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ABSTRACT 53 

Background: Left ventricular (LV) systolic dysfunction is associated with over 8-fold increased 54 

risk of heart failure and a 2-fold risk of premature death. The use of electrocardiogram (ECG) 55 

signals in screening for LV systolic dysfunction is limited by their availability to clinicians. We 56 

developed a novel deep learning-based approach that can use ECG images for the screening of 57 

LV systolic dysfunction. 58 

Methods: Using 12-lead ECGs plotted in multiple different formats, and corresponding 59 

echocardiographic data recorded within 15 days from the Yale-New Haven Hospital (YNHH) 60 

during 2015-2021, we developed a convolutional neural network algorithm to detect LV ejection 61 

fraction < 40%.  The model was validated within clinical settings at YNHH as well as externally 62 

on ECG images from Cedars Sinai Medical Center in Los Angeles, CA, Lake Regional Hospital 63 

(LRH) in Osage Beach, MO, Memorial Hermann Southeast Hospital in Houston, TX, and 64 

Methodist Cardiology Clinic of San Antonia, TX. In addition, it was validated in the prospective 65 

Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Gradient-weighted class activation 66 

mapping was used to localize class-discriminating signals in ECG images.  67 

Results: Overall, 385,601 ECGs with paired echocardiograms were used for model development. 68 

The model demonstrated high discrimination power across various ECG image formats and 69 

calibrations in internal validation (area under receiving operation characteristics [AUROC] 0.91, 70 

area under precision-recall curve [AUPRC] 0.55), and external sets of ECG images from Cedars 71 

Sinai (AUROC 90, AUPRC 0.53), outpatient YNHH clinics (AUROC 0.94, AUPRC 0.77), LRH 72 

(AUROC 0.90, AUPRC 0.88), Memorial Hermann Southeast Hospital (AUROC 0.91, AUPRC 73 

0.88), Methodist Cardiology Clinic (AUROC 0.90, AUPRC 0.74), and ELSA-Brasil cohort 74 

(AUROC 0.95, AUPRC 0.45). An ECG suggestive of LV systolic dysfunction portended over 75 

27-fold higher odds of LV systolic dysfunction on TTE (OR 27.5, 95% CI, 22.3-33.9 in the held-76 
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out set). Class-discriminative patterns localized to the anterior and anteroseptal leads (V2-V3), 77 

corresponding to the left ventricle regardless of the ECG layout. A positive ECG screen in 78 

individuals with LV ejection fraction ≥ 40% at the time of initial assessment was associated with 79 

a 3.9-fold increased risk of developing incident LV systolic dysfunction in the future (HR 3.9, 80 

95% CI 3.3-4.7, median follow-up 3.2 years). 81 

Conclusions: We developed and externally validated a deep learning model that identifies LV 82 

systolic dysfunction from ECG images. This approach represents an automated and accessible 83 

screening strategy for LV systolic dysfunction, particularly in low-resource settings. 84 
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ABBREVIATIONS AND ACRONYMS 85 

LV   Left ventricle 86 

ECG   Electrocardiography 87 

AI   Artificial Intelligence 88 

LVEF   Left ventricular ejection fraction 89 

YNHH   Yale New Haven Hospital 90 

TTE   Transthoracic echocardiography 91 

LRH   Lake Regional Hospital 92 

ELSA-Brasil  ELSA-Brasil, Estudo Longitudinal de Saúde do Adulto  93 

   (The Brazilian Longitudinal Study of Adult Health) 94 

Grad-CAM  Gradient-weighted Class Activation Mapping  95 

AUROC  Area under receiving operation characteristics  96 

AUPRC  Area under precision recall curve  97 
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CLINICAL PERSPECTIVE 98 

What is New? 99 

• A convolutional neural network model that accurately identifies LV systolic dysfunction 100 

from ECG images across subgroups of age, sex, and race. 101 

• The model shows robust performance across multiple institutions and health settings, 102 

both applied to ECG image databases as well as directly uploaded single ECG images to 103 

a web-based application by clinicians.  104 

• The approach provides information for both screening of LV systolic dysfunction and its 105 

risk based on ECG images alone.  106 

What are the clinical implications? 107 

• Our model represents an automated screening strategy for LV systolic dysfunction on a 108 

variety of ECG layouts. 109 

• With availability of ECG images in practice, this approach overcomes implementation 110 

challenges of deploying an interoperable screening tool for LV systolic dysfunction in 111 

resource-limited settings. 112 

•  This model is available in an online format to facilitate real-time screening for LV 113 

systolic dysfunction by clinicians.  114 
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INTRODUCTION 115 

Left ventricular (LV) systolic dysfunction is associated with over 8-fold increased risk of 116 

subsequent heart failure and nearly 2-fold risk of premature death.1 While early diagnosis can 117 

effectively lower this risk,2–4 individuals are often diagnosed after developing symptomatic 118 

disease due to lack of effective screening strategies.5–7 The diagnosis traditionally relies on 119 

echocardiography, a specialized imaging modality that is resource intensive to deploy at scale.8,9 120 

