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Abstract 9 
 10 
Background: The value of polygenic risk scores (PRS) towards improving guideline-recommended clinical 11 

risk models for coronary artery disease (CAD) prediction is controversial. Here we examine whether an 12 

integrated polygenic risk score improves prediction of CAD beyond pooled cohort equations. 13 

Methods: An observation study of 291,305 unrelated White British UK Biobank participants enrolled 14 

from 2006 to 2010 was conducted.  A case-control sample of 9,499 prevalent CAD cases and an equal 15 

number of randomly selected controls was used for tuning and integrating of the polygenic risk scores. A 16 

separate cohort of 272,307 individuals (with follow-up to 2020) was used to examine the risk prediction 17 

performance of pooled cohort equations, integrated polygenic risk score, and PRS-enhanced pooled co-18 

hort equation for incident CAD cases. Performance of each model was analyzed by discrimination and 19 

risk reclassification using a 7.5% threshold. 20 

Results: In the cohort of 272,307 individuals (mean age, 56.7 years) used to analyze predictive accuracy, 21 

there were 7,036 incident CAD cases over a 12-year follow-up period. Model discrimination was tested 22 

for integrated polygenic risk score, pooled cohort equation, and PRS-enhanced pooled cohort equation 23 

with reported C-statistics of 0.640 (95% CI, 0.634-0.646), 0.718 (95% CI, 0.713-0.723), and 0.753 (95% CI, 24 

0.748-0.758), respectively. Risk reclassification for the addition of the integrated polygenic risk score to 25 

the pooled cohort equation at a 7.5% risk threshold resulted in a net reclassification improvement of 26 
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0.117 (95% CI, 0.102 to 0.129) for cases and -0.023 (95% CI, -0.025 to -0.022) for noncases [overall: 27 

0.093 (95% CI, 0.08 to 0.104)]. For incident CAD cases, this represented 14.2% correctly reclassified to 28 

the higher-risk category and 2.6% incorrectly reclassified to the lower-risk category. 29 

Conclusions and Relevance: Addition of the integrated polygenic risk score for CAD to the pooled cohort 30 

questions improves the predictive accuracy for incident CAD and clinical risk classification in the White 31 

British from the UK biobank. These findings suggest that an integrated polygenic risk score may enhance 32 

CAD risk prediction and screening in the White British population.  33 

  34 
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Background 35 

Cardiovascular disease (CVD) is a major cause of death worldwide.1 Risk estimates for CVD have 36 

become particularly important for disease prevention and clinical practice.2,3,4,5 Current guidelines from 37 

the American College of Cardiology and American Heart Association suggest lipid-lowering treatments 38 

for individuals with greater than a 7.5% 10-year absolute risk of developing CVD based on pooled cohort 39 

equations (PCE).6 Because of the central role of accurate risk estimates in CVD prevention, improving ac-40 

curacy beyond those already used in clinical practice like PCE, could save lives by better identifying high 41 

risk individuals. 42 

Substantial advancements have been made over the past decades in identifying genetic variants 43 

associated with coronary artery disease (CAD).7,8,9,10 Recent advances in polygenic risk scores (PRSs) have 44 

sparked a great interest in enhancing disease risk prediction by using the information on millions of vari-45 

ants across the genome.11,12,13,14 However, population health utility of PRSs in CAD risk prediction is con-46 

troversial. Several studies have shown that PRSs can improve risk prediction accuracy for incident and 47 

prevalent CAD cases compared with individual conventional risk factors15,16 and combing risk prediction 48 

models (like PCE) with PRS improves the performance in terms of net reclassification improvement.17 On 49 

the other hand, several studies18,19 integrating PRSs into PCE  to assess possible clinical utility have con-50 

cluded that the current benefits of incorporating PRSs were minimal (although statistically significant) 51 

and were not considered clinically significant to warrant their use over current clinical used prediction 52 

models. In this manuscript, we investigate why different studies have reached different and controver-53 

sial conclusions. Specifically, we analyzed UK Biobank data to test the hypothesis that integrated PRSs 54 

leveraging multiple newly developed PRS methods, and several genome-wide association study (GWAS) 55 

datasets, can improve risk prediction for CAD over the widely used PCE and thus provide improved clini-56 

cal utility in European populations.9,20,21,22,23,24,25 Furthermore, in secondary analysis, we extended our 57 

integrated method to analyze its predictive performance in non-European populations. 58 
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Methods 59 

Study Populations 60 

Our study utilized the UK Biobank which includes 502,536 participants ranging in age from 40 to 61 

