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Abstract

Targeted vaccination policies can have a significant impact on the number of infections
and deaths in an epidemic. However, optimising such policies is complicated and the
resultant solution may be difficult to explain to policy-makers and to the public. The
key novelty of this paper is a derivation of the leading order optimal vaccination policy
under multi-group SIR (Susceptible-Infected-Recovered) dynamics in two different cases.
Firstly, it considers the case of a small vulnerable subgroup in a population and shows
that (in the asymptotic limit) it is optimal to vaccinate this group first, regardless of
the properties of the other groups. Then, it considers the case of a small vaccine supply
and transforms the optimal vaccination problem into a simple knapsack problem by
linearising the final size equations. Both of these cases are then explored further
through numerical examples which show that these solutions are also directly useful for
realistic parameter values. Moreover, the findings of this paper give some general
principles for optimal vaccination policies which will help policy-makers and the public
to understand the reasoning behind optimal vaccination programs in more generic cases.

Author summary

The COVID-19 pandemic has illustrated the importance of vaccination programs in 1

preventing infections and deaths from an epidemic. A common feature of vaccination 2

programs across the world has been a prioritisation of different groups within each 3

country’s population, particularly those who are more vulnerable to the disease. 4

Finding the best priority order is crucial, but may be complicated and difficult to justify 5

to policy-makers and the public. In this paper, we consider two extreme cases where the 6

best prioritisation order can be mathematically derived. Firstly, we consider the case of 7

a population with a very small, very vulnerable group and show that this group should 8

always be vaccinated first. Then, we consider the case of a small supply of vaccines and 9

derive an equation which gives the best prioritisation order. Understanding these 10

extreme cases is important, as it highlights general principles of optimal policies which 11

will be useful when understanding the solution in more complicated settings. 12

Nomenclature 13

inf The infimum of a set 14
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sup The supremum of a set 15

O(ϵ) A function f(t; ϵ) which for sufficiently small ϵ is bounded by Kϵ for some 16

constant K. 17

o(ϵ) A function f(t; ϵ) which satisfies limϵ→0(f(t; ϵ)/ϵ) = 0. 18

1 Introduction 19

The trajectory of an epidemic can be dramatically changed by the implementation of a 20

vaccination program, as has been shown in the case of COVID-19 [1]. These vaccination 21

programs are most effective when they target specific groups in a population [2], 22

although the optimal targeting strategy is dependent on the properties of the disease 23

and vaccine [3]. Thus, it is important to have robust methods to determine the optimal 24

strategy whenever a new epidemic emerges. 25

Used widely across the literature (in papers such as [4], [5] and [6]), the multi-group 26

SIR (Susceptible-Infected-Recovered) model provides a general framework with which to 27

assess the effectiveness of different vaccination policies. It splits a population up into a 28

number of inter-connected subgroups (such as age groups) and captures the different 29

transmission dynamics between each group. This construction highlights the dual 30

benefit of vaccination as it both directly protects the individuals that are vaccinated 31

and indirectly protects unvaccinated individuals by reducing transmission [7]. 32

Often, especially in the case of age-structured populations, there is a negative 33

correlation between the infectiousness of a group and the vulnerability of its members to 34

the disease [8]. This means that the optimal strategy may not be obvious and indeed, 35

the seemingly intuitive solution may be significantly sub-optimal [9]. Moreover, the 36

complicated nature of the optimisation scheme, which involves solving the adjoint 37

equations derived via Pontryagin’s Maximum Principle (see [10], [11]) means that the 38

optimal solution may be difficult to understand or qualitatively justify to policy-makers. 39

When attempting to understand a complicated problem such as finding the optimal 40

vaccination policy, it is often helpful to look at cases with extreme parameter values via 41

asymptotic analysis, which helps the problem to be analytically solvable (at least to 42

leading order). This can help form general principles for optimal vaccination policies. 43

These principles can then be used both to form heuristics for finding the true optimal 44

policy in a more general setting and also to explain the resultant optimal solution, as it 45

is often comprised of a mixture of policies resulting from these principles. 46

There have been a number of recent papers that have used asymptotic analysis to 47

derive general principles. [12] discusses a model with high reproduction numbers and 48

shows that in this case, it is often optimal to vaccinate the less infectious groups in a 49

population. Moreover, [13], building on the work of [14], linearises the model equations 50

and derives a simple knapsack problem, although the solution to this problem is only 51

optimal when considering the short-term evolution of the epidemic. Other special cases 52

are investigated in [15] (which looks at a population with disconnected subgroups) 53

and [16] (which examines the critical vaccination fraction for a population with 54

separable mixing). 55

Despite this body of work, two cases will be considered in this paper which both 56

provide novel contributions to the literature. Firstly, the case of a population with a 57

small vulnerable sub-group will be analysed, and it will be shown that, in the 58

asymptotic limit, any vaccination policy is eventually outperformed by one where this 59

group is vaccinated first. Of course, the concept that vaccinating vulnerable groups is 60

important has been raised in many previous papers, such as [3] and [17], but the 61

mathematically rigorous asymptotics presented here provide new evidence for the 62

importance of this principle. 63
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The second case to be discussed is that of a a small total vaccination supply. The 64

key novel result that will be shown is that (to leading order) the optimal vaccination 65

problem reduces to a linear knapsack problem which can be easily solved. This 66

knapsack problem differs from the one in [13] because, by linearising the final size 67

equations rather than the model ODEs (ordinary differential equations), the optimal 68

solutions and predictions of their behaviour are valid for the full evolution of the 69

epidemic, rather than just in the short-term. Again, the case of a small vaccine supply 70

has been examined in many papers such as [18], [19] and [20], but these papers have 71

simply analysed the optimisation problem in the standard way, without deriving the 72

explicit leading order solution as is done in this paper. 73

These analytic results will then be further investigated through examples and, in 74

particular, the small supply case will be used to show that it is not always optimal to 75

vaccinate the most infectious group, even when all groups are equally vulnerable. The 76

UK population’s age structure will be used to relate these results to a realistic example, 77

and optimal small-supply vaccination policies will be approximated for diseases with 78

different age-dependent case fatality ratios. 79

The paper is structured as follows. Firstly, the multi-group SIR model will be 80

introduced. Then, analytic results will be presented in the case of a small vulnerable 81

subgroup, which will be explored through numerical examples. Finally, analytic results 82

related to a small vaccination supply will be presented and again, examples will be used 83

to illustrate the findings. 84

2 Modelling 85

2.1 Disease transmission and vaccination model 86

The model used in this paper is identical to the model presented in [24] and this section
is simply a summary of the modelling section in [24]. The population is divided into n
subgroups and each subgroup i is further divided into six compartments:

Si :=Number of people that are in group i, are susceptible, and are unvaccinated
(1)

Ii :=Number of people that are in group i, are currently infected, and (2)

were infected while unvaccinated

Ri :=Number of people that are in group i, are recovered, and (3)

were infected while unvaccinated

SV
i :=Number of people that are in group i, are susceptible and are vaccinated (4)

IVi :=Number of people that are in group i, are infected (5)

and were infected after being vaccinated

RV
i :=Number of people that are in group i, are recovered (6)

and were infected after being vaccination. (7)
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Using SIR principles, the model becomes

dSi

dt
= −

n∑
j=1

(β1
ijIj + β2

ijI
V
j )Si −

Ui(t)Si

Ni −Wi(t)
(8)

dIi
dt

=
n∑

j=1

(β1
ijIj + β2

ijI
V
j )Si − µ1

i Ii (9)

dRi

dt
= µ1

i Ii (10)

dSV
i

dt
= −

n∑
j=1

(β3
ijIj + β4

ijI
V
j )SV

i +
Ui(t)Si

Ni −Wi(t)
(11)

dIVi
dt

=
n∑

j=1

(β3
ijIj + β4

ijI
V
j )SV

i − µ2
i I

V
i (12)

dRV
i

dt
= µ2

i I
V
i (13)

where 87

Wi(t) :=

∫ t

0

Ui(s)ds. (14)

The βα
ij terms represent transmission from group j to group i and the µα

i terms give the 88

infectious period of the relevant individuals in group i. 89

Note that there is a slight difference between this model and the one commonly 90

found in the literature (in [21], [22] and [23] among many others) which set the 91

vaccination term equal to Si(t)Ui(t) instead of Ui(t)Si

Ni−Wi(t)
. As discussed in [24], this 92

corresponds to vaccines that are randomly distributed to the whole population, rather 93

than the model in this paper which corresponds to vaccines that are randomly 94

distributed only to the unvaccinated population. [24] provides justification for the use of 95

the “unvaccinated-only model”, which is therefore the one that will be used in this 96

paper. However, they are structurally very similar, and so it would be possible to apply 97

the results in this paper to the more commonly found model. 98

It is worth noting that there is conservation of population in each group - summing 99

the equations (8) to (13) and integrating gives 100

Si(t) + Ii(t) +Ri(t) + SV
i (t) + IVi (t) +RV

i (t) = Ni ∀t ≥ 0. (15)

To deal with the (removable) singularity that can occur when Wi = Ni, it is assumed 101

that 102

Wi(t) ≤ Ni ∀t ≥ 0 and Wi(t) = Ni ⇒
Ui(t)Si

Ni −Wi(t)
= 0 (16)

To capture the benefits of vaccination, there are additional constraints put on the βα
ij 103

and µα
j terms which are 104

β1
ij ≥ β2

ij , β
3
ij ≥ β4

ij and µ1
i ≤ µ2

i . (17)

Again, details are given in [24]. 105
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2.2 Optimisation problem 106

The optimisation problem (which is again explained in more detail in [24]) is

min

{ n∑
i=1

pi

(
Ri(∞) + κiR

V
i (∞)

)
:

n∑
i=1

Ui(t) ≤ A(t),
n∑

i=1

Wi(t) ≤ B(t),

Ui(t) ≥ 0, Wi(t) ≤ Ni ∀t ≥ 0

}
. (18)