Algorithms using raw signals from electrocardiography (ECG) have been developed as a strategy 121 

to detect LV systolic dysfunction.10–12 However, clinicians, particularly in remote settings, do not 122 

have access to ECG signals. The lack of interoperability in signal storage formats from ECG 123 

devices further limits the broad uptake of such signal-based models.13 The use of ECG images is 124 

an opportunity to implement interoperable screening strategies for LV systolic dysfunction. 125 

 We previously developed a deep learning approach of format-independent inference from 126 

real-world ECG images.14 The approach can interpretably diagnose cardiac conduction and 127 

rhythm disorders using any layout of real-world 12-lead ECG images and can be accessed on 128 

web- or application-based platforms. Extension of this artificial intelligence (AI)-driven 129 

approach to ECG images to screen for LV systolic dysfunction could rapidly broaden access to a 130 

low cost, easily accessible, and scalable diagnostic approach to underdiagnosed and undertreated 131 

at-risk populations. This approach adapts deep learning for end-users, without disruption of data 132 

pipelines or clinical workflow. Moreover, the ability to add localization of predictive cues in the 133 

ECG images relevant to the LV can improve the uptake of these models in clinical practice.15  134 

In this study, we present a model for accurate identification of LV ejection fraction 135 

(LVEF) less than 40%, a threshold with therapeutic implications, based on ECG images. We 136 
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developed, tested, and externally validated this approach using paired ECG-echocardiographic 137 

data from large academic hospitals, rural hospital systems, and a prospective cohort study.  138 

 139 

METHODS 140 

The Yale Institutional Review Board reviewed the study, which approved the study protocol and 141 

waived the need for informed consent as the study represents a secondary analysis of existing 142 

data. The data cannot be shared publicly though an online version of the model is publicly 143 

available for research use at https://www.cards-lab.org/ecgvision-lv. 144 

Data Source for Model Development 145 

We used 12-lead ECG signal waveform data from the Yale New Haven Hospital (YNHH) 146 

collected between 2015 and 2021. These ECGs were recorded as standard 12-lead recordings 147 

sampled at a frequency of 500 Hz for 10 seconds. These were recorded on multiple different 148 

machines and a majority were collected using Philips PageWriter machines and GE MAC 149 

machines. Among patients with an ECG, those with a corresponding transthoracic 150 

echocardiogram (TTE) within 15 days of obtaining the ECG were identified from the YNHH 151 

electronic health records. LVEF values were extracted based on a cardiologist's read of the 152 

nearest TTE to each ECG. To augment the evaluation of models built on an image dataset 153 

generated from this YNHH signal waveform, six sets of ECG image datasets were used for 154 

external validation.  155 

Data Preprocessing  156 

All ECGs were analyzed to determine whether they had 10 seconds of continuous recordings 157 

across all 12 leads. The 10 second samples were preprocessed with a one second median filter, 158 

which was subtracted from the original waveform to remove baseline drift in each lead, 159 
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representing processing steps pursued by ECG machines before generating printed output from 160 

collected waveform data.  161 

 ECG signals were transformed into ECG images using the python library ecg-plot,16 and 162 

stored at 100 DPI. Images were generated with a calibration of 10 mm/mV, which is standard for 163 

printed ECGs in most real-world settings. In sensitivity analyses, we evaluated model 164 

performance on images calibrated at 5 and 20 mm/mV. All images, including those in train, 165 

validation, and test sets, were converted to greyscale, followed by down-sampling to 300x300 166 

pixels regardless of their original resolution using Python Image Library (PIL v9.2.0). To ensure 167 

that the model was adaptable to real-world images, which may vary in formats and the layout of 168 

leads, we created a dataset with different plotting schemes for each signal waveform recording 169 

(Figure 1). This strategy has been used to train a format-independent image-based model for 170 

detecting conduction and rhythm disorders as well as the hidden label of gender.14 The model in 171 

this study learned ECG lead-specific information based on the label regardless of the location of 172 

the lead.  173 

Four formats of images were included in the training image dataset (Figure 1). The first 174 

format was based on the standard printed ECG format in the United States, with four 2.5 second 175 

columns printed sequentially on the page. Each column contained 2.5 second intervals from three 176 

leads. The full 10-second recording of the lead I signal was included as the rhythm strip. The 177 

second format, a two-rhythm format, added lead II as an additional rhythm strip to the standard 178 

format. The third layout was the alternate format which consisted of two columns, the first with 179 

six simultaneous 5-second recordings from the limb leads, and the second with six simultaneous 180 