69 at baseline recruitment.26 Biomarker data were collected from stored serum and red blood cells, de-62 

tails of which are described elsewhere.27 Ethical approval for the UK Biobank study was obtained from 63 

the National Health Service’s National Research Ethics Service North West (11/NW/0382). The current 64 

research project (application number 48240) was approved by UK Biobank. Our study design is outlined 65 

in Figure 1. 66 

The primary endpoint for our study was CAD, for which several large GWAS results are availa-67 

ble.8,9,25 We limited our primary investigation to unrelated White British individuals (as defined by UK 68 

Biobank data-field 22006) to reduce the influence of population heterogeneity and related samples; un-69 

related individuals were obtained by only keeping individuals with no relative 3rd degree or closer.28 We 70 

further excluded outliers for heterozygosity or genotype missing rates (0.2> missing rate). Participants 71 

with inconsistent reported and genotypic inferred sex and withdrawn consent were likewise removed.  72 

In secondary analysis, we focused on African ancestry participants in the UK Biobank. Following 73 

others,29,30 we used imputed data released by the UK Biobank to determine continental ancestry (African 74 

(AFR), East Asian (EAS), European (EUR), South Asian (SAS)) and projected participants onto genetic prin-75 

cipal components calculated in the 1000 Genome Project (N= 2000: AFR = 504; EAS = 504; EUR = 503; 76 

SAS = 489). We excluded populations identified as African Caribbeans in Barbados (ACB) and Americans 77 

of African Ancestry in SW (ASW) from the AFR population and all individuals of American ancestry (AMR) 78 

due to their complex admixture patterns. Participants were assigned to ancestries based on likelihoods 79 

calculated from their first 5 principal components. Samples were assigned via random forest to an an-80 

cestry when their likelihood for a given ancestry was > 0.3. If two ancestries exceeded 0.3, we assigned 81 
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ancestries as: AFR over EUR, SAS over EUR, and EUR over EAS. Participants were excluded if no likeli-82 

hood was > 0.3 or if 3 ancestry groups were > 0.3 (n = 8). The same quality control used in primary analy-83 

sis was then applied to the resulting AFR ancestry population. 84 

The study population was divided into (1) a case-control study (tuning dataset) established from 85 

prevalent CAD cases (see Cardiovascular Outcome Definitions Subsection for details) and randomly se-86 

lected controls and (2) an independent prospective cohort study (testing dataset) of participants with no 87 

history of CAD at baseline recruitment. The tuning dataset was used for building risk prediction models 88 

and the testing dataset was used for unbiasedly evaluating their performance. Of note, there were no 89 

overlapping participants between these two datasets, ensuring the testing results were valid.  90 

Definition of Risk Score Variables  91 

The updated pooled cohort equation (PCE) model, a clinically used risk prediction model, was 92 

used as our baseline. We matched variables available in the cohort to the predictors of the updated 93 

PCE,3 including information on age, sex, race and ethnicity, smoking status, total and HDL cholesterol, 94 

systolic blood pressure, diabetes, and the use of lipid lowering and blood pressure lowering medica-95 

tions. Definitions for Type 1 and Type 2 diabetes, blood pressure lowering and lipid lowering medica-96 

tions use as well as categorization of smoking status were defined based on UK-recommended QRISK3 97 

scores.31,32 Details of variable definitions and protocol for handling missing values are relegated to the 98 

eMethods section of Supplementary. 99 

Figure 1. Study Design and Flowchart for Coronary Artery Disease (CAD)                100 

A. Selection of PRS in case-control study 101 

 102 

B. Cohort Study 103 

                                                                                                                                                                       104 
 105 
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Cardiovascular Outcome Definitions 106 

The UK Biobank data have been linked to Hospital Episode Statistics (HES) and national death 107 

and cancer registries.  HES records diagnosis information via International Classification of Diseases 108 

(ICD)-9th and 10th Revisions and codes operative procedures via OPCS-4. Death registries include death 109 

date and both primary and secondary causes of death coded in ICD-10. We defined CAD by combining 110 

HES, death registries, operation codes,31,32 as well as related self-reported diagnoses and previous proce-111 

dure codes (Supplementary Tables 1 and 2). Following others,18 CAD was defined as myocardial infarc-112 

tion, including related sequelae. 113 

The date of event was determined via recorded episode date, admission date, or operation date 114 

indicated in the hospital statistics. For participants with multiple CAD event dates, the earliest recorded 115 

date were used as the dates of event. Age of event was determined by self-reported age and calculated 116 

age based on the date of event; when both ages were available, the smaller value was used.15 Prevalent 117 

cases at baseline were defined as individuals with age of event earlier than age at UK Biobank enroll-118 

ment time. Follow-up time was calculated as the number of days from assessment date until the event 119 

of interest (CAD event), a competing cause of death, or censorship date (2020/12/31) occurred. 120 