Here, A(t) represents the maximal vaccination rate and B(t) represents the maximal 107

vaccine supply. It will be assumed throughout this paper that all “feasible” U are 108

sufficiently smooth for all the quoted theorems to hold. In general, this does not 109

significantly restrict U - for example, the results in [24] simply require that each Ui(t) is 110

bounded and Lebesgue integrable, while Theorems 1 and 2 require only that U has 111

finite support. Moreover, it is assumed that B(t) is non-decreasing (as total supply 112

should not decrease over time) and piecewise differentiable. 113

3 Results 114

3.1 A small, vulnerable subgroup 115

Consider the case where one of the groups in the population (which, without loss of 116

generality, will be assumed to be group 1) is very small and vulnerable. That is, the size 117

of the population N1 and the vulnerability p1 satisfy, for small ϵ 118

N1(ϵ) = ϵ and p1(ϵ) =
1

ϵ
. (19)

Note that, in the case that p1 is interpreted as a probability of a fatal infection (so 119

remains bounded) this is equivalent to the case where 120

p1(ϵ) = O(1) and pi(ϵ) ∼ ϵ ∀i ̸= 1 as ϵ → 0. (20)

Note that by suitable rescaling, one can assume that p1 = p∗

ϵ for any p∗ > 0. 121

3.1.1 Analytic results 122

The first result presented in this section shows that, in the limit of a group with small 123

size and large vulnerability (with the total cost of the whole group being infected, N1p1, 124

remaining constant) any fixed vaccination policy where the vulnerable group is not 125

vaccinated first will eventually (that is, for sufficiently small ϵ) be outperformed by the 126

equivalent policy where the vulnerable group is vaccinated first. 127

Group 1 will be given a population size N1 = ϵ and an infection cost p1 = 1
ϵ . It will 128

be assumed that the initial conditions in the group are proportional to ϵ, so that there 129

exists some σ ∈ (0, 1] such that the initial susceptible population is σϵ and the initial 130

infected population is (1− σ)ϵ. 131

Before stating the full theorem, it is helpful to explain the various constraints and 132

variables that will be introduced. Define, for each value of ϵ ≥ 0, U(t; ϵ) to be the 133

“fixed” vaccination policy where group 1 is not vaccinated first. Of course, the 134

vaccination policy cannot be completely fixed, as the size, ϵ, of group 1 is decreasing, 135

and so it will simply be assumed that the vaccines given out to each group satisfies 136

|Wi(t; ϵ)−Wi(t; 0)| < ϵ ∀t ≥ 0. (21)
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That is, any variation in the vaccination policy for non-zero ϵ is of size at most ϵ. 137

Moreover, to reduce the lengths of the proofs, it will be assumed that U has uniformly 138

bounded finite support - that is, there is some constant tU such that for each 139

i ∈ {1, ..., n}, 140

t > tU ⇒ Ui(t; ϵ) = 0 ∀t, ϵ ≥ 0 (22)

In order for group 1 to not be vaccinated first in the limit as ϵ → 0, there must be some 141

time τ at which some fixed proportion w of the other groups have been vaccinated, 142

while at least some fixed proportion (1−α) of group 1 has not been vaccinated. That is, 143

W1(τ ; ϵ) < αϵ and
n∑

i=1

Wi(τ ; ϵ) > w. (23)

One can also define a vaccination policy Ũ(t; ϵ) where group 1 is vaccinated first. This 144

will be done by re-directing all vaccinations from the U(t; ϵ) policy to group 1 until it is 145

fully vaccinated, and keeping the same vaccination policy after group 1 is fully 146

vaccinated (ignoring any vaccines that Ũ(t; ϵ) assigns to group 1 after this time). 147

To ensure convergence of the model at ϵ = 0, given Π(ϵ) defined by 148

Π(ϵ) :=

{
i : ∃t ≥ 0 s.t. Ii(t; ϵ) > 0

}
, (24)

it will be assumed that Π(ϵ) = {1, ..., n} for all ϵ > 0 (as any groups which never suffer 149

any infections can be ignored) and that Π(0) = {2, ..., n}. While this second condition 150

may not be strictly necessary for the theorem to hold, it is unrestrictive, and ensures 151

convergence - if this were not the case, then it would be possible that infection in some 152

set of groups were seeded only by group 1. Thus, when ϵ = 0, these groups would suffer 153

no infections, while for any ϵ > 0, they would have an epidemic of size independent (at 154

leading order) of ϵ. 155

The final condition on the model is that the people in group 1 can be infected by 156

other groups, and that vaccinated members of group 1 gain protection from this 157

infection. That is, there is some i ∈ {1, ..., n} such that 158

β1
1i > β3

1i ≥ 0. (25)

This is an important condition, as if people group 1 could only be infected by other 159

members of group 1 the the total number of infections in group 1 would decay as ϵ → 0, 160

meaning that it would no longer necessarily be optimal to vaccinate group 1 first (as 161

most people in group 1 would not catch the disease anyway for small ϵ). 162

With these considerations, Theorem 1 can now be stated. 163

Theorem 1 Suppose that for all ϵ > 0, 164

N1(ϵ) = ϵ, Si(0; ϵ) = ϵσ, Ii(0; ϵ) = (1− σ)ϵ and p1(ϵ) =
1

ϵ
(26)

for some σ ∈ (0, 1). Suppose that all other parameter values and initial conditions are 165

independent of ϵ. 166

Consider any vaccination policy with uniformly bounded finite support given by 167

U(t; ϵ) and suppose that there exists fixed α, τ, w > 0 such that 168

W1(τ ; ϵ) < αϵ and
n∑

i=1

Wi(τ ; ϵ) > w ∀ϵ > 0. (27)

Define a new policy, Ũ(t; ϵ), given by 169

Ũ1(t; ϵ) =

{∑n
i=1 Ui(t) if

∑n
i=1 Wi(t; ϵ) ≤ ϵ

0 otherwise
(28)
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and, for i ̸= 1, 170

Ũi(t; ϵ) =

{
0 if

∑n
i=1 Wi(t; ϵ) ≤ ϵ

Ui(t; ϵ) otherwise
. (29)

Suppose that for each i ∈ {1, ..., n} and t ≥ 0, 171

|Wi(t; 0)−Wi(t; ϵ)| < ϵ. (30)

Define 172

Π(ϵ) := {i : ∃t ≥ 0 s.t. Ii(t; ϵ) > 0} (31)

and suppose that Π(ϵ) = {1, ..., n} for any ϵ > 0 and that Π(0) = {2, ..., n}. Finally, 173

suppose that there exists a i ∈ {2, ..., n} such that 174

β1
1i > β3

1i ≥ 0. (32)

Then, the policy Ũ is feasible and for sufficiently small ϵ, 175

H(U(t; ϵ)) > H(Ũ(t; ϵ)). (33)

For the second theorem, it is helpful to note that, using the results in [24], if one defines 176

χ(t) :=

{
A(t) if

∫ t

0
A(s)ds < B(t)

min(A(t), B′(t)) if
∫ t

0
A(s)ds ≥ B(t)

, (34)

then (assuming that there is an optimal solution, and under mild smoothness conditions 177

on U , A and B) there must be an optimal solution satisfying 178

n∑
i=1

Wi(t) = max

(∫ t

0

χ(s)ds, 1

)
. (35)

The following theorem then proves that the limiting optimal vaccination policy 179

vaccinates the vulnerable group as quickly as possible. To reduce the length of the 180

proof, it will be assumed that σ = 1, so that (in the small ϵ limit) all members of group 181

1 can be vaccinated before being infected. 182

Theorem 2 With the definitions of Theorem 1, suppose additionally that 183

n∑
j=2

(β1
1j − β3

1j)Ij(0; ϵ) > 0. (36)

That is, the initial difference between the infective force on vaccinated and unvaccinated 184

members of the population is positive. Suppose further that 185

σ = 1 and Ij(0; ϵ) > 0. (37)

Suppose an optimal vaccination policy for each ϵ is given by U(t; ϵ) and suppose that 186

U(t; ϵ) has uniformly bounded finite support. Then, there exists an η depending only on 187

α, τ , w and the model parameters such that, for any U satisfying the condition (27) as 188

defined in Theorem 1 189

ϵ ∈ (0, η) ⇒ H(U) > H(U). (38)

Moreover, there is a sequence of optimal vaccination policies, U(t; ϵ), which satisfies 190

lim
ϵ→0

(
W 1(t; ϵ)

ϵ

)
= 1 ∀t s.t.

∫ t

0

χ(s)ds > 0. (39)

Theorems 1 and 2 are proved in 5. 191
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3.1.2 Examples 192

To illustrate these analytic results, consider a simple two-group example. Suppose that 193

group 1 is small, vulnerable, and non-infectious, while group 2 is large, invulnerable and 194

infectious. These groups could be interpreted as “old” and “young” respectively, 195

although there is no specific physical situation being modelled here. 196

Suppose the transmission matrices are given by

β1 =

(
1 2
2 4

)
, β2 = χβ1 β3 = ρβ1 and β4 = χρβ1 (40)

for some parameters χ and ρ which will be varied. This corresponds to the case of 197

vaccination having (independently) an effectiveness χ at stopping people being infected 198

and ρ at stopping infected people transmitting the disease. Moreover, suppose that 199

µα
i = 1 ∀i, α (41)

and 200

N1 = ϵ, p1 =
1

ϵ
, κ1 = 1 N2 = 1, p2 = p∗ and κ2 = 1, (42)

for some parameter p∗ that will be varied. Finally, suppose that the initial conditions 201

are 202

S1(0; ϵ) = ϵ, I1(0; ϵ),= 0 S2(0; ϵ) = 1− I∗ and I2(0; ϵ) = I∗, (43)

for some parameter I∗ that will be varied, and that the vaccination constraints are 203

given by 204

A(t) = 1 and B(t) = max(t, 1). (44)

Consider therefore a vaccination policy where group 2, the infectious group, is 205

vaccinated first (and hence, as B(∞) = N2, it is the only group that is vaccinated). 206

That is, 207

U1(t; ϵ) = 0 and U2(t; ϵ) =

{
1 if t ≤ 1
0 otherwise

. (45)

Hence, with Ũ defined as in Theorem 1, one has 208

Ũ1(t; ϵ) =

{
1 if t ≤ min(1, ϵ)
0 otherwise

and Ũ2(t; ϵ) =

{
1 if t ∈ (ϵ, 1]
0 otherwise

. (46)

Fig. 1 shows a comparison of the objective values H(U(t; ϵ)) and H(Ũ(t; ϵ)) for 209

different values of ϵ. As expected, when ϵ = 1, vaccinating the more infectious group 210

first is optimal (as they have the same vulnerability in this case), while for ϵ smaller 211

than around 0.1, it becomes more effective to vaccinate the vulnerable group first, 212

illustrating the results of Theorem 1. 213
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Fig 1. A comparison of the two vaccination policies, U(t; ϵ) (where the infectious group
is vaccinated first) and Ũ(t; ϵ) (where the vulnerable group is vaccinated first) for
different values of ϵ. Note that here, I∗ = 0.01, χ = ρ = 0.5 and p∗ = 1.