5-second recordings from the precordial leads, without a corresponding rhythm lead. The fourth 181 

format was a shuffled format, which had precordial leads in the first two columns and limb leads 182 
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in the third and fourth. All images were rotated a random amount between -10 and 10 degrees 183 

before being input into the model to mimic variations seen in uploaded ECGs and to aid in 184 

prevention of overfitting. 185 

The process of converting ECG signals to images was independent of model 186 

development, ensuring that the model did not learn any aspects of the processing that generated 187 

images from the signals. All ECGs were converted to images in all different formats without 188 

conditioning on clinical labels. The validation required uploaded images to be upright, cropped 189 

to the waveform region, with no brightness and contrast consideration as long as the waveform is 190 

distinguishable from the background and lead labels are discernible. 191 

Experimental Design 192 

Each included ECG had a corresponding LVEF value from its nearest TTE within 15 days of 193 

recording. Low LVEF was defined as LVEF < 40%, the cutoff used as an indication for most 194 

guideline-directed pharmacotherapy for heart failure.4 Patients with at least one ECG within 15 195 

days of its nearest TTE were randomly split into training, validation, and held-out test patient 196 

level sets (85%, 5%, 10%, Figure S1). This sampling was stratified by whether a patient had 197 

ever had LVEF < 40% to ensure cases of preserved and reduced LVEF were split proportionally 198 

among the sets. In the training cohort, all ECGs within 15 days of a TTE were included for all 199 

patients to maximize the data available. In validation and testing cohorts, only one ECG was 200 

included per patient to ensure independence of observations in the assessment of performance 201 

metrics. This ECG was randomly chosen amongst all ECGs within 15 days of a TTE. 202 

Additionally, to ensure that model learning was not affected by the relatively lower frequency of 203 

LVEF < 40%, higher weights were given to these cases at the training stage based on the 204 

effective number of samples class sampling scheme.17  205 
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Model Training  206 

We built a convolutional neural network model based on the EfficientNet-B3 architecture,18 207 

which previously demonstrated an ability to learn and identify both rhythm and conduction 208 

disorders, as well as the hidden label of gender in real-world ECG images.14 The EfficientNet-B3 209 

model requires images to be sampled at 300 x 300 square pixels, includes 384 layers, and has over 210 

10 million trainable parameters (Figure S2). We utilized transfer learning by initializing model 211 

weights as the pretrained EfficientNet-B3 weights used to predict the six physician-defined 212 

clinical labels and gender from Sangha et al.14 We first only unfroze the last four layers and 213 

trained the model with a learning rate of 0.01 for 2 epochs, and then unfroze all layers and trained 214 

with a learning rate of 5 x 10-6 for 6 epochs. We used an Adam optimizer, gradient clipping, and a 215 

minibatch size of 64 throughout training. The optimizer and learning rates were chosen after 216 

hyperparameter optimization. For both stages of training the model, we stopped training when 217 

validation loss did not improve in 3 consecutive epochs.  218 

We trained and validated our model on a generated image dataset that had equal numbers 219 

of standard, two-rhythm, alternate, and standard shuffled images (Figure 1). In sensitivity 220 

analyses, the model was validated on three novel ECG layouts constructed from the held-out set 221 

to assess its performance on ECG formats not encountered in the training process. These novel 222 

ECG outlines included three-rhythm (with leads I, II, and V1 as the rhythm strip), no rhythm, 223 

and rhythm on top formats (with lead I as the rhythm strip located above the 12-lead, Figure S3). 224 

Additional sensitivity analyses were performed using ECG images calibrated at 5, 10, and 20 225 

mm/mV (Figure S4). A custom class-balanced loss function (weighted binary cross-entropy) 226 

based on the effective number of samples was used given the lower frequency of the LVEF < 227 

40% label relative to those with an LVEF ≥ 40%.  228 
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External validation 229 

We pursued a series of validation studies. These represented both clinical and population-based 230 

cohort studies. Clinical validation represented non-synthetic image datasets from clinical settings 231 

spanning (1) consecutive patients undergoing outpatient echocardiography at the Cedars Sinai 232 

Medical Center in Los Angeles, CA, and (2) stratified convenience samples of LV systolic 233 

dysfunction and non-LV systolic dysfunction ECGs from four different settings (a) outpatient 234 

clinics of YNHH, (b) inpatient admissions at Lake Regional Hospital (LRH) in Osage Beach, 235 

MO, (c) inpatient admissions at Memorial Hermann Southeast Hospital in Houston, TX, (d) 236 

outpatient visits and inpatient admissions at Methodist Cardiology Clinic in San Antonio, TX. In 237 

addition, we validated our approach in the prospective cohort from Brazil, the Brazilian 238 

Longitudinal Study of Adult Health (ELSA-Brasil),19 with protocolized ECG and 239 

echocardiogram in study participants. 240 

Inclusion and exclusion criteria for external validation sets were similar to the internal 241 