Polygenic Risk Scores (PRS) 121 

Information on genotyping and imputation has been described in detail elsewhere.27,33 Standard     122 

quality-control procedures were applied to the imputed UK Biobank genotype data. Briefly, we re-123 

stricted our analyses to autosomal genetic variants, kept variants with imputation information score 124 

(INFO) score > 0.3, minor allele frequency > 1%, Hardy-Weinberg equilibrium P > 10-10, and genotype 125 

missing rate < 10%. We further removed variants with ambiguous strands (A/T or C/G).  126 

PRS for CAD were derived as weighted sums of risk alleles using 3 CAD GWAS datasets (CARDIo-127 

GRAMplusC4D, FinnGen Biobank, Japan Biobank) that had no overlap with the present UK Biobank study 128 
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(Figure 1).8,9,25   The 3 GWAS datasets were filtered to only include SNPs present in the imputed UK Bi-129 

obank data. For all datasets, we aligned β and allele frequencies to the hg19 alternate allele. First, we 130 

performed a fixed-effect meta-analysis focused on GWAS datasets with subjects of European ancestry, 131 

specifically the CARDIoGRAMplusC4D and FinnGen datasets, using METAL.34 Second, the PRSs were cal-132 

culated by using either Japan Biobank data or combined European data and their corresponding popula-133 

tion-specific 1000 Genome Project constructed LD reference panels. 134 

Tuning of the PRS was implemented using seven methods: (1) clumping and thresholding using 135 

PRSice-2 software (version 2.3.3),35 (2) LDpred,20 (3) lassosum,36 (4) PRS-CS ,21 (5) sBayesR,22 (6) LDpred-136 

funct,23 and (7) DBSLMM.24 Detailed information on each PRS method and their associated parameters 137 

are described in the eMethods section of Supplementary. All methods utilized were adjusted for geno-138 

type measurement batch and the first five genetic principal components calculated by the UK Biobank. 139 

Since different PRS methods and datasets may capture different information, we constructed the inte-140 

grated PRS by ∑ 𝛽#!𝑃𝑅𝑆!
"
!#$ , where 𝛽#!  is the estimated coefficient of 𝑃𝑅𝑆!  in the logistic regression using 141 

the tuning dataset and 𝑃𝑅𝑆! is the jth PRS.37 Selection of PRS methods for the integrated model was de-142 

termined based on are under the curve (AUC) results from the tuning dataset. Methods with the largest 143 

AUC improvement over the PCE model were selected and analyzed in the testing dataset until the inclu-144 

sion of additional PRS methods failed to improve the predictive performance of the integrated model. 145 

We assessed the performance of the integrated model against the individual PRS methods in the testing 146 

dataset as well as models combining the European meta-analysis data and Japan Biobank data.  147 

Statistical Analysis 148 

Participants were excluded from the study for multiple factors, including missing genetic data, 149 

mismatches in reported and genotypic sex, withdrawal of informed consent, and missing predictor val-150 

ues. Using previously published baseline coefficients for each predictor variable and baseline hazard, we 151 
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calculated the updated pooled cohort equation scores (PCE).3 We examined several models as defined in 152 

previous studies18,19: (1) PCE; (2) (integrated) PRS for CAD; and (3) PCE and (integrated) PRS. We per-153 

formed Cox proportional hazard regression using follow-up time as the time variable in the testing data. 154 

As a sensitivity analysis, all models were reexamined after removing participants that reported taking 155 

lipid-lowering medications at baseline of the UK Biobank study. 156 

We examined the discrimination of each model via Harrell’s C-statistic and its 95% confidence 157 

interval. 38,39,40 In brief, the C-statistic is a measure of the discriminatory power of a risk prediction 158 

model, with values ranging from 0.5 (no discrimination) to 1.0 (perfect discrimination). Calibration and 159 

recalibration of the baseline models were graphically assessed by comparing observed probabilities via 160 

Kaplan-Meier estimates to the mean predicted probability within tenths of the predicted probabilities. 161 

During recalibration, the baseline survival function was estimated in the testing cohort and combined 162 

with predicted hazard ratios from the validation dataset in a Cox model to obtain recalibrated predicted 163 

probabilities.3,18 We assessed the recalibration results via the calibration slope and Greenwood-Nam-164 