It is useful to consider the approximate smallness of ϵ required in Theorem 1. That 214

is, how small ϵ needs to be in order for Ũ(t; ϵ) to be the better vaccination policy. To 215

explore this, define, for each value of I∗ and p∗, 216

ϵ∗(I∗, p∗) := inf

({
ϵ : H(Ũ(t; ϵ)) > H(U(t; ϵ))

}
∪ {1}

)
. (47)

That is, ϵ∗(I∗, p∗) is the smallest value of ϵ such that vaccinating group 2 first is better 217

that the Ũ policy, with a cut-off value at 1 (as it is possible that for some parameter 218

values, the Ũ policy is always better). 219

Fig. 2 shows the behaviour of ϵ∗(I∗, p∗). As expected, ϵ∗ is decreasing in I∗ - this is 220

because when there are fewer initial infectives, there is more time to vaccinate the 221

infectious group before the epidemic has a chance to grow, reducing the peak of the 222

epidemic. Moreover, ϵ∗ is decreasing in p∗, as higher values of p∗ mean that the number 223

of infections in group 2 is valued higher. 224
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Fig 2. A plot of ϵ∗(I∗, p∗), the highest value of ϵ for which U is a better vaccination
policy that Ũ . Note that ϵ∗ is capped at 1, so that a value of 1 indicates that there were
no values found of ϵ∗ such that U was the better policy. Note that here, χ = ρ = 0.5.

Moreover, Fig. 2 suggests that, for each fixed p∗, ϵ∗ is uniformly bounded below for 225

all I∗. Indeed, this is expected as when I∗ is very small, there are negligible infections 226

within the interval t ∈ [0, 1] and so the vaccination policies U and Ũ are in effect being 227

carried out in a completely uninfected population. As the R0 (that is, the initial growth 228

rate of the disease) number of a fully vaccinated population (in this case) is greater than 229

1, I(t; ϵ) will reach an O(1) value regardless of the vaccination policy. Thus, while 230

decreasing I∗ will increase the time to reach this O(1) value, it will not significantly 231

change the final infections in the epidemic, and hence ϵ∗ should converge to a fixed 232

value for small I∗. 233

When the fully vaccinated population has an R0 lower than 1, the difference between 234

U and Ũ is more distinct. Indeed, provided I∗ is small enough for vaccination to be 235

completed before many infections have occured, one would expect O(I∗) infections in 236

group 2 in either of the two vaccination policies (for sufficiently small ϵ), as in both 237

policies, the size of the infected compartment will be decreasing after the vaccination has 238

been completed. However, in the U case, one would expect O(I∗ϵ) infections in total in 239

group 1 (as there is an O(I∗) infection force on a group of size O(ϵ) for O(1) time), 240

while in the Ũ case, one would expect O(I∗ϵ2) infections in total in group 1, as the 241

population of this group is only of size O(ϵ) for O(ϵ) time. This behaviour is illustrated 242

in Fig. 3, which shows that ϵ∗ converges to significantly higher values than in Fig. 2 - 243

indeed, in the case that p∗ = 0, it appears that U is never optimal for any ϵ ≤ 1. 244
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Fig 3. A plot of ϵ∗(I∗, p∗), the highest value of ϵ for which U is a better vaccination
policy that Ũ , in the case of complete vaccination effectiveness (so χ = ρ = 0). Note
that, because the values of the objective function are O(I∗), there is some numerical
instability which has caused some non-smoothness of the plot.

3.2 A small vaccination supply 245

In this section, the case of a small, immediately available vaccine supply will be 246

considered. In this case, it will be possible to analytically derive the optimal vaccination 247

policy (in the limit of small supply). 248

3.2.1 Analytic results 249

To state the analytic result from this section, it is helpful to define 250

β′
ij =


β1
ij if i, j ≤ n

β2
i(n−j) if i ≤ n < j ≤ 2n

β3
(n−i)j if j ≤ n < i ≤ 2n

β4
(n−i)(n−j) if n < i, j ≤ 2n

, . (48)

This large transmission matrix captures the dynamics of all 2n susceptible and 251

infectious groups in the model (both vaccinated and unvaccinated). Indeed, after 252

vaccination has been completed, there is no movement from Si to SV
i so β′ allows for 253

the model to be considered as a 2n-group SIR model without vaccination. Thus, in 254

particular, one can derive a simple final size relation for the total number of infections 255

in the epidemic. Similarly, define 256

µ′
i =

{
µ1
i if i ≤ n

µ2
(i−n) if n < i ≤ 2n

(49)

June 2, 2022 11/20

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.02.22275908doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.02.22275908
http://creativecommons.org/licenses/by/4.0/


and 257

p′i =

{
pi if i ≤ n

κ(i−n)p(i−n) if n < i ≤ 2n
. (50)

In this case of small supply, it is possible to effectively differentiate the final size of the 258

epidemic with respect to the vaccination policy, and use the resultant linear 259

approximation to form a simple knapsack problem for the optimal vaccination policy. 260

This will involve writing the objective in the form 261

H(U(t; ϵ)) = H(0) + yTW (τ(ϵ); ϵ) + o(ϵ) (51)

where W is the final vaccination amounts in each group. To define the gradient, y, it is 262

necessary to use the inverse of a matrix M given by 263

Mij =
1

1− e
−

∑2n
j=1

β′
ij

µ′
j
Rj(∞;0)

[
δij +

Si(0; 0)e
−

∑2n
j=1

β′
ij

µ′
j
Rj(∞;0)

β′
ij

µ′
j

]
, (52)

where as before, the variables fi(t; η) indicate the value of the relevant model variable at 264

time t, given that the parameter ϵ is equal to η, and δij is the Kronecker delta. Then, y 265

is defined by 266

x = M−Tp′ and yi =
Si(0; 0)

Ni
(xi+n − xi) ∀i ∈ {1, ..., n}. (53)

These definitions allow for the theorem to be stated. 267

Theorem 3 Suppose that, for all ϵ > 0 268

B(t; ϵ) = ϵ ∀t ≥ 0. (54)

and that all other parameter values and initial conditions are independent of ϵ. Suppose 269

that A(t) is a continuous function with 270

A(0) > 0 (55)

and that the matrix M is invertible. For sufficiently small ϵ, define 271

τ(ϵ) := inf

{
t :

∫ t

0

A(s)ds = ϵ

}
. (56)

Suppose that U satisfies the condition 272

n∑
i=1

Ui(s) = min

(∫ t

0

χ(s)ds, 1

)
, (57)

where χ is defined in (35). Then, for sufficiently small ϵ, the objective function is given 273

by 274

H(U(t; ϵ)) = H(0) + yTW (τ(ϵ); ϵ) + o(ϵ). (58)

Moreover, if there is a unique element of y equal to the minimum of y then the optimal 275

vaccination policy (to leading order in ϵ) is uniquely given by 276

Ui(t; ϵ) =

{
A(t) if i = min{yi : i ∈ {1, ..., n}} and

∫ t

0
A(s)ds < ϵ

0 otherwise
. (59)

Theorem 3 is proved in 5. 277
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3.2.2 Vaccinating a homogeneous population 278

To illustrate the effectiveness of this approximation, consider first an example of a 279

homogeneous population (so n = 1). Consider the case where β1 = β, β2 = β3 = 0.5β 280

and β4 = 0.25β for some parameter β that will be varied. Suppose moreover that 281

N1 = µ1
1 = µ2

1 = p1 = κ1 = A(t) = 1, S1(0) = 1− 10−4 and I1(0) = 10−4. (60)

Finally, suppose B(t) = ϵ where ϵ will be varied. 282

Fig. 4 shows a comparison of the predicted and actual change in number of deaths, 283

ρ1 for two values of ϵ. It illustrates that, even when ϵ = 0.1, a relatively large value, y 284

gives a good approximation of the true value (found by simulation). Moreover, when 285

ϵ = 0.01, the two lines are almost indistinguishable. This is useful validation for the 286

approximation, as the correction term was simply proved to be o(ϵ) rather than, for 287

example, O(ϵ2), and so it is encouraging that the predictions are so close. 288

0 1 2 3 4 5
-0.15

-0.1

-0.05

0

0 1 2 3 4 5
-15

-10

-5

0
10

-3

Fig 4. A comparison of the predicted and actual values of the change in deaths, ρ1, in
the case of a homogeneous population for two different values of vaccination supply, ϵ
and for different values of infectivity, β. Note the different scales on the two y axes.