YNHH dataset. Patients were limited to those having a 12-lead ECG within 15 days of a TTE 242 

with reported LVEF. For patients with more than one TTE in this interval, the LVEF from the 243 

nearest TTE was used for analysis.  244 

At Cedars Sinai, all index ECG images from consecutive patients undergoing outpatient 245 

visits between, January through March 2019, representing 879 individuals, including 99 with 246 

LVEF < 40%, were included. These analyses were performed in a fully federated and blinded 247 

fashion without access to any of the ECG data to the algorithm's developers.  248 

For the other clinical validation sites, a stratified convenience sample enriched for low 249 

LVEF was drawn. This was done to evaluate the broad use in a clinical setting by practicing 250 

clinicians without access to a research dataset. Our preliminary assessment of LV systolic 251 
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dysfunction prevalence in outpatient and inpatient settings were 10% and 20%, respectively. We 252 

sought to achieve twice this prevalence in our external validation data in these sites to ensure our 253 

performance was not driven by patients with preserved LVEF and that the model could detect 254 

those with LV systolic dysfunction.  Specifically, a 1:4 ratio of ECGs corresponding to LVEF < 255 

40% and ≥ 40% was sought at three of the four sites (YNHH, Memorial Hermann Southeast 256 

Hospital, and Methodist Cardiology Clinic). At the fourth site, LRH, a 1:2 ratio was requested to 257 

better measure the model's discriminative ability in an inpatient-only setting. 258 

In addition to the clinical validation studies, where concurrent ECG and echocardiogram 259 

are always clinically indicated, imposing a selection of the population, we evaluated our model 260 

in the ELSA-Brasil study, a community-based prospective cohort in Brazil that obtained ECG 261 

and echocardiography from participants on the enrollment visit between 2008-2010. This set 262 

included data from 2,577 individuals, including 30 from individuals with LVEF < 40%.  263 

Before validation, patient identifiers, ECG measurements, and reported diagnoses were 264 

removed from all ECG images. The differences in ECG layouts and the procedures for validation 265 

are described in further detail in the Online Supplement. Deidentified samples of ECG images 266 

are presented in Figure S5 (Cedars Sinai Medical Center ), Figure S6 (YNHH and LRH), 267 

Figure S7 (Memorial Hermann Southeast Hospital), and Figure S8 (Methodist Cardiology 268 

Clinic), and images are available from the authors upon request.   269 

Localization of Model Predictive Cues 270 

We used Gradient-weighted Class Activation Mapping (Grad-CAM) to highlight which portions 271 

of an image were important for the prediction of LVEF < 40%.20 We calculated the gradients on 272 

the final stack of filters in our EfficientNet-B3 model for each prediction and performed a global 273 

average pooling of the gradients in each filter, emphasizing those that contributed to a prediction. 274 
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We then multiplied these filters by their importance weights and combined them across filters to 275 

generate Grad-CAM heatmaps, which we overlayed on the original ECG images. We averaged 276 

class activation maps among 100 positive cases with the most confident model predictions for 277 

LVEF < 40% across ECG formats to determine the most important image areas for the prediction 278 

of low LVEF. We took an arithmetic mean across the heatmaps for a given image format, and 279 

overlayed this average heatmap across a representative ECG to understand it in context. The 280 

activation map, a 10x10 array was upsampled to the original image size using the bilinear 281 

interpolation built into TensorFlow v 2.8.0. We also evaluated the Grad-CAM for individual 282 

ECGs to evaluate the consistency of the information on individual examples.  283 

Statistical Analysis 284 

Categorical variables were presented as frequency and percentages, and continuous variables as 285 

means and standard deviations or median and interquartile range, as appropriate. Model 286 

performance was evaluated in the held-out test set and external ECG image datasets. We used 287 

area under the receiver operator characteristic (AUROC) to measure model discrimination. The 288 

cut-off for binary prediction of LV systolic dysfunction was set at 0.10 for all internal and 289 

external validations, based on the threshold that achieved a sensitivity of over 90% in the internal 290 

validation set. We also assessed area under precision recall curve (AUPRC), sensitivity, 291 

specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic odds 292 

ratio. 95% CIs for AUROC and AUPRC were calculated using DeLong’s algorithm and 293 

bootstrapping with 1000 variations for each estimate, respectively.21,22 Model performance was 294 

assessed across demographic subgroups and ECG outlines, as described above. We conducted 295 

further sensitivity analyses of model performance across ECG calibrations, PR intervals, and after 296 

excluding paced rhythms, conduction disorders, atrial fibrillation, and atrial flutter. Moreover, we 297 
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assessed the association of the model’s predicted probability of LV systolic dysfunction across 298 