D’Agostino test.41 165 

We evaluated risk prediction accuracy using the net reclassification improvement (NRI)42 at a 166 

threshold of 7.5% (clinically used in the United States), continuous NRI, and associated integrated dis-167 

crimination improvement (IDI).43 These metrics quantify how well a new model (PCE plus PRS) reclassi-168 

fies individuals compared to an old model (PCE); a brief explanation of these metrics can be found in the 169 

eMethods section of the Supplementary. 170 

Statistical analyses were conducted in R software, version 4.0.0 (R Project for Statistical Compu-171 

ting).44 Anaconda, version 3.8.3, was also used for PRS methods that utilized Python programming lan-172 

guage.45  173 

Results  174 
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Following removal of participants with missing data and selecting for only unrelated white Brit-175 

ish participants, the UK Biobank dataset contained 291,305 participants which were subsequently di-176 

vided into case-control and cohort study datasets (Figure 1). The case-control study contained 9,499 177 

prevalent CAD cases and an equal number of controls used for tuning of the PRS methods. The inde-178 

pendent cohort study was comprised of 272,307 individuals (mean age: 56.7) with 7,036 incident cases. 179 

Participants with CAD at baseline were not included in the cohort study population. The cohort study 180 

had a median follow-up time of 12.33 years (interquartile range, 1.42), while incident CAD cases had a 181 

median follow-up time of 5.02 years (interquartile range, 4.07). Baseline characteristics (such as age, 182 

smoking status, cholesterol, and systolic blood pressure) were similar for participants included in the co-183 

hort analysis and excluded due to missing covariates (Supplementary Tables 3A-3C). 184 

For the case-control study, each PRS method for CAD was performed across multiple parameter 185 

settings to determine optimal values that would be combined for the cohort study. We classified the 186 

“optimal” parameter values as those achieving the highest AUC values for that individual method. Spe-187 

cific details on each method’s tuning parameters and individual AUC values were provided in Supple-188 

mentary Tables 4A and 4B for the European meta-analysis (EUR) and Japan Biobank (Japan) datasets. 189 

We combined the PRS for CAD based on the combination of the three GWAS datasets. As expected, be-190 

cause the combined EUR + Japan methods fully utilized all three GWAS datasets and several comple-191 

mentary PRS methods, it achieved the highest AUC [0.641 (95% CI, 0.635-0.648)] and thus we focused 192 

on this PRS (denoted by integrated CAD PRS or simply PRS) for the remaining analysis. The maximal inte-193 

grated CAD PRS model for this study was determined to include the EUR and Japan derived clumping 194 

and thresholding, LDpred, lassosum, PRS-CS, and LDpred-funct methods. During this step, we evaluated 195 

the PRS methods for collinearity concerns and determined the different methods tended to not be 196 

highly correlated (Supplementary Figure 1). 197 
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In the cohort analysis, following selection of white British participants, as well as excluding indi-198 

viduals with missing data, and selecting the case-control subjects, 272,307 participants were used. The 199 

discrimination of the integrated CAD PRS remained similar as that in tuning case-control study; the C-200 

statistic for the integrated CAD PRS was 0.640 (95% CI, 0.634 -0.646) (Table 1). The discrimination of the 201 

PCE (C-statistics, 0.718 [95% CI, 0.713-0.723]) was higher than the integrated CAD PRS. Addition of indi-202 

vidual PRSs to the PCE resulted in improved discrimination of the model with PRS-CS applied to the Eu-203 

ropean meta-analysis showing the highest discrimination (C-statistics, 0.749 [95% CI, 0.744-0.754]) (Sup-204 

plementary Table 5A-5C). We observed the most significant improvement in discrimination when the 205 

integrated CAD PRS were added to the PCE, showing a C-statistic increase to 0.753 (95% CI, 0.748-206 

0.758), an associated change over the PCE alone of 0.035 (95% CI, 0.03 – 0.04) (Table 1 and Figure 2). 207 

We further stratified the population by age group (younger and older than 55 years of age) and sex (men 208 

and women) separately and observed higher discrimination in women than men and higher discrimina-209 

tion in the younger age group than in the older age group (Table 1). Participants that were not receiving 210 

lipid-lowering medication at baseline were also examined and demonstrated similar discrimination per-211 

formance (Table 1). 212 

Table 1. C-Statistics for Coronary Artery Disease for Full Population and Stratified by Sex and Age  213 
Group (Younger and Older than 55 Years of Age) A,B 214 
 215 
 216 
Figure 2. Receiver Operator Characteristic Curves and C-Statistics for Different Models in Cohort Analyses  217 
of White British and African Ancestry Populations                    218 
                                     219 
                                                                                                                                                                                             220 

When evaluating model performance, we compared observed and predicted cumulative inci-221 

dences of CAD events across each tenth of predicted risk and determined the addition of our integrated 222 

PRS method to the baseline model overestimated risk. Following others,17,18 we recalibrated the model 223 
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by fitting predicted log-HRs as covariates in the model, resulting in considerable improvement in model 224 

calibration (Supplementary Figure 2). 225 

We investigated the potential of the PRS-enhanced PCE model in the risk assessment of CAD. 226 