An interesting property of Fig. 4 is that the value of β for which vaccination is most 289

effective appears to be very close to S(0)β = 1 (as S(0) ∼ 1). Note that here, as µ = 1, 290

this is equal to the initial reproduction number of the disease. This has the perhaps 291

surprising consequence that if one has a set of disconnected, equally vulnerable 292

subgroups, a small vaccination supply should be assigned to a group with initial 293

reproduction number close to 1, rather than giving it to the group with the highest 294

value of β (that is, the most group with the most infectious individuals). This result is 295

in line with the findings of [12] which showed that vaccinating less infectious groups can 296

be more effective, and is an important consideration for vaccination policy planning. 297
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3.2.3 Application to age-structured populations 298

Consider assigning a small quantity of vaccinations to an age-structured population, 299

using the example of the UK. The disease model has been estimated using the contact 300

matrices Λ from [25], alongside population estimates N from [26]. As in [25], this gives 301

a transmission matrix of 302

β1
ij = β

Λij

Nj
(61)

for some scalar parameter β. As in the previous section, it will be assumed that 303

µα
i = 1 ∀i, α (62)

and 304

β2 = 0.5β1, β3 = 0.5β1 and β4 = 0.25β1. (63)

It will also be assumed that the initial infected population is small, so that, for each i 305

Si(0; ϵ) = (1− 10−4)Ni and Ii(0; ϵ) = 10−4Ni. (64)

In the following examples, β will be chosen so that the disease-free next generation 306

matrix of a completely unvaccinated population, given by 307

Rij =
Niβ

1
ij

µ1
j

= β1
ij (65)

has a spectral radius (that is, largest eigenvalue) equal to 4. This sets the R0 number in 308

the overall population to be 4. To illustrate the population structure, Fig. 5 shows a 309

heatmap of the matrix Rij . This highlights the strongly assortative nature of the 310

contacts (that is, members of a subgroup are most likely to be contacts with members of 311

their own subgroup), while also showing that contacts are lower for older age groups. 312
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Fig 5. A heatmap of the next generation matrix for the age-structured UK population.
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Now, two different age-dependent case-fatality ratios will be considered - uniform 313

case-fatality and approximate COVID-19 case fatality, taken from [27]. In both cases, it 314

will be assumed that vaccination reduces the case fatality ratio by 90% (following the 315

results of [27] for the COVID-19 vaccines) so that κi = 0.1 for all i. However, it is worth 316

emphasising that this model is simply based on real-world data to make this example 317

more realistic, and does not seek to accurately model the COVID-19 pandemic. 318

Fig. 6 shows the effectiveness of vaccinating each age group in the two different 319

cases, as a proportion of the optimal effectiveness. Note that here the proportion of 320

effectiveness of assigning vaccine to group i is given by yi

minj(yj)
, as each yj is 321

non-positive. It highlights that the significantly higher mortality rates for COVID-19 for 322

the older age groups means that vaccinating them is much more effective than 323

vaccinating the other age groups. This is an example of Theorems 1 and 2, as the oldest 324

age group makes up a relatively small percentage (around 9%) of the population, but, if 325

one scales p such that it has median value 1, the piNi value for the oldest age group is 326

approximately 20, and so is definitely O(1) rather than O(ϵ). 327
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Fig 6. The effectiveness of assigning a the small quantity of vaccines to each age group
as a proportion of the optimal effectiveness.

In the case of uniform mortality, it is perhaps surprising that the optimal age group 328

to vaccinate is the 40-44 year olds. Indeed, from Fig. 5, it may seem that the 15-19 year 329

old group would be the best group to vaccinate, as they have the highest overall 330

transmission - that is, the maximum value of 331

Total infectious force of group j :=
16∑
i=1

Rij . (66)
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However, if instead, one considers 332

Total external infectious force of group j :=
16∑

i=1,i̸=j

Rij , (67)

then it is the 35-39 and the 40-44 age groups which have the highest values. This can be 333

considered in conjunction with the results of the previous subsection, which showed that 334

vaccinating groups with R0 numbers close to 1 is optimal for disconnected populations. 335

Indeed, the “secondary effect” of vaccinations (that is, the number of people who are 336

not vaccinated, but are protected from the disease because of vaccines given to others) 337

can be higher for groups with lower internal infectious force, particularly when their 338

external infectious force is higher. 339

Finally, it is useful to again explore the range of values for ϵ for which y gives a good 340

approximation of the true number of infections. As the minimum (scaled so that the 341

total population size is 1) value of Ni is 0.0498 in this case, ϵ will be tested at 0.0498. 342

The results of this are shown in Fig. 7, which again illustrates the effectiveness of this 343

approximation. Indeed, the largest error across either case is of order 10−4, which in 344

turn is of order ϵ2y. This suggests that the o(ϵ) correction term in Theorem 3 is 345

significantly smaller than ϵ, which increases the usefulness of this approximation. 346

However, further investigation is needed to determine whether this correction is of 347

O(ϵ2y) for all parameter values. 348
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Fig 7. A comparison of the predicted and actual (from simulations) change in the
objective function when vaccinating each individual group at ϵ = 0.0498. Both the cases
of a COVID-19 case fatality ratio (in (a)) and a uniform case fatality ration (in (b)) are
presented.
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4 Discussion 349

This paper has shown two general principles for optimal vaccination policies by looking 350

at the asymptotic behaviour of the optimal policy in the case of extreme parameters. 351

Firstly, it has shown that small, vulnerable groups should in general be vaccinated first, 352

regardless of the overall timetable of vaccination. This is an important result as it 353

requires very little data on the population - merely the case fatality ratios and 354

populations of the different subgroups - and in particular needs no forecasting of future 355

transmission trends or vaccine supply. 356

The analytically derived results (in the limiting case) also show that the effect of 357

vaccinating this small group far outweighs the effect of vaccinating any of the other 358

groups. Indeed if the size of the vulnerable group is O(ϵ) and the case fatality ratio of 359

the other groups is O(ϵ), then Theorem 1 shows that vaccinating the vulnerable group 360

will lead to an O(ϵ) decrease in the number of fatalities, while vaccinating other groups 361

will only decrease this by O(ϵ2). This provides strong evidence for the importance of 362

sharing vaccines on a global scale to ensure that all of the most vulnerable can be 363

vaccinated, as these are the vaccinations that will have by far the most significant effect 364

on the global death toll from a pandemic. 365

It is important to note that this principle of vaccinating the most vulnerable group 366

first may require ϵ to be very small, particularly when there are very few infectious 367

people initially in the population, and when vaccination is not sufficient to eliminate the 368

disease. Fig. 2 illustrated a scenario in which ϵ was required to be approximately 10−3
369

in order to guarantee that the vulnerable group was the best to vaccinate first. Thus, 370

this result should be used with caution - it certainly does not imply that populations 371

should always be vaccinated in order of vulnerability. Nevertheless, it seems likely that 372

people that are extremely vulnerable, such as those with rare pre-existing conditions 373

that make them especially susceptible to the disease, should always receive vaccines first. 374

The second principle derived in this paper was a linear approximation to the change 375

in number of fatalities from a disease, which allows for the estimation of the optimal 376

vaccination policy in the case of a small total supply. Again, this principle is flexible, 377

applying for any underlying disease model, and provides a computationally cheap way of 378

the approximating the optimal solution, even for large numbers of groups, as it merely 379

requires the solution of a linear system involving the same number of parameters as the 380

number of groups. 381

A useful feature of this approximation is that it appears to have high accuracy even 382

for reasonably large values of the total supply, such as when 10% of the population can 383

be vaccinated. Figs. 4 and 7 show that there is very little deviation between the 384

predicted and actual values of the objective function and so suggest that this is a 385

flexible and widely applicable method of approximation, even when the population 386

contains a large number of subgroups. However, it would be helpful to strengthen the 387

results of Theorem 3 to get a stronger bound on the error for small ϵ to ensure that this 388

similarity holds for all models. 389

The results of the examples presented in Section 4 are also informative for 390

vaccination policy. As shown in Fig. 4, in a completely homogeneous population, 391

vaccination has the most effect when the reproduction number (βµ in this case) is 392

slightly bigger than 1, with a steep decline in effectiveness for reproduction numbers 393

below 1, and a more gradual decline for large reproduction numbers. This result allows 394

one to consider the “vaccination leverage” of a population - that is, the effectiveness 395

that a small quantity of vaccination can have - and shows that, even in the case of 396

homogeneous case fatality ratios, vaccinating in order of infectiousness may be far from 397

optimal, as it is much more difficult to reduce infections in a highly infectious 398

population. 399

Indeed, a similar idea was shown to apply when the UK age structure was 400
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considered. In the case of uniform case fatality, the optimal group to assign a small 401

amount of vaccinations to was the 40-44 age group which, as shown by Fig. 5, is not the 402

most infectious group. This perhaps counter-intuitive results highlights the importance 403

of mathematically justifying the principles one uses to decide on optimal vaccination 404

policies, as “common-sense” arguments may in fact give false conclusions. 405

Communicating such principles to governments and policy-makers will be crucial in 406

future pandemics, particularly one with more homogeneous case fatality ratios where 407

the optimal policy is not as intuitive as for diseases like COVID-19. 408

An important limitation of Theorem 3 is that the optimal policies for small 409

vaccination supplies do not necessarily generalise to give the beginning of the optimal 410

vaccination policy in the case of a much larger vaccination supply. Indeed, it is possible 411

to have bifurcations in the optimal vaccination policy as the supply increases - for 412

example, it can become possible to completely avoid an epidemic by vaccinating a large 413

quantity of an infectious group. Thus, while the linear approximation can be a useful 414

starting point when attempting to estimate the optimal strategy, it is important to 415

consider alternatives when a large proportion of the population can be vaccinated. 416

This work could be extended by deriving more principles for extreme parameter 417

values and investigating whether they generalise to realistic model parameters. By 418

combining the existing results in this paper and others such as [12] with potential new 419

ones, one could create an algorithm that creates good heuristics of optimal vaccination 420

policies that could be used as starting points for accurately approximating the optimal 421

policy for a general parameter set. This could have significant implications for the 422

design of vaccination policies, as it would enable the optimisation problem to be 423

estimated for very complex models, as the time taken to converge to an optimal solution 424

would significantly decrease given good initial heuristics. 425

5 Summary and conclusions 426

The results of this paper are summarised below: 427

• For a sufficiently vulnerable, sufficiently small population in a multi-group SIR 428

model, it is optimal to vaccinate this group first. 429

• For small overall vaccination supplies, the optimal vaccination problem can be 430

well approximated by a simple knapsack problem. 431

• This linearisation appears to be a good approximation even for relatively large 432

vaccination supplies (such as 10% of the population). 433

• This linearisation shows that, in the case of uniform case fatality, it is not 434

necessarily optimal to vaccinate the most infectious group. 435
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S1 Proofs