LVEF categories. 299 

Next, we evaluated the future development of LV systolic dysfunction in time-to-event 300 

models using a Cox proportional hazards model. In this analysis, we took the first temporal ECG 301 

from the patients in the held-out test set, and then modeled the first development of LVEF < 40% 302 

across the groups of patients who screened positive but did not have concurrent LV systolic 303 

dysfunction (false positives), and those that screened negative (true negative) from this first ECG, 304 

with censored at death or end of study period in June 2021. Additionally, we computed an 305 

adjusted hazard ratio that accounted for differences in age, sex, and baseline LVEF at the time of 306 

index screening for visualization of survival trends. Analytic packages used in model 307 

development and statistical analysis are reported in Table S1. All model development and 308 

statistical analyses were performed using Python 3.9.5 and the level of significance was set at an 309 

alpha of 0.05. 310 

 311 

RESULTS 312 

Study Population  313 

Out of the 2,135,846 ECGs obtained between 2015 to 2021, 440,072 were from patients who had 314 

TTEs within 15 days of obtaining the ECG. Overall, 433,027 had a complete ECG recording, 315 

representing 10 seconds of continuous recordings across all 12 leads. These ECGs were drawn 316 

from 116,210 unique patients and were split into train, validation, and test sets at a patient level 317 

(Figure S1).  318 

A total of 116,210 individuals with 385,601 ECGs constituted the study population, 319 

representing those included in the train, validation, test sets. Individuals whose ECGs were used 320 
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for model development had a median age of 68 years (IQR 56, 78) at the time of ECG recording, 321 

and 59,282 (51.0%) were women. Overall, 75,928 (65.3%) were non-Hispanic white, 14,000 322 

(12.0%) non-Hispanic Black, 9,349 (8.0%) Hispanic, and 16,843 (14.5%) were from other races. 323 

A total of 56,895 (14.8%) ECGs had a corresponding echocardiogram with an LVEF below 324 

40%, 36,669 (9.5%) had an LVEF greater than or equal to 40% but less than 50%, and 292,037 325 

(75.7%) had LVEF 50% or greater (Table S2). 326 

Detection of LV Systolic Dysfunction 327 

The model’s AUROC for detecting LVEF < 40% on the held-out test set composed of standard 328 

images was 0.91 and its AUPRC was 0.55 (Figure 2). A probability threshold for predicting 329 

LVEF < 40% was chosen based on a sensitivity of 0.90 or higher in the validation subset. With 330 

this threshold, the model had sensitivity and specificity of 0.89 and 0.77 in the held-out test set, 331 

and PPV and NPV of 0.26 and 0.99, respectively. Overall, an ECG suggestive of LV systolic 332 

dysfunction portended over 27-fold higher odds (OR 27.5, 95% CI, 22.3 – 33.9) of LV systolic 333 

dysfunction on TTE (Table 1). The model’s performance was comparable across subgroups of 334 

age, sex, and race (Table 1 and Figure 2). Moreover, across successive deciles of the model 335 

predicted probabilities, the proportion of individuals with LV systolic dysfunction increased, 336 

while the mean LVEF decreased (Figure S9).  337 

Model Performance Across ECG Formats and Calibrations 338 

The model performance was comparable across the four original layouts of ECG images in the 339 

held-out set with AUROC of 0.91 in detecting concurrent LV systolic dysfunction (Table S3). 340 

The model had a sensitivity of 0.89 and a positive prediction conferred 26- to 27-fold higher 341 

odds of LV systolic dysfunction on the standard and the three variations of the data. In sensitivity 342 

analyses, the model demonstrated similar performance in detecting LV systolic dysfunction from 343 
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novel ECG formats that were not encountered before, with AUROC between 0.88-0.91 (Table 344 

S4).  345 

The model performance was also consistent across ECG calibrations with an AUROC 346 

between 0.88 and 0.91 on ECG calibrations of 5, 10, and 20 mm/mV and AUROC 0.908 (0.899 347 

– 0.918) and AUPRC of 0.538 (0.503 – 0.573) with mixed calibrations in the held-out test set. 348 

The mixed calibration was generated with a random sample of 5 mm/mV and 20 mm/mV 349 

calibrations from the highest and lowest quartiles of voltages, respectively, in lead I (together 350 

representing 25% of the sample from the test set), along with 10 mm/mV (remaining 75% of test 351 

set) (Table S5). Further sensitivity analyses demonstrated consistent model performance on 352 

ECGs (a) without prolonged PR interval (AUROC 0.920 and AUPRC 0.537, Table S6), (b) 353 

without paced rhythms (AUROC 0.908, AUPRC 0.519, Table S7), and (c) without atrial 354 

fibrillation, atrial flutter, and conduction disorders (AUROC 0.919, AUPRC 0.536, Table S8). 355 

Model performance was also consistent across subsets on the held-out test set based on the 356 

timing of the ECG relative to the echocardiogram (Table S9). 357 

LV Systolic Dysfunction in Model-predicted False Positives 358 

Of the 10,666 ECGs in the held-out test set with an associated LVEF ≥ 40% on a proximate 359 

echocardiogram, the model classified 2,469 (23.1%) as “false positives”, and 8,197 (76.9%) as 360 

true negatives. In further evaluation of false positives, 562 (22.8% of false positives) had 361 

evidence of mild LV systolic dysfunction with LVEF between 40-50% on concurrent 362 

echocardiography. 363 

In this group of individuals, 4,046 patients had at least one follow-up TTE, including 364 