We found that an individual’s integrated CAD PRS were generally uncorrelated (Pearson correlation co-227 

efficient r, 0.01) with their PCE, which partially explains why adding integrated CAD PRS to PCE model 228 

(denoted by PRS-enhanced PCE) improves the discrimination power. We evaluated the hazard ratios HR 229 

via a Cox regression. The PCE model had an adjusted HR of 1.653 (95% CI: 1.628-1.679) per standard de-230 

viation increase (P < .001) while the PRS-enhanced PCE model reported an adjusted HR of 1.77 (95% CI: 231 

1.745 - 1.796) per standard deviation increase of PRS (P < .001). The PRS-enhanced PCE model further 232 

improves the discrimination power of PCE model (Figure 3). For example, in the PRS-enhanced PCE 233 

model, there was a 7.77-fold (95% CI: 7.61- to 7.92-fold) risk of CAD for individuals in the top quintile 234 

compared to those in the bottom quintile. The PCE model, in comparison, reported a 5.29-fold (95% CI: 235 

5.21- to 5.39-fold) risk of CAD between the top and bottom quintiles.   236 

Figure 3. Cumulative Absolute Risk of Developing CAD 237 

 238 

 After adding PRS for CAD to the PCE model, predicted risk changed by greater than 1% for 35.5% 239 

of participants while changing by 5% or greater for 1.9% of participants (Figure 4A). There were 7,005 240 

incident CAD cases and 256,072 noncases at the 10-year follow-up; 9,230 individuals were censored due 241 

to lack of disease or follow-up at 10 years.  At the suggested 7.5% risk threshold, 992 of 7,005 cases 242 

(14.2%) were correctly reclassified to the higher-risk category and 182 of 7,005 cases (2.6%) were incor-243 

rectly moved to the lower-risk category. For non-case participants, 3,443 of 256,072 (1.3%) were cor-244 

rectly moved down to the lower-risk category while 9,331 of 256,072 (3.6%) were incorrectly moved up 245 

to the high-risk category (Figure 4B).  246 
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When comparing integrated PRS for CAD model to the PCE model, the NRI for cases was 11.7% 247 

(95% CI, 10.2% to 12.9%) and –2.3% (95% CI, -2.5% to –2.2%) for noncases (Figure 4C). Following the ad-248 

dition of the integrated CAD PRS to PCE, the IDI metric indicated an increase in risk difference between 249 

cases and noncases of 0.056 (95% CI, 0.053 to 0.059) (Figure 4C). Stratification by sex indicated higher 250 

NRI improvement in men over women; stratification by age group saw similar overall NRI improvement 251 

(Supplementary Table 6). 252 

Figure 4. Change in Predicted Probabilities and Risk Reclassification    253 

A. Difference between 10-y risk by PCE and PRS-enhanced PCE                                                                                                                                                                                                                                254 

 B. PCE + PRS 10-year risk reclassification 255 
 256 

C. Net reclassification improvement and integrated discrimination improvement results 257 

Secondary Analyses 258 
 There were 6,971 participants in the AFR ancestry population that were divided into case-con-259 

trol and cohort datasets. The case-control dataset consisted of 109 prevalent CAD cases and an equal 260 

number of controls. The cohort population was composed of 6,753 participants (median follow-up: 261 

12.75, interquartile range: 1.25) in which 88 incident CAD cases were observed (median follow-up: 5.97, 262 

interquartile range: 3.3). Baseline characteristics are presented in Supplementary Tables 3D-3F.  263 

 In case-control analysis, the optimized integrated CAD PRS model that achieved the highest AUC 264 

(0.717 [95% CI, 0.644-0.769]) was determined to include the EUR clumping and thresholding, LDpred, 265 

PRS-CS, and LDpred-funct methods as well as the Japan LDpred, PRS-CS, and sBayesR methods. In cohort 266 

analysis, the integrated CAD PRS C-statistic was 0.542 (95% CI, 0.485-0.6) (Figure 1). Discrimination of 267 

the PCE model (0.714 [95% CI, 0.659-0.769]) outperformed the integrated CAD PRS. In contrast to the 268 

White British population, the incremental value of the addition of the integrated CAD PRS to the PCE 269 

model was minimal (increase in C-statistic, .002 [95% CI, 0.006 to -0.001]) (Table 1). We further stratified 270 

by gender and age and observed higher discrimination in women and in the older age group, however, 271 
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we noticed slightly greater improvement in discrimination with the addition of our integrated CAD PRS 272 

in both men and the younger age group. Participants not on lipid-lowering medication at baseline saw 273 

slightly higher, but still minimal discrimination improvement than the full population (Table 1). NRI and 274 

