptable? 152 

d. Was the same data used in the index method available at the time of the reference 153 

standard? 154 

e. Were all EEGs included in the analysis? 155 

Data synthesis 156 

We will provide a table summarizing every published study included in the review, comparing the 157 

studies’ design, population, reference standard, dataset size, data processing methods, and diagnostic 158 

accuracy. We will also provide a table summarizing the risk of bias for all items in the adapted 159 

QUADAS-2 tool, comparing 1) every individual article included in the review, and 2) every public 160 

dataset that is used in ≥ 2 studies. 161 

We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per-162 

patient ratio across all included studies. We will report the pooled proportion of patients with focal vs. 163 

generalized epilepsy, adult vs. children, structural vs. non-structural epilepsy, and with specific epilepsy 164 

syndromes. For every publicly available dataset identified during the review, we will report the number of 165 

studies that used that dataset in their work. 166 
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We will summarize the methods used by the different articles during the pipeline’s algorithm (pre-167 

processing, feature extraction, feature selection, and classification algorithm), along with the proportion 168 

of studies that used each method. 169 

Analyses 170 

We will estimate the specificity and sensitivity for each study, using the Wilson score to compute 95% 171 

CI. For studies with varying thresholds, we will estimate the ROC AUC and 95% CI. 172 

If there are sufficient (≥ 5) studies that report the number of true/false positives and true/false negatives, 173 

we will estimate the pooled sensitivity and specificity of each individual marker using a hierarchical, 174 

bivariate generalized linear mixed model37. This allows us to account for the correlation between 175 

specificity and sensitivity in a single study. If ≥ 5 studies report these numbers for varying thresholds, we 176 

will estimate the pooled ROC curve using the Rutter and Gatsonis HSROC model38. All analyses will be 177 

implemented with the R statistical language. A p-value <0.05 will be considered statistically significant. 178 

Given insufficient data for the pooled estimates, we will only describe the diagnostic performances 179 

(sensitivity, specificity, ROC AUC) narratively. We will present the results of the analyses with forest 180 

plots. 181 

We will quantify heterogeneity using the variances of the logit specificity and sensitivity, as well as the 182 

median odds ratio (median OR)39. The median OR is a measure of inter-study variance translated on the 183 

OR scale. It corresponds to the increase in the odds of being true positive/negative in a patient/control 184 

going from a study with lower sensitivity/specificity to a study with higher sensitivity/specificity. For 185 

heterogeneity in the ROC plane, we will compute the area of the 95% prediction ellipse39. The median OR 186 

and the area of the 95% prediction ellipse are easily obtained and interpreted, and take into account the 187 

correlation between a single study’s specificity and sensitivity in contrast to univariate methods like 188 

Cochrane’s Q and  I237,40. We will perform subgroup analysis for the following variables: epilepsy type 189 

(focal, generalized), epilepsy etiology (structural vs. non-structural), age groups (children (< 18 y.o.), 190 

adults (≥ 18 y.o.)), epilepsy syndromes, extracted marker, and dataset used. We will assess heterogeneity 191 
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for all subgroup analyses. We will consider a study as belonging to a particular subgroup if ≥80% of the 192 

studied population belongs to that subgroup. Sensitivity analysis will be conducted for the main analyses 193 

by excluding studies with overall high/unclear risk of bias. 194 

Some studies use m ultiple markers to classify patients with epilepsy from controls (e.g., as input 195 

features for a machine learning algorithm). For each marker that is used in ≥ 2 of such studies, we will 196 

evaluate the number of studies for which these markers were identified as “important” (selected for the 197 

classification task or statistically significant in separating the two classes) and the ratio between the 198 

number of studies in which this marker was extracted vs. identified as important. 199 

Reporting bias for sensitivity and specificity will be evaluated by visual inspection of funnel plots. 200 

Discussion 201 

The interictal EEG is key in the diagnosis of epilepsy, solely based on the visual identification of 202 

interictal spikes41. Despite years of research on computational biomarkers of epilepsy, only these spikes 203 

are currently used in clinical settings1,17,18. This review aims to systematically evaluate the diagnostic 204 

performances of hidden interictal markers of epilepsy on EEG, describe the data processing pipelines 205 

favored by the researchers to classify the EEG for epilepsy diagnosis, and identify the pitfalls that prevent 206 

clinical translation of these algorithms. 207 

Algorithms have gained growing interest in medicine for their potential to assist diagnosis and guide 208 

clinical decision-making42. EEG analysis is well-suited for this application due to the complex nature of 209 

the EEG signal. Automated extraction of new epilepsy markers on routine EEG could lead to reduced rate 210 

of misdiagnosis, increased availability in areas without access to an expert neurophysiologist, and more 211 

efficient clinical trials. Research on automatic analysis of EEG data is thriving, in part assisted by the 212 

recent increase in computational capacities43–50. However, automatic analysis of EEG is not mentioned in 213 

any of the high-quality clinical practice guidelines systematically reviewed by the ILAE17.  214 
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In recent years, increased computational capacities have allowed the development of powerful algorithms 215 

that can learn complex representations such as medical images and EEG signals43,51,52. A growing number 216 

of algorithms have now been approved by the United States Food and Drug Administration for assisting 217 

in the diagnosis of several diseases53. Recent systematic reviews have found that most of the studies on 218 

automated diagnosis using artificial intelligence have high risk of bias, mostly due to patient selection 219 

methodology and absence of validation on external data54–56. Systematic reviews on computer-based 220 

clinical-decision support systems also highlight the need for more robust patient selection57–62.  221 

Translation of technology to clinical practice requires strong evidence based on high quality research. 222 

This review is important because it will establish the potential of automatic analysis of EEG as a 223 

diagnostic tool for epilepsy, and if evidence to support its use is lacking, it will identify the pitfalls that 224 

need to be overcome in future research. Also, by systematically describing current practices that are used 225 

by research groups, it will serve as a reference for new researchers in the field. 226 

We anticipate that diagnostic accuracy of automatic analysis of EEG for epilepsy will be hard to estimate 227 

because of the high heterogeneity between the different dataset used and between the data processing 228 

methodology. We also anticipate high risk of bias in many studies, because of the high volume of “proof-229 

of-concept” studies that emphasize computation performances and algorithm development over rigorous 230 

diagnostic study methodology. In these cases, we hope to produce recommendations that will assist in 231 

bridging the gap between the development of new automated markers and validation in appropriate 232 

populations, for ultimate implementation into clinical practice. 233 

List of abbreviations 234 

ASM: anti-seizure medication; CI: confidence interval; EEG: electroencephalogram; IED: interictal 235 

epileptiform discharge; ILAE: International League Against Epilepsy; ROC AUC: receiver operating-236 

characteristic area-under-the-curve. 237 
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