1,125 (27.8%) false positives and 2,921 (72.2%) true negatives on the initial index screen. There 365 

were 2,665 and 6,083 echocardiograms in the false positive and true negative populations during 366 
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the follow-up, with the longest follow-up of 6.1 years. Overall, 264 (23.5%) patients with model-367 

predicted positive screen and 199 (6.8%) with negative screen developed new LVEF < 40% over 368 

the median follow-up of 3.2 years (IQR 1.8-4.4 years, Figure 3).  This represented a 3.9-fold 369 

higher risk of incident low LVEF based on having a positive screening result (HR 3.9, 95% CI 370 

3.3-4.7). After adjustment for age, sex, and LVEF at the time of screening, patients with positive 371 

screen had a 2.3-fold higher risk of incident low LVEF (Adjusted HR 2.3, 95% CI 1.9-2.8).  372 

Localization of Predictive Cues for LV Systolic Dysfunction 373 

Class activation heatmaps of the 100 positive cases with the most confident model predictions 374 

for reduced LVEF prediction across four ECG layouts are presented in Figure 4. For all four 375 

formats of images, the region corresponding to leads V2 and V3 were the most important areas 376 

for prediction of reduced LVEF. Representative images of Grad-CAM analysis in sampled 377 

individuals with positive and negative screens in the held-out test set, and non-synthetic ECG 378 

images in validation sites are presented in Figures S10 and S11, respectively. 379 

External Validation  380 

The validation performance of the model was consistent and robust across each of the 6 381 

validation datasets (Figure 5). The first validation set at Cedars Sinai Medical Center included 382 

879 ECGs from consecutive patients who underwent outpatient echocardiography, including 99 383 

(11%) individuals with LVEF < 40%. The model demonstrated an AUROC of 0.90 and an 384 

AUPRC of 0.53 in this set. Second, a total of 147 ECG images drawn from YNHH outpatient 385 

clinics were used for validation and included 27 images (18%) from patients with LVEF < 40%. 386 

The model had an AUROC of 0.94 and AUPRC of 0.77 in validation on these images. The third 387 

image dataset included ECG images from inpatient visits to the LRH. It included 100 ECG 388 

images, with 43 images (43%) from patients with LVEF < 40%, with a model AUROC of 0.90 389 
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and AUPRC of 0.88. The fourth dataset from Memorial Hermann Southeast Hospital included 50 390 

ECG images, 11 (22%) from patients with LVEF < 40%, with a model AUROC and AUPRC of 391 

0.91 and 0.88 on these images, respectively. The fifth validation set contained 50 ECG images 392 

from the Methodist Cardiology Clinic, which included 11 (20%) ECGs from patients with LVEF 393 

< 40%, with model AUROC of 0.90 and AUPRC of 0.74.  394 

The sixth set included 2,577 ECGs from prospectively enrolled individuals in the ELSA-395 

Brasil study, including 30 with LVEF < 40%. The model demonstrated an AUROC 0.95 and 396 

AUPRC 0.45 on this set. The model performance on these 6 validation sets is outlined in Table 2 397 

and Table S10. 398 

 399 

DISCUSSION 400 

We developed and externally validated an automated deep learning algorithm that accurately 401 

identifies LV systolic dysfunction solely from ECG images. The algorithm has high 402 

discrimination and sensitivity, representing characteristics ideal for a screening strategy. It is 403 

robust to variations in the layouts of ECG waveforms and detects the location of ECG leads 404 

across multiple formats with consistent accuracy, making it suitable for implementation in a 405 

variety of settings. Moreover, the algorithm was developed and tested in a diverse population 406 

with high performance in subgroups of age, sex, and race, and across geographically dispersed 407 

academic and community health systems. It performed well in 6 external validation sites, 408 

spanning both clinical settings as well as a prospective cohort study where protocolized 409 

echocardiograms were performed concurrently with ECGs. An evaluation of the class-410 

discriminating signals localized it to the anteroseptal and anterior leads regardless of the ECG 411 

layout, topologically corresponding to the left ventricle. Finally, among individuals who did not 412 
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have a concurrently recorded low LVEF, a positive ECG screen was associated with a 3.9-fold 413 

increased risk of developing LV systolic dysfunction in the future compared with those with 414 

negative screen, which was significant after adjustment for age, sex, and baseline LVEF. 415 

Therefore, an ECG image-based approach can represent a screening as well as predictive strategy 416 

for LV systolic dysfunction, particularly in low-resource settings. 417 

Image-based analysis of ECGs through deep learning represents a novel application of AI 418 

to improve clinical care. Convolutional neural networks have previously been designed to detect 419 

low LVEF from ECG signals.10,11 Although reliance of signal-based models on voltage data is 420 

not computationally limited, their use in both retrospective and prospective settings requires 421 

access to a signal repository where the ECG data architecture varies by ECG device vendors. 422 