This supplementary file contains the proofs of the theorems presented in the main text. 1

1 Proof of Theorem 1 2

Theorem 1 Suppose that for all ϵ > 0 3

N1(ϵ) = ϵ, Si(0; ϵ) = ϵσ, Ii(0; ϵ) = (1− σ)ϵ and p1(ϵ) =
1

ϵ
(1)

for some σ ∈ (0, 1). Suppose that all other parameter values and initial conditions are 4

independent of ϵ. 5

Consider any vaccination policy given by U(t; ϵ) and suppose that there exists fixed 6

α, τ, w > 0 such that 7

W1(τ ; ϵ) < αϵ and
n∑

i=1

Wi(τ ; ϵ) > w ∀ϵ > 0. (2)

Define a new policy Ũ(t; ϵ) 8

Ũ1(t; ϵ) =

{∑n
i=1 Ui(t) if

∑n
i=1 Wi(t; ϵ) ≤ ϵ

0 otherwise
(3)

and, for i ̸= 1 9

Ũi(t; ϵ) =

{
0 if

∑n
i=1 Wi(t; ϵ) ≤ ϵ

Ui(t; ϵ) otherwise
. (4)

Suppose that for each i ∈ {1, ..., n} and t ≥ 0, 10

|Wi(t; 0)−Wi(t; ϵ)| ≤ ϵ. (5)

Define 11

Π(ϵ) := {i : ∃t ≥ 0 s.t. Ii(t; ϵ) > 0} (6)

and suppose that Π(ϵ) = {1, ..., n} for any ϵ > 0 and that Π(0) = {2, ..., n}. Finally, 12

suppose that there exists a i ∈ {2, ..., n} such that 13

β1
1i > β3

1i ≥ 0. (7)

Then, the policy Ũ is feasible and for sufficiently small ϵ, 14

H(U(t; ϵ)) > H(Ũ(t; ϵ)). (8)

Proof: It is first important to prove that the Ũ is feasible. Firstly, 15

n∑
i=1

Ũi(t; ϵ) ≤
n∑

i=1

Ui(t; ϵ) (9)

which, as U is feasible, means that the supply and rate constraints are satisfied. 16

Moreover, as each Ui(t; ϵ) ≥ 0, 17

Ũi(t; ϵ) ≥ 0 ∀i ∈ {1, ..., n}. (10)

Also, for i ̸= 1, 18

Ũi(t; ϵ) ≤ Ui(t; ϵ) ⇒ W̃i(t; ϵ) ≤ Wi(t; ϵ) ≤ Ni. (11)
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Finally, define 19

t∗ := sup{t :
n∑

i=1

Wi(t; ϵ) ≤ ϵ} ∈ ℜ ∪ {∞} (12)

and then 20

U1(t; ϵ) ≤
∫ t∗

0

n∑
i=1

Ui(s; ϵ)ds ≤ ϵ = N1 (13)

as required. 21

Define Si(t; ϵ) to be the number of susceptibles given the parameters N1(ϵ), S1(0; ϵ) 22

and I1(0; ϵ) and the vaccination policy U(t; ϵ), and define S̃i(t; ϵ) to be the number of 23

susceptibles given the parameters N1(ϵ), S1(0; ϵ) and I1(0; ϵ) and the vaccination policy 24

Ũ(t; ϵ). Use similar definitions for the other variables in the model. 25

Proposition 1.1 26

Proposition 1.1 For each t ≥ 0 and i ∈ {1, ..., n}, 27

|W̃i(t; ϵ)− W̃i(0; ϵ)| ≤ 2ϵ. (14)

Proof: Firstly, note that 28

W̃1(t; ϵ) ≤ ϵ (15)

so 29

|W̃1(t; ϵ)− W̃1(0; ϵ)| ≤ ϵ. (16)

Now, suppose that i ̸= 1. Then, for each ϵ, t ≥ 0, with t∗ defined as in (12),

|Wi(t; ϵ)− W̃i(t; ϵ)| =
∣∣∣∣ ∫ t

0

Ui(s)ds−
∫ max(t,t∗)

t∗
Ui(s)ds

∣∣∣∣. (17)

If t < t∗, then 30

|Wi(t; ϵ)− W̃i(t; ϵ)| ≤
∣∣∣∣ ∫ t

0

Ui(s)ds

∣∣∣∣ ≤ ∣∣∣∣ ∫ t∗

0

Ui(s)ds

∣∣∣∣ ≤ ϵ (18)

while if t ≥ t∗, then, 31

|Wi(t; ϵ)− W̃i(t; ϵ)| =
∣∣∣∣ ∫ t∗

0

Ui(s)ds

∣∣∣∣ ≤ ϵ. (19)

Thus, noting 32

Wi(t; 0) = W̃i(t; 0) (20)

and using (5), 33

|W̃i(t; ϵ)− W̃i(0; ϵ)| ≤ |W̃i(t; ϵ)−Wi(t; ϵ)|+ |Wi(t; ϵ)−Wi(t; 0)| ≤ ϵ+ ϵ = 2ϵ (21)

as required. 34

Proposition 1.2 35

Proposition 1.2 Suppose that the Ui have uniformly bounded support for each ϵ > 0. 36

Moreover, for each of the model variables, fi, suppose that 37

|fi(0; ϵ)− fi(0; 0)| < Kϵ (22)
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for some constant K and that 38

|Wi(t; ϵ)−Wi(t; 0)| < K ′ϵ (23)

for some constant K ′. Finally, suppose all parameters are independent of ϵ with the 39

exception that N1(ϵ) = ϵ. Then, for each δ > 0, there exists some ∆ > 0 such that 40

ϵ ∈ [0,∆] ⇒ |fi(∞; ϵ)− fi(∞; 0)| < δ ∀f ∈ {Ii(t; ϵ), IVi (t; ϵ), Ri(t; ϵ), R
V
i (t; ϵ)}. (24)

Note that this holds both in the case of Theorem 1 (where N1 → 0, Π(ϵ) = {1, ..., n} for 41

ϵ > 0 and Π(0) = {2, ..., n}) or, in the case where each Ni is independent of ϵ (by 42

adding a disconnected group of size ϵ). 43

Proof: Choose any δ > 0. Now, it is possible to write the system for I and IV in the 44

form 45

dJ(t; ϵ)

dt
= M(t; ϵ)J(t; ϵ), (25)

where M depends on the values of S(t; ϵ), SV (t; ϵ), βα
ij and µα

i and 46

J =

(
I

IV

)
. (26)

Hence, in particular, by using Proposition 1.1 and Lemma 4.7 for any fixed t ≥ 0, 47

lim
ϵ→0

(M(t; ϵ)) = M(t; 0). (27)

Moreover, if the support of each Ui(t; ϵ) is bounded by tU (which exists by assumption), 48

then for t > tU , each Si(t; ϵ) and SV
i (t; ϵ) is non-increasing in t and so M(t; ϵ) is 49

non-increasing. As it is bounded below, it therefore must converge to some matrix 50

M(∞; ϵ), and, for t > tU , 51

dJ(t; ϵ)

dt
≥ M(∞; ϵ)J(t; ϵ). (28)

Hence, by Lemma 4.1, 52

J(tU + t′; ϵ) ≥ et
′M(∞;ϵ)J(tU ; ϵ). (29)

Moreover, by Lemma 4.3, 53

lim
t′→∞

(J(tU + t′; ϵ)) = 0 (30)

and hence (by non-negativity) 54

lim
t′→∞

(
et

′M(∞;ϵ)J(tU ; ϵ)
)
= 0. (31)

Now, define 55

max
i,α

(µα
i ) := µmax (32)

and then define 56

M(∞; 0) := M(∞; 0) + µmaxI2n, (33)

where I2n is the 2n by 2n identity matrix. Thus, in particular, M(∞; 0) is non-negative 57

and so 58

eM(∞;0) = e−µmaxeM(∞;0) (34)

is non-negative as the exponential of a non-negative matrix is non-negative (as it is a 59

weighted sum of powers of that matrix with positive weights). Thus, by Perron 60
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Frobenius theory, summarised in [1], there exists a real non-negative eigenvalue λ(∞; 0) 61

(called the Perron eigenvalue) of eM(∞;0) such that any other eigenvalues ρ(∞; 0) satisfy 62

|ρ(∞; 0)| ≤ |λ(∞; 0)| (35)

so, in particular 63

ℜ(ρ(∞; 0)) ≤ ℜ(λ(∞; 0)). (36)

Claim: 0 < |λ(∞; 0)| < 1 64

Proof: Note that λ(∞; 0) > 0, as 65

trace

(
eM(∞;0)

)
≥ trace

(
e−µmaxI2n

)
> 0 (37)

and thus, λ(∞; 0) ̸= 0. 66

From [1], there is a non-negative eigenvector, v, with eigenvalue λ(∞; 0). Now, v 67

must be an eigenvector of M(∞; 0) (as eigenvectors of a matrix and its exponential are 68

the same). Thus, there is some λ∗(∞; 0) such that 69

M(∞; 0)v = λ∗(∞; 0)v. (38)

In particular, writing v = (v1, ..., v2n)
T

70

λ∗(∞; 0)v1 = (M(∞; 0)v)1 = −µ1
1v1 (39)

and thus, either λ∗(∞; 0) = −µ1
i < 0 or v1 = 0. Suppose first that λ∗(∞; 0) = −µ1

1. 71

Then, this means that (as the eigenvalues of eM(∞;0) are the exponentials of the 72

eigenvalues of M(∞; 0)), 73

|λ(∞; 0)| = |e−µ1
1 | < 1. (40)