IDI metrics were likewise minimal and incrementally smaller than in the White British population (Sup-275 

plementary Table 7). 276 

                                                                                                                                                                                                    277 
Discussion 278 

In our analysis, the addition of genetic information to the PCE clinical risk score was associated 279 

with a moderate improvement in predictive accuracy for CAD. Addition of PRS to the baseline PCE model 280 

resulted in a 3.5% improvement in model concordance as well as a 9.3% net reclassification improve-281 

ment (NRI) of incident CAD cases and noncases over the baseline PCE model at a 7.5% risk threshold. In 282 

comparison, the integrated risk tool17 and Elliott et al.18 achieved 2.7% (in European population) and 283 

4.0% (in all UK Biobank subjects) improvement in terms of NRI, respectively. While both studies improve 284 

the performance by integrating PRS into PCE, they reached different conclusions regarding its clinical 285 

utility, highlighting the importance of building a more powerful and accurate risk prediction model. 286 

Our studies are innovative and are different from existing studies evaluating the clinical utility of 287 

adding PRS over existing clinical risk models18,19,46,47 in the following aspects. While matching our defini-288 

tion of CAD to that of a previous study performed with the UK Biobank,18 we were able to take ad-289 

vantage of more recent incident CAD data. We also utilized a stricter definition for our target population 290 

in the UK Biobank data as opposed to the entire UK Biobank data, which contain individuals of diverse 291 

ancestry. Recent studies have shown population-specific bias and limited use of specific PRS methods 292 

when used on non-European populations.48,49 We also used three distinct GWAS datasets to build the 293 

PRS and integrated results from several advanced and more recent PRS methods,21,22,23,24 improving the 294 

discrimination power of our integrated CAD PRS. 295 
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We found that integrating PRS to baseline PCE model resulted in significant continuous and cat-296 

egorical NRI. Categorical NRI for incident cases was 11.7% and -2.3% for noncases. Our model greatly 297 

improved reclassification for cases over previous studies,17,18,19 but resulted in more misclassification in 298 

non-case individuals. This difference in performance for noncases may be due in part to model specifica-299 

tions and cohort selection. In contrast to Moseley et al,19 in which the 2013 PCE model was used, we uti-300 

lized the updated 2018 PCE as our baseline. The 2013 model was noted to overestimate risk across all 301 

risk groups, prompting the development of the updated PCE model.3 We also used a younger cohort 302 

compared to the two cohorts in Moseley et al (mean age 56.7 years compared to 62.9 and 61.8, respec-303 

tively). As noted, we included only White British ancestry in our primary cohort. The inclusion of other 304 

ethnicities in the cohort may significantly decrease the discrimination power of the PRS constructed. 305 

This is shown in our secondary analysis of African ancestry, where the PRS results based on a European 306 

ancestry GWAS dataset vastly underperformed compared to the White British population (C-statistics 307 

0.715 vs 0.752, respectively) (Supplementary Table 5).  308 

Our results suggest an association between predictive accuracy of PRS and incident CAD events 309 

that varies based on age and sex. Men showed significantly higher C-statistic improvement than women 310 

(0.051 vs 0.035) in the PRS-enhanced PCE model over the baseline PCE model. This is complemented by 311 

an 11.6% overall categorical NRI improvement in men compared to 3.6% in women (Supplementary Ta-312 

ble 6).  Recent studies using PRS in the UK Biobank demonstrated comparable results with higher risks 313 

for incident CAD in men than women.15,47,50 The improved performance in men may be attributed to 314 

overrepresentation of male CAD cases in the case-control and cohort studies. The use of sex-specific 315 

data may lead to improved prediction accuracy of PRS.  316 

Our results also suggest a genetic component to early-onset cases of CAD and a possible applica-317 

tion of PRS in identifying individuals at heightened risk of these cases, as the predictive accuracy of inci-318 

dent CAD cases was higher in participants < 55 years of age. The observed C-statistic for the integrated 319 
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PRS-enhanced PCE model was 0.793 compared to 0.705 observed in the ≥ 55 age group. This observa-320 

tion supports two recent studies that found high risk score predictions in genetic variants strongly asso-321 

ciated with early-onset CAD (<40 years old) as well as improved risk classification of early-onset CAD to 322 

higher-risk categories that were not classified as such by PCE.9,51 323 

 There are limitations in our study. First, our study was conducted in the UK Biobank and is, 324 

therefore, limited by the characteristics of the cohort. The UK Biobank cohort is composed of primarily 325 