Moreover, data are often not stored beyond generating printed ECG images, particularly in 423 

remote settings.23 Furthermore, widespread adoption of signal-based models is limited by the 424 

implementation barriers requiring health system-wide investments to incorporate them into 425 

clinical workflow, something that may not be available or cost-effective in low-resource settings 426 

and, to date, is not widely available in higher resource setting such as the US. The algorithm 427 

reported in this study overcomes these limitations by making detection of LV systolic 428 

dysfunction from ECGs interoperable across acquisition formats and directly available to 429 

clinicians who only have access to ECG images. Since scanned ECG images are the most 430 

common format of storage and use of electrocardiograms, untrained operators can implement 431 

large scale screening through chart review or automated applications to image repositories – a 432 

lower resource task than optimizing tools for different machines.  433 

The use of ECG images in our model overcomes the implementation challenges arising 434 

from black box algorithms. The origin of risk-discriminative signals in precordial leads of ECG 435 
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images suggests a left ventricular origin of the predictive signals. Moreover, the consistent 436 

observation of these predictive signals in the anteroseptal and anterior leads, regardless of the 437 

lead location on printed images, also serves as a control for the model predictions. Despite 438 

localizing the class-discriminative signals in the image to the left ventricle, heatmap analysis 439 

may not necessarily capture all the model predictive features, such as the duration of ECG 440 

segments, intervals, or ECG waveform morphologies which might have been used in model 441 

predictions. However, visual representations that are consistent with clinical knowledge could 442 

explain parts of the model prediction process and address the hesitancy in uptake of these tools in 443 

clinical practice.24 444 

            An important finding was the significantly increased risk of incident LV systolic 445 

dysfunction among patients with model-predicted positive screen but LVEF ≥ 40% on 446 

concurrent echocardiography. These findings demonstrate an electrocardiographic signature that 447 

may precede the development of echocardiographic evidence of LV systolic dysfunction. This 448 

was previously reported in signal-based models,10 further suggesting that the detection of LV 449 

systolic dysfunction on ECG images represents a similar underlying pathophysiological process. 450 

These observations suggest a potential role for AI-based ECG models in risk stratification for 451 

future development of cardiovascular disease.25 452 

            Our study has certain limitations that merit consideration. First, we developed this model 453 

among patients with both ECGs and echocardiograms. Therefore, the training population 454 

selected likely had a clinical indication for echocardiography, differing from the broader real-455 

world use of the algorithm for screening tests for LV systolic dysfunction among those without 456 

any clinical disease. The excellent performance of our algorithm across demographic subgroups 457 

and the validation population would suggest robustness and generalizability of the effects though 458 
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prospective assessments in the intended screening setting are warranted. Second, the model 459 

performance may vary by degree of LV systolic dysfunction. Though we chose an LVEF 460 

threshold of 40% due to its therapeutic implications, such as an indication for disease-modifying 461 

guideline-directed medical therapies,4 the model identifies individuals with mild dysfunction. 462 

This may highlight a shared signature of LV systolic dysfunction among those with LVEF<40%, 463 

and with LVEF of 40-50%, but could also represent the lack of precision of LVEF measurement 464 

by echocardiography relative to more precise approaches, such as magnetic resonance 465 

imaging.26,27 Third, while we incorporated four ECG formats during its development and 466 

demonstrated that the model had a consistent performance on a range of commonly used and 467 

novel layouts that were not included in the development, we cannot ascertain whether it 468 

maintains performance on every novel format. Fourth, while the model development pursues 469 

preprocessing the ECG signal for plotting images, these represent standard processes performed 470 

before ECG images are generated and/or printed by ECG machines. Therefore, any other 471 

processing of images is not required for real-world application, as demonstrated in the 472 

application of the model to the external validation sets.    473 

 474 

CONCLUSIONS 475 

We developed an automated algorithm to detect LV systolic dysfunction from ECG images, 476 

demonstrating a robust performance across subgroups of patient demographics, ECG formats and 477 

calibrations, and clinical practice settings. Given the ubiquitous availability of ECG images, this 478 

approach represents a strategy for automated screening of LV systolic dysfunction, especially in 479 

resource-limited settings.   480 
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Table 1. Performance of model on test images across demographic subgroups in the held-out test set. Abbreviations: PPV, 
positive predictive value; NPV, negative predictive value; AUROC, area under receiver operating characteristic curve; AUPRC, area 
under precision recall curve; OR, odds ratio 
 

Labels Number PPV NPV Specificity Sensitivity AUROC AUPRC 

All 
11621 

(100%) 
0.257 0.988 0.769 0.892 0.910 (0.901-0.919) 0.545 (0.511 – 0.579) 