Similarly, vn+1 ̸= 0 implies that 74

|λ(∞; 0)| = |e−µ2
1 | < 1. (41)

Thus, suppose for the remainder of the proof of this claim that v1 = vn+1 = 0. Now, for 75

i ≤ n, the entries on the ith row of M(∞; 0) are given by 76

M(∞; 0)ij =


Si(∞; 0)β1

ij − δijµ
1
i ifj ≤ n

Si−n(∞; 0)β3
i(j−n) ifj > n

(42)

and for i > n, they are given by 77

M(∞; 0)ij =


SV
i (∞; 0)β2

ij ifj ≤ n

SV
i−n(∞; 0)β4

i(j−n) − δijµ
2
i ifj > n

, (43)

where δij is the Kronecker delta. 78

Now, as Π(0) = {2, ..., n}, by Lemma 4.5, it is necessary that 79

J i(t; 0) > 0 ∀t > 0 and i ∈ {2, ..., n}. (44)

Moreover, if IVi (t; 0) = 0 for some t > 0, then, by Lemma 4.8, as Π(0) = {2, ..., n}, it is 80

necessary that 81

SV
i (t; 0)β3

ji = SV
i (t; 0)β4

ji = 0 ∀j ∈ {2, ..., n} (45)

and so, if t ≥ tU , then this implies 82

SV
i (∞; 0)β3

ji = SV
i (∞; 0)β4

ji = 0 ∀j ∈ {2, ..., n}. (46)
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Thus, in this case, for j /∈ {1, n+ 1} 83

M(∞; 0)ij = −µ2
(i−n)δij . (47)

Therefore, suppose J i(tU ; 0) = 0 for some i /∈ {1, n+ 1} (and so, necessarily,
i ∈ {n+ 2, ..., 2n}). Then,

(M(∞; 0)v)i =
2n∑
j=1

M(∞; 0)ijvj (48)

= M(∞; 0)i1v1 +M(∞; 0)i(n+1)v(n+1) +M(∞; 0)iivi (49)

= −µ2
i vi (50)

and so 84

|λ(∞; 0)| = |e−µ2
i | < 1. (51)

Consequently, this holds if any J i(tU ; 0) = 0. Conversely, suppose that J i(tU ; 0) ̸= 0 for 85

all i /∈ {1, (n+ 1)}. Then, there exists some α > 0 and some non-negative vector w such 86

that 87

J(tU ; 0) = αv +w. (52)

Therefore, for any positive integer n, 88

enM(∞;0)J(tU ; 0) = enM(∞;0)(αv+w) = λ(∞; 0)nαv+enM(∞;0)w ≥ λ(∞; 0)nαv. (53)

Now, v is an eigenvector so it has a non-zero component, which means that 89(
lim
n→∞

(enM(∞;0)J(tU ; 0)) = 0

)
⇒
(

lim
n→∞

(λ(∞; 0)nαv) = 0

)
⇒
(
|λ(∞; 0)| < 1

)
(54)

and so |λ(∞; 0)| < 1 holds in all cases, which finishes the proof of this claim. 90

Claim: There exists some constant X independent of δ such that 91∫∞
T

Ji(s; ϵ)ds ≤ Xδ 92

Proof: Now, the exponentials of the eigenvalues of M(∞; 0) are the eigenvalues of 93

eM(∞;0) which means that, if η(∞; 0) is an eigenvalue of M(∞; 0) then there exists 94

some κ > 0 such that 95

|eη(∞;0)| ≤ |λ(∞; 0)| < e−4κ < 1 ⇒ |eℜ(η(∞;0))| < e−4κ ⇒ ℜ(η) < −4κ (55)

and so all eigenvalues of M(∞; 0) have strictly negative real part. Thus, by continuous 96

dependence of eigenvalues on the matrix, as M(t; 0) converges to M(∞; 0) as t → ∞, 97

there exists some T > tU such that 98

ℜ(η(t; 0)) < −2κ ∀t > T (56)

where η(t; 0) is an eigenvalue of M(t; 0). Now, fix δ > 0. From Lemma 4.3, by choosing 99

T to be sufficiently large, one can assume that 100

Ji(T ; 0) < δ ∀i ∈ {1, ..., 2n}. (57)

Moreover, there exists some ∆ (which is dependent on T ) such that 101

ℜ(η(T ; ϵ)) < −κ ∀ϵ ∈ [0,∆]. (58)

Now, similarly, by choosing ∆ to be sufficiently small, one can assume that by Lemma 102

4.7 103

|Ji(t; ϵ)− Ji(t; 0)| < δ ∀t < T ⇒ |Ji(T ; ϵ)| < 2δ ∀i ∈ {1, ..., 2n} and ∀ϵ ∈ [0,∆]
(59)
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and 104

|Ri(T ; ϵ)−Ri(T ; 0)|, |RV
i (T ; ϵ)−RV

i (T ; 0)| < δ ∀i ∈ {1, ..., 2n}, ∀t < T and ∀ϵ ∈ [0,∆].
(60)

Now, for any t > 0, 105

M(t+ T ; ϵ) ≤ M(T ; ϵ). (61)

Thus, as the solution to the system 106

dz

dt
= M(T ; ϵ)z, z(0) = J(T ; ϵ) (62)

is 107

z(t) = eM(T ;ϵ)tJ(T ; 0); (63)

one has, by Lemma 4.1, 108

J(t+ T ; ϵ) ≤ eM(T ;ϵ)tJ(T ; 0). (64)

Now, noting that M(T ; ϵ) is invertible as all its eigenvalues have strictly negative real
part, for any t > 0∫ t+T

T

J(s; ϵ)ds ≤
∫ t

0

eM(T ;ϵ)sJ(T ; ϵ)ds (65)

= M(T ; ϵ)−1(eM(T ;ϵ)tJ(T ; ϵ)− J(T ; ϵ)) (66)

and so, taking t to ∞ and noting that all eigenvalues of eM(T ;ϵ) have real part less than 109

1 shows that 110∫ ∞

T

J(s; ϵ)ds ≤ −M(T ; ϵ)−1J(T ; ϵ). (67)

Now, each element of M(t; ϵ) is uniformly bounded (for any bounded range of ϵ and all 111

t ≥ 0) as the parameters and variables are uniformly bounded. Thus, by expressing the 112

inverse in terms of determinants of sub-matrices of M(t; ϵ) (each of which must be 113

uniformly bounded as M(t; ϵ) is uniformly bounded) by Cramer’s rule [2], one can see 114

that there exists a constant M∗ such that for each i and j, 115

det(M(t; ϵ)) ̸= 0 ⇒ |M(t; ϵ)−1
ij | ≤

∣∣∣∣ M∗

det(M(t; ϵ))

∣∣∣∣.. (68)

Note that 116

|det(M(T ; ϵ))| =

∣∣∣∣∣∣
∏

λ eigenvalue of M(T ; ϵ)

(λ)

∣∣∣∣∣∣ ≥ κn (69)

because all eigenvalues of M(T ; ϵ) have real part at most −κ and hence modulus at least 117

κ. Thus, there exists some constant X (independent of δ) such that for each i and j, 118∣∣∣∣M(T ; ϵ)−1
ij

∣∣∣∣ ≤ X

4n
. (70)

Thus, by the conditions on J(T ; ϵ), 119∫ ∞

T

Ji(s; ϵ)ds ≤ Xδ (71)

which completes the proof of this claim 120
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As all the parameters and variables are uniformly bounded for all ϵ, there exists a 121

constant Y (independent of δ) such that 122∣∣∣∣dJidt

∣∣∣∣ ≤ Y ∀i ∈ {1, ..., 2n}. (72)

Now, suppose there exists some Ji(t; ϵ) > δ
1
3 for t > T and ϵ ∈ [0, η1]. Then, by 123

non-negativity of Ji 124∫ ∞

T

Ji(s; ϵ)ds ≥
∫ t+δ

1
2

t

Ji(s; ϵ)ds ≥
∫ δ

1
2

0

δ
1
3 − Y sds = δ

5
6 − Y

2
δ. (73)

Thus, taking δ sufficiently small such that 125

δ
5
6 − Y

2
δ > Xδ (74)

gives a contradiction. This means that, for each i ∈ {1, ..., 2n} 126

Ji(t; ϵ) ≤ δ
1
3 ∀t ≥ T and ∀ϵ ∈ [0,∆] (75)

and hence, combining this with (59) (and assuming δ < 1 so δ < δ
1
3 ) shows that 127

|Ji(t; ϵ)− Ji(t; 0)| ≤ δ
1
3 ∀t and ∀i ∈ {1, ..., 2n}. (76)

Moreover, by (71), for any t > 0

|Ri(T + t; ϵ)−Ri(T + t; 0)| ≤ |Ri(T ; ϵ)−Ri(T ; 0)|+ |Ri(T ; 0)−Ri(T + t; 0)| (77)

≤ δ + |Ri(T + t; ϵ)−Ri(T ; ϵ)|+ |Ri(T + t; 0)−Ri(T ; 0)|
(78)

≤ δ + 2Xµ1
i (ϵ)δ + 2Xµ1

i (0)δ (79)

≤ X∗δ (80)

for some constant X∗, alongside an identical result for RV
i . Combining this with (60) 128

(and redefining δ → δ3), the result of the proposition is proved. 129

Theorem 1 130

Note that Proposition 1.2 also holds for the vaccination policies Ũ(t; ϵ), using 131

Proposition 1.1. Thus, one can define a function δ(ϵ) such that for all sufficiently small ϵ 132

|fi(t; ϵ)− fi(t; 0)|, |f̃i(t; ϵ)− fi(t; 0)| ≤ δ(ϵ) ∀f ∈ {I, IV , R,RV } (81)

and 133

δ(ϵ) = o(1) as ϵ → 0. (82)

Then, using, for example 134

|Ri(∞; ϵ)− R̃i(∞; ϵ)| ≤ |Ri(∞; ϵ)− R̃i(∞; 0)|+ |Ri(∞; ϵ)− R̃i(∞; 0)| (83)