European ancestries (further restricted to White British ancestry in this study) and limited to an age 326 

range of 40 to 69 years, restricting its application to other ancestries and age groups. In addition, partici-327 

pants in the UK Biobank assessment tend to be healthier and more well-off compared to the general UK 328 

population,52 and thus population-level CAD risk may be underestimated in our study. In secondary anal-329 

ysis, the limited genetic diversity of the UK Biobank cohort is apparent and resulted in significantly 330 

smaller tuning and testing. The extent to which our results can be applied to larger non-European ances-331 

tries, in particular African ancestry, warrants further investigation. These results also highlight the ur-332 

gency of developing novel cross-ancestry PRS methods10,17,53,54,55 and using more diverse cohorts to con-333 

struct PRSs.17 In addition, as the case-control and cohort analyses are derived from the same study, 334 

more broad generalizability of the results requires further investigation. Second, this study included PRS 335 

for low frequency and common genetic variants (MAF ≥ 1%) and did not examine the predictive accu-336 

racy of rare variants known to affect CAD risk. Third, the algorithm for selection of CAD cases utilizes 337 

self-report, death, and hospital inpatient data for the definition of prevalent and incident CAD cases. As 338 

such, misclassification of cases is possible. Fourth, tuning of each PRS method in the case-control study 339 

used prevalent CAD cases, which could introduce survival bias. However, simulation studies have 340 

demonstrated a limited effect of survival bias on estimated genetic effects of event risks.56 Fifth, partici-341 

pants with at least 1 missing predictor value were excluded from the study. Excluded participants were 342 
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not considerably different demographically from those included and thus the missing data are unlikely 343 

to have a significant effect on the reported estimates. 344 

Conclusions 345 

 Addition of the integrated CAD PRS to the PCE resulted in a statistically significant improvement 346 

in predictive accuracy for incident CAD, especially in individuals under the age of 55 years old in White 347 

British population. It was also associated with moderate improvement in risk reclassification across all 348 

subgroups. However, the benefits of adding integrated CAD PRS to the PCE are minimal for African pop-349 

ulation. In summary, the inclusion of genetic information to the pooled cohort equation can help im-350 

prove clinical risk classification and demonstrates the potential for genetic screening in early life to im-351 

prove clinical risk prediction in White British population. 352 

 353 

 354 
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Figure 1. Study Design and Flowchart for Coronary Artery Disease (CAD)                483 

A. Selection of PRS in case-control study 484 

 485 
B. Cohort Study 486 

 487 
 488 
                                                                                                                                                                       489 
To select the parameters for each method with the best discrimination based on area under the curve (AUC), clumping and thresholding, 490 
LDpred, lassosum, PRS-CS, sBayesR, LDpred-funct, and DBSLMM were used to calculate polygenic risk scores (PRS) on the case-control set con-491 
sisting of prevalent cases. For these calculations, summary data for three genome-wide association studies (GWAS) on CAD (CARDIoGRAM-492 
plusC4D, Finngen Biobank, Japan Biobank) that excluded UK Biobank and data on linkage disequilibrium were used. The calculated PRS were 493 
applied to a nonoverlapping set of participants from the UK Biobank with no preexisting CAD, aged 40 to 69 at baseline, and who were followed 494 
up for incident CAD events. In this population, the pooled cohort equations (PCE) model was calculated and different models (PRS, PCE, PRS-495 
enhanced PCE) were compared in terms of their predictive accuracy based on discrimination, calibration, and reclassification metrics.                                                                                                                                                                496 

 497 
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Table 1. C-Statistics for Coronary Artery Disease for Full Population and Stratified by Sex and Age  498 
Group (Younger and Older than 55 Years of Age) 1,2 499 

C-Statistic (95% CI) 

 All Men Women Participants 
Aged <55 y 

Participants 
Aged ≥ 55 y 

Participants 
Not Receiving 
Lipid-Lowering 
Treatment at 

Baseline 

A. White British Ancestry 

Participants, No. 272307 124155 148152 102330 169977 235172 

Cases, No. 7036 5093 1943 1276 5760 5091 

Polygenic risk 
score .64 (.634- .646) .643 (.636 -.651) .641 (.629 -.654) .69 (.626 -.705) .632 (.625 -.639) .646 (.638 -.653) 

Pooled cohort 
equation .718 (.713 -.723) .663 (.656 -.67) .706 (.695 -.717) .749 (.736 -.761) .665 (.658 -.671) .73 (.724 -.737) 

Polygenic risk 
score + pooled 
cohort equation 

.753 (.748 -.758) .714 (.708 -.721) .741 (.73 -.751) .793 (.781 -.806) .705 (.699 -.712) .766 (.76 -.772) 

B. African Ancestry 

Participants, No. 6753 2901 3852 4528 2225 5896 

Cases, No. 88 46 42 42 46 63 

Polygenic risk 
score .542 (.485 -.6) .574 (.494 -.654) .6 (.511 -.634) .548 (.46 -.637) .543 (.462 -.624) .534 (.464 -.604) 