Male 
5952 

(51.2%) 
0.285 0.984 0.735 0.897 0.901 (0.889-0.914) 0.583 (0.539 – 0.621) 

Female 
5668 

(48.8%) 
0.215 0.991 0.802 0.884 0.917 (0.903-0.932) 0.470 (0.416 – 0.530) 

≥ 65 
6550 

(56.4%) 
0.252 0.985 0.717 0.896 0.892 (0.880-0.905) 0.522 (0.480 – 0.561) 

< 65 
5068 

(43.6%) 
0.266 0.991 0.833 0.886 0.931 (0.916-0.945) 0.590 (0.534 – 0.655) 

Hispanic 
942  

(8.1%) 
0.253 0.992 0.802 0.908 0.926 (0.892-0.961) 0.576 (0.453 – 0.696) 

White 
7557 

(65.0%) 
0.261 0.988 0.770 0.895 0.910 (0.898-0.921) 0.537 (0.498 – 0.580) 

Black 
1417 

(12.2%) 
0.263 0.984 0.712 0.897 0.899 (0.872-0.925) 0.590 (0.498 – 0.665) 

Other 
1705 

(14.7%) 
0.231 0.987 0.787 0.864 0.912 (0.887-0.937) 0.532 (0.437 – 0.625) 

 * Gender information was not available for 1 patient and age was not available for 3 patient of the total 11,621 patients in the held-out 
test set 
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Table 2. Performance of model on external validation datasets. Abbreviations: PPV, positive predictive value; NPV, negative 
predictive value; AUROC, area under receiver operating characteristic curve; AUPRC, area under precision recall curve; ELSA-
Brasil, Estudo Longitudinal de Saúde do Adulto (The Brazilian Longitudinal Study of Adult Health) 
 
 

Site PPV NPV Specificity Sensitivity AUROC AUPRC 

Cedars Sinai 
Medical Center 

0.326 0.979 0.772 0.869 0.902 (0.877 – 0.926) 0.533 (0.432 – 0.640) 

Outpatient Clinics of 
YNHH 

0.338 1.000 0.558 1.000 0.946 (0.910 - 0.982) 0.775 (0.605 – 0.916) 

LRH 0.538 0.955 0.368 0.977 0.901 (0.843 - 0.959) 0.889 (0.810 – 0.946) 

Memorial Hermann 
Southeast Hospital 

0.385 0.958 0.590 0.909 0.918 (0.790 - 1.000) 0.888 (0.699 – 1.000) 

Methodist 
Cardiology Clinic 

0.458 1.000 0.667 1.000 0.902 (0.816 - 0.989) 0.738 (0.470 – 0.928) 

ELSA-Brasil  0.256 0.996 0.976 0.700 0.949 (0.915 – 0.983) 0.449 (0.290 – 0.651) 
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Figure 1. Study Outline A) Data processing, B) Model training, and C) Model validation. 
Abbreviations: ECG, electrocardiogram; EF, ejection fraction; FC, fully connected layers; Grad-
CAM, gradient-weighted class activation mapping; CT, Connecticut; ELSA-Brasil, Estudo 
Longitudinal de Saúde do Adulto (The Brazilian Longitudinal Study of Adult Health); MO, 
Missouri; TX, Texas. 
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*We pursued a transfer learning strategy in developing the current model from our previous 
algorithm which was originally trained to detect cardiac rhythm disorders and the hidden label of 
gender from ECG images. The transfer learning was used as initialization weights for the 
EfficientNet B3 convolutional neural network being trained to detect LV systolic dysfunction. 
Other than the weights, clinical and gender labels were not input to the current model. 
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2023. ; https://doi.org/10.1101/2022.06.04.22276000doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.04.22276000
http://creativecommons.org/licenses/by-nc/4.0/


 33

Figure 2. Model Performance Measures A) Receiver-Operating and B) Precision-Recall 
Curves on images in held-out test set C) Diagnostic Odds Ratios across age, gender, and 
race subgroups on standard format images in the held-out test set. Abbreviations: AUROC, 
area under receiver-operating characteristic curve; AUPRC, area under precision-recall curve. 
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Figure 3. Cumulative hazard curves for incident LV systolic dysfunction in model-
predicted positive and negative screens amongst the members of the held-out test set with 
LVEF ≥ 40% and at least one follow-up measurement. 
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Figure 4. Gradient-weighted Class Activation Mapping (Grad-CAMs) across ECG formats. 
A) Standard format B) Two rhythm leads C) Standard shuffled format D) Alternate 
format. The heatmaps represent averages of the 100 positive cases with the most confident 
model predictions for LVEF < 40%. 
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Figure 5. Receiver-Operating Curves for external validation sites. Abbreviations: AUROC, 
area under receiver-operating characteristic curve; EF, Ejection fraction; LRH, Lake Regional 
Hospital; YNHH, Yale New Haven Hospital 
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