(as R(∞; 0) = R̃(∞; 0)) shows that 135

|Ri(∞; ϵ)− R̃i(∞; ϵ)|, |RV
i (∞; ϵ)− R̃V

i (∞; ϵ)| < 2δ(ϵ) ∀ϵ ∈ [0, η] (84)

which means 136∣∣∣∣ n∑
j=2

pj
(
Rj(∞; ϵ) + κjR

V
j (∞; ϵ)

)
−

n∑
j=2

pj

(
R̃j(∞; ϵ) + κjR̃

V
j (∞; ϵ)

) ∣∣∣∣ = O(δ). (85)
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Thus, the aim of the remainder of the proof is to show that the leading order changes to 137

R1(∞; ϵ) are of exactly O(ϵ), and so p1R1(∞; ϵ) changes by an O(1) amount, meaning 138

these changes to the objective function will eventually dominate the other changes given 139

in (85). This can be done by taking advantage of the fact that the quantities f1(t; ϵ) are 140

small, and so a linearised version of the equations for group 1 can be used. 141

Before beginning this process, it is helpful to note the following. From (56) in the 142

proof of Proposition 1.2, there exists some T ∗ > tU independent of δ and ϵ such that 143

λ(T ∗; 0) < e−2κ < 1 (86)

where λ(T ∗; 0) is the (necessarily real and non-negative) Perron eigenvalue of eM(T∗;0)
144

(and is the exponential of the η(∞; 0) referenced in (56)). Moreover, by the continuity 145

of eigenvalues on the entries of the matrix, there exists some ∆ > 0 such that the 146

analogously defined λ(T ∗; ϵ) also satisfies 147

λ(T ∗; ϵ) < e−κ < 1 ∀ϵ ∈ [0,∆]. (87)

Now, note that, for t ≥ T ∗ > tU , the matrix M(t; ϵ) and hence the matrix eM(t;ϵ) is 148

non-increasing. Thus, as eM(t;ϵ) is non-negative (as proved in Proposition 1.2), it is 149

necessary from Perron Frobenius theory [1] that its Perron eigenvalue, λ(t; ϵ) satisfies 150

λ(t; ϵ) ≤ λ(T ∗; ϵ) < e−κ < 1. (88)

Then, following the method used to derive (67), one has, for any t ≥ T ∗
151∫ ∞

t

I1(t; ϵ)dt ≤ (M(t; ϵ)−1J(t; ϵ))1 ∀ϵ ∈ [0,∆]. (89)

This is exactly the same equation as (67), except that here, T ∗ is independent of δ (as 152

no conditions on J(T ; 0) are assumed). Now, note that 153

M(t; 0)1j = −µ1
1δ1j and M(t; 0)(n+1)j = −µ2

1δ(n+1),j (90)

where here δij is the Kronecker delta. This means that, for any vector y, the equation 154

M(t; 0)x = y (91)

must satisfy 155

x1 =
−y1
µ1
1

xn+1 = −yn+1

µ2
1

and x = M−1y. (92)

Thus, in particular 156

M−1
1j (t; 0) =

−1

µ1
1

δ1j and M−1
(n+1)j(t; 0) =

−1

µ2
1

δ(n+1)j , (93)

where here δij denotes the Kronecker delta. Now, note that, as the inverse of a matrix 157

is a rational function of its entries, 158

M−1(t; 0) = M−1(t; ϵ) +O(ϵ) (94)

and hence 159

M−1
1j (t; 0) =

−1

µ1
1

δ1j +O(ϵ). (95)

Moreover, defining 160

µmin := min{µ1
i , µ

2
i }, (96)
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there must exist a T (ϵ) ∈
(
T ∗, T ∗ + 2n

δ
1
3 µmin

)
such that for each i, 161

Ii(T (ϵ); ϵ) < δ
1
3Ni(ϵ). (97)

Otherwise, 162

n∑
i=1

d

dt

(
Ri(t; ϵ)

µ1
iNi(ϵ)

+
RV

i (t; ϵ)

µ2
iNi(ϵ)

)
≥

n∑
i=1

(
µ1
i Ii(t; ϵ)

µ1
iNi(ϵ)

+ 0

)
≥ δ

1
3 ∀t ∈

(
T ∗, T ∗ +

2n

δ
1
3µmin

)
(98)

and integrating this between T ∗ and T ∗ + 2n

δ
1
3 µmin

gives 163

n∑
i=1

Ri

(
T ∗ + 2n

δ
1
3 µmin

; ϵ

)
µ1
iNi

+

RV
i

(
T ∗ + 2n

δ
1
3 µmin

; ϵ

)
µ2
iNi(ϵ)

 ≥ 2nδ
1
3

δ
1
3µmin

>
n

µmin
. (99)

Thus, as µmin

µα
i

≤ 1 for each i and α, 164

n∑
i=1

Ri

(
T ∗ + 2n

δ
1
3 (µmin+1)

; 0

)
+RV

i

(
T ∗ + 2n

δ
1
3 (µmin+1)

; 0

)
Ni(ϵ)

 > n (100)

which means, for some i 165

Ri

(
T ∗ + 2n

δ
1
3 (µmin+1)

; 0

)
+RV

i

(
T ∗ + 2n

δ
1
3 (µmin+1)

; 0

)
Ni(ϵ)

> 1, (101)

which is a contradiction as the total population size in group i cannot exceed Ni(ϵ) by
definition of Ni(ϵ). Thus, for each ϵ ∈ [0,∆],∫ ∞

T (ϵ)

I1(t; ϵ)dt ≤ (M(T ; ϵ)−1J(T (ϵ); ϵ))1 (102)

=
(
O(1) O(ϵ) ... O(ϵ)

)

O(ϵδ

1
3 )

O(δ
1
3 )

.

.

.

O(δ
1
3 )

 (103)

= O(ϵδ
1
3 ) (104)

while similarly 166∫ ∞

T (ϵ)

IV1 (t; ϵ)dt = O(ϵδ
1
3 ). (105)

Moreover 167∫ T (ϵ)

0

δϵdt = O(ϵδ
2
3 ). (106)

These results allow for the linearisation to be carried out. To reduce notation, define 168

T := T (ϵ). (107)
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Now, to begin the linearisation, define 169

X(t) =
n∑

j=1

[
β1
1jIj(t; 0) + β2

1jI
V
j (t; 0)

]
, (108)

which is the leading order infective force on group 1. By Proposition 1.2,

X(t) =
n∑

j=1

[
β1
1jIj(t; ϵ) + β2

1jI
V
j (t; ϵ)

]
+O(δ). (109)

Then, as S1(t; ϵ) ≤ ϵ, 170

dI1
dt

(t; ϵ) + µ1
1I1(t) = S1(t; ϵ)X(t) +O(δϵ). (110)

Now, note that

R1(∞; ϵ) = µ1
1

∫ ∞

0

I1(t; ϵ)dt (111)

= µ1
1

∫ T

0

I1(t; ϵ)dt+ µ1
1

∫ ∞

T

I1(t; ϵ)dt (112)

=

∫ T

0

(
S1(t; ϵ)X(t)− dI1

dt
(t; ϵ) +O(ϵδ)

)
dt+O(δ

1
3 ϵ) (113)

= I1(0; ϵ)− I1(T ) +

∫ T

0

S1(t; ϵ)X(t)dt+O(δ
1
3 ϵ) (114)

= I1(0; ϵ) +

∫ T

0

S1(t; ϵ)X(t)dt+O(δ
1
3 ϵ). (115)

Now, the equations for IV are of the same form, but with SV in place of S and a 171

different leading order infection function Y (t) given by 172

Y (t) =
n∑

j=1

[
β3
1jIj(t; 0) + β4

ijI
V
j (t; 0)

]
. (116)

Thus, an analogous derivation (noting that IV (0; ϵ) = 0) shows that 173

RV
1 (∞; 0) =

∫ T

0

Y (t)SV
1 (t; ϵ)dt+O(ϵδ

1
3 ) (117)

while analogous results hold for R̃1 and R̃V
1 (with S̃1 and S̃V

1 in place of S1 and SV
1 ).

Now, note that

S1(t; ϵ) = S1(t; ϵ)

(
N1(ϵ)−W1(t; ϵ)

N1(ϵ)

)
exp

− n∑
j=1

(
β1
1jRj(t; ϵ)

µ1
j

+
β2
1jR

V
j (t; ϵ)

µ2
j

)
(118)

= σ(N1(ϵ)−W1(t; ϵ)) exp

− n∑
j=1

(
β1
1jRj(t; ϵ)

µ1
j

+
β2
1jR

V
j (t; ϵ)

µ2
j

) . (119)

Define 174

P (t) := exp

− n∑
j=1

(
β1
1jRj(t; 0)

µ1
j

+
β2
1jR

V
j (t; 0)

µ2
j

) (120)
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and then, note that by Proposition 1.2 175

P (t) = exp

− n∑
j=1

(
β1
1jRj(t; ϵ)

µ1
j

+
β2
1jR

V
j (t; ϵ)

µ2
j

)+O(δ) (121)

which means (as (N1(ϵ)−W1(t; ϵ)) ≤ ϵ and σ < 1) 176

S1(t; ϵ) = σ(N1 −W1(t; ϵ))P (t) +O(δϵ) (122)

with an identical result for S̃. It is helpful to note for later that, as W1(t; ϵ) ≤ W̃ (t; ϵ), 177

this means that 178

S1(t; ϵ) ≥ S̃1(t; ϵ) +O(δϵ). (123)

Now, this means∫ T

0

X(t)S1(t; ϵ)dt =

∫ T

0

X(t)σ(N1 −W1(t; ϵ))P (t)dt+O(ϵδ
2
3 ) (124)

and so

R1(∞; ϵ) = I1(0; ϵ) +

∫ T

0

X(t)σ(N1 −W1(t; ϵ))P (t)dt+O(ϵδ
1
3 ). (125)