Pooled cohort 
equation 

.714 (.659 -.769) .674 (.595 -.753) .734 (.653 -.815) .657 (.572 -.742) .721 (.656 -.787) .698 (.628 -.768) 

Polygenic risk 
score + pooled 
cohort equation 

.716 (.665 -.768) .695 (.622 -.768) .732 (.654 -.81) .679 (.597 -.761) .696 (.629 -.763) .707 (.64 -.774) 

1. Cox proportional hazard models for CAD using recalibrated polygenic risk score, pooled cohort equations, and both combined 500 
models. 2. C-Statistics shown for combined European meta-analysis + Japan Biobank PRS methods. Results are presented for 501 
both White British and African ancestry populations. 502 

 503 

 504 
 505 
 506 
 507 
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Figure 2. Receiver Operator Characteristic Curves and C-Statistics for Different Models in Cohort Analyses  508 
of White British and African Ancestry Populations                    509 

 510 
PCE indicates pooled cohort equation; PRS indicates integrated polygenic risk score. A) is the White British population of 272,307 individuals 511 
over a mean 12 years of follow-up with 7036 incident CAD cases and B) is the African ancestry population of 6,753 individuals over a mean 13 512 
years of follow-up with 88 incident CAD cases. 513 

  514 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.22275933doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.02.22275933
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

24 

Figure 3. Cumulative Absolute Risk of Developing CAD 515 

 516 

Cumulative absolute risk of developing CAD by quintiles of the overall polygenic score in A) the PCE model and B) the PRS-en-517 
hanced PCE model. The shaded portions correspond to the 95% confidence interval. 518 

 519 

 520 

 521 
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Figure 4. Change in Predicted Probabilities and Risk Reclassification    523 

A. Difference between 10-y risk by PCE and PRS-enhanced PCE                                                                                                                                                                                                                                      524 

 525 
                                                                                                                                                                                                     526 
B. PCE + PRS 10-year risk reclassification 527 

  PCE + PRS Risk Threshold, %  

Threshold, 
% < .75 ≥ 7.5 % Reclassified 

Improved 
Classification 

Cases  

< 7.5 5098 992 14.2 + 

≥ 7.5 182 733 2.6 - 

Noncases  

< 7.5 236916 9331 3.6 - 

≥ 7.5 3443 6382 1.3 + 
 528 

 529 

 530 

 531 
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C. Net reclassification improvement and integrated discrimination improvement results 534 

 
No. of 
Participants 

Continuous Net 
Reclassification 
Improvement 

Categorical Net 
Reclassification 
Improvement 

Integrated 
Discrimination 
Improvement 

Cases 
7036 0.215 (0.194 to 

0.228) 0.117 (0.102 to 0.129)  

Noncases 256072 0.235 (0.224 to 0.25) -0.023 (-0.025 to -
0.022)  

Full 
Population 263108 0.45 (0.423 to 0.478) 0.093 (0.08 to 0.104) 0.0564 (0.0534 to 0.0594) 

Censored 9230    
                                                                                                                                                                                                    535 
A, Change in the predicted probabilities of the recalibrated pooled cohort equations (PCE) model after the addition of polygenic risk scores 536 
(PRS) for CAD. The x-axis shows the predicted probability from the baseline PCE model. The y-axis is the difference in 10-year risk probabilities 537 
of a CAD event between the PRS-enhanced model and the baseline PCE model. The scatterplot has a random draw of 1% of the participants 538 
shown. The histogram x- and y-axes are based on the full population. B, Reclassification table of predicted probabilities by PCE and PRS-en-539 
hanced PCE models at 7.5% threshold. Rows indicating an improved classification with the PRS-enhanced PCE model are marked by a plus sign 540 
while rows indicating a deteriorated classification are marked by a minus sign. C, Table of net reclassification improvement (NRI) and integrated 541 
discrimination improvement (IDI). NRIa is defined in the continuous case as the sum of proportions of cases and noncases with improved com-542 
bined score minus the sum of proportions with deteriorated combined score. In the categorical case, NRI is defined by changed at a 7.5% 543 
threshold predicted probability. A positive NRI indicates a better combined score overall. IDIb measures the difference of average probabilities 544 
of an event in cases and noncases. A larger IDI indicates more discrimination in the combined score. 545 
a NRI = P(up|case) - P(down|case) - P(up|noncase) + P(down|noncase)  b IDI = PPCE+PRS(case) - PPCE+PRS(noncase) - PPCE(case) + PPCE(noncase) 546 

 547 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.22275933doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.02.22275933
http://creativecommons.org/licenses/by-nc-nd/4.0/