Now, note that∫ T

0

X(t)σ(N1 −W1(t; ϵ))P (t)dt =

(∫ τ

0

+

∫ T

τ

)(
X(t)σ(N1 −W1(t; ϵ))P (t)dt

)
(126)

and that, as W1(t; ϵ) ≤ W̃1(t; ϵ), 179∫ T

τ

X(t)σ(N1 −W1(t; ϵ))P (t)dt ≥
∫ T

τ

X(t)σ(N1 − W̃1(t; ϵ))P (t)dt. (127)

Now, define z(ϵ) to be 180

z(ϵ) = inf

{
t :

n∑
i=1

Wi(t) = ϵ

}
. (128)

Note that, for ϵ < w, z exists and is bounded above by τ as 181

n∑
i=1

Wi(τ) = w. (129)

Now, define a fixed value 182

z0 := z
(w
2

)
(130)

so that, by continuity of W , z0 < τ (and is independent of ϵ). Suppose that ϵ < w
2 183

(which will be assumed for the rest of the proof). Note that 184∫ z0

0

X(t)σ(N1 −W1(t; ϵ))P (t)dt ≥
∫ z0

0

X(t)σ(N1 − W̃1(t; ϵ))P (t)dt (131)

and that 185∫ τ

z0

X(t)σ(N1 − W̃1(t; ϵ))P (t)dt = 0 (132)
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as W̃1(t; ϵ) = N1 for all t > z(ϵ). Moreover, by (2) 186∫ τ

z0

X(t)σ(N1 −W1(t; ϵ))P (t)dt ≥ (1− α)ϵσ

∫ τ

z0

X(t)P (t)dt. (133)

Now, note that P (t) is strictly positive for t > 0 as it is an exponential, while, as 187

β1j > 0 for some j ̸= 1, 188

X(t) ≥ βijIj(t; 0) > 0 as j ∈ Π(0). (134)

Thus, 189

(1− α)

∫ τ

z0

X(t)P (t)dt > 0 (135)

and this is independent of ϵ. This means that 190

R1(∞; ϵ)− R̃(∞; ϵ) ≥ ϵ(1−α)

∫ τ

z

X(t)P (t)dt+O(ϵδ
1
3 ) = ϵ(1−α)

∫ τ

z

X(t)P (t)dt+o(ϵ)

(136)
and so the leading order change in R1(∞; ϵ) is indeed of order exactly ϵ. 191

Now, it is important to check the leading order change in RV
1 (∞; ϵ). Note that, as

S1(t; ϵ) and SV
1 (ϵ) are at most ϵ,

d

dt

(
S1(t; ϵ) + SV

1 (t; ϵ)
)
= −X(t)S1(t; ϵ)− Y (t)SV

1 (t; ϵ) +O(ϵδ). (137)

Using (122), this can be written as

d

dt

(
S1(t; ϵ) + SV

1 (t; ϵ)
)
+ Y (t)(S1(t; ϵ) + SV

1 (t; ϵ)) = (Y (t)−X(t))S1(t; ϵ) +O(ϵδ).

(138)

This equation can be integrated by defining 192

Y(t) :=

∫ t

0

Y (s)ds (139)

so that 193

d

dt

(
eY(t)(S1(t; ϵ) + SV

1 (t; ϵ)
)
= eY(t)(Y (t)−X(t))S1(t; ϵ) +O(ϵδ). (140)

Thus, for any t ≤ T 194

S1(t; ϵ)+SV
1 (t; ϵ) = e−Y(t)(S1(0; ϵ)+SV

1 (0; ϵ))+

∫ t

0

eY(s)−Y(t)(Y (s)−X(s))S1(s; ϵ)ds+O(ϵδ
2
3 )

(141)
which means that 195

S1(t; ϵ)+SV
1 (t; ϵ)−S̃1(t; ϵ)−S̃V

1 (t; ϵ) =

∫ t

0

eY(s)−Y(t)(Y (s)−X(s))

(
S1(s; ϵ)−S̃1(s; ϵ)

)
ds+O(ϵδ

2
3 )

(142)
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Thus,∫ t

0

Y (s)

[
S1(s; ϵ) + SV

1 (s; ϵ)− S̃1(s; ϵ)− S̃V
1 (s; ϵ)

]
ds = (143)∫ t

0

∫ s

0

Y (s)eY(k)−Y(s)(Y (k)−X(k))

(
S1(k; ϵ)− S̃1(k; ϵ)

)
dkds+O(ϵδ

1
3 ) (144)

=

∫ t

0

∫ t

k

[
Y (s)e−Y(s)

]
eY(k)(Y (k)−X(k))

(
S1(k; ϵ)− S̃1(k; ϵ)

)
dsdk +O(ϵδ

1
3 ) (145)

=

∫ t

0

(e−Y(k) − e−Y(t))eY(k)(Y (k)−X(k))

(
S1(k; ϵ)− S̃1(k; ϵ)

)
dk +O(ϵδ

1
3 ) (146)

=

∫ t

0

(1− eY(k)−Y(t))(Y (k)−X(k))

(
S1(k; ϵ)− S̃1(k; ϵ)

)
dk +O(ϵδ

1
3 ). (147)

Now, note that, as Y is non-decreasing, and non-negative 196

0 ≤ 1− eY(k)−Y(t) ≤ 1− e−Y(t). (148)

Moreover, one has

Y(t) =

∫ t

0

n∑
j=1

[
β3
1jIj(s; 0) + β4

1jI
V
j (s; 0)

]
ds (149)

=

n∑
j=1

[
β3
1jRj(t; 0)

µ1
j

+
β4
1jRj(t; 0)

µ2
j

]
(150)

≤
n∑

j=1

[
β3
1jNj(1)

µ1
j

+
β4
1jNj(1)

µ2
j

]
(151)

and so Y(t) is bounded above by some constant (for ϵ ≤ 1). This in turn means that 197

there exists some Y∗ such that 198

1− e−Y(t) ≤ Y∗ < 1. (152)

Thus, as Y (t)−X(t) ≤ 0 and S1(k; ϵ) ≥ S̃1(k; ϵ) +O(δϵ), for any k ≤ t∫ t

0

Y (s)

[
S1(s; ϵ) + SV

1 (s; ϵ)− S̃1(s; ϵ)− S̃V
1 (s; ϵ)

]
≥ Y∗

∫ t

0

(Y (k)−X(k))

(
S1(k; ϵ)− S̃1(k; ϵ)

)
dk +O(ϵδ

1
3 ). (153)

Now, adding the inequalities (115) and (117) together gives 199

R1(∞; ϵ) +RV
1 (∞; ϵ) = I1(0; ϵ) +

∫ T

0

X(t)S1(t; ϵ) + Y (t)SV
1 (t; ϵ)dt+ o(ϵ). (154)

Note that

X(t)S1(t; ϵ) + Y (t)SV
1 (t; ϵ) = (X(t)− Y (t))S1(t; ϵ) + Y (t)(S1(t; ϵ) + SV

1 (t; ϵ)) (155)

and hence 200

R1(∞; ϵ)+RV
1 (∞; ϵ) = I1(0; ϵ)+

∫ T

0

(X(t)−Y (t))S1(t; ϵ)+Y (t)(S1(t; ϵ)+SV
1 (t; ϵ))dt+o(ϵ).

(156)
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This means that

R1(∞; ϵ) +RV
1 (∞; ϵ)− R̃1(∞; ϵ)− R̃V

1 (∞; ϵ)

≥ (1− Y∗)

∫ T

0

(X(t)− Y (t))

(
S1(t; ϵ)− S̃1(t; ϵ)

)
dt+O(ϵδ

1
3 ). (157)

Now, as there is some i ̸= 1 such that 201

β1
1i > β3

1i ≥ 0 (158)

and (as i ̸= 1), i ∈ Π(0) which means that 202

β1
1iIi(t) > β3

1iIi(t) ∀t > 0. (159)

This means that X(t) > Y (t) for all t > 0 and hence 203∫ T

0

(X(t)− Y (t))dt > 0. (160)

Thus, following the arguments from before, one can see that 204∫ t

0

(X(s)−Y (s))

(
S1(s; ϵ)−S̃1(s; ϵ)

)
ds > ϵ(1−Y∗)

∫ τ

z0

(X(t)−Y (t))P (t)dt+o(ϵ) (161)

where the leading order term is positive as required (as P (t) is positive). Hence, from 205

(157) 206

R1(∞; ϵ)+RV
1 (∞; ϵ)−(R̃1(∞; ϵ)+R̃V

1 (∞; ϵ)) ≥ (1−Y∗)ϵ(1−α)

∫ τ

z0

(X(t)−Y (t))P (t)dt+o(ϵ).

(162)
Thus, for any κ1 ∈ [0, 1], combining (136) and (162)

R1(∞) + κ1R
V
1 (∞) = κ1(R1(∞) +RV

1 (∞)) + (1− κ1)R1(∞) (163)

≥ ϵ

∫ τ

z0

(1− α)P (t)

[
(1− Y∗)κ1(X(t)− Y (t)) + (1− κ1)X(t)

]
dt+ κ1R̃

V
1 (∞) + R̃1(∞) + o(ϵ).

(164)

Thus, recalling (85) and that p1 = 1
ϵ 207

H(U) ≥ H(Ũ) +

∫ τ

z0

(1− α)[κ1(X(t)− Y (t)) + (1− κ1)X(t)]dt+ o(1) (165)

for some constant K. Moreover, for sufficiently small ϵ, 208∫ τ

z0

α[κ1(X(t)− Y (t)) + (1− κ1)X(t)]dt+ o(1) > 0 (166)

and hence 209

H(U(t; ϵ)) > H(Ũ(t; ϵ)), (167)

as required. 210
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2 Proof of Theorem 2 211

Recall from the main text that, using the results in [3], if one defines 212

χ(t) :=

{
A(t) if

∫ t

0
A(s)ds < B(t)

min(A(t), B′(t)) if
∫ t

0
A(s)ds ≥ B(t)

, (168)

then (assuming that there is an optimal solution, and under mild smoothness conditions 213

on U , A and B) there must be an optimal solution satisfying 214

n∑
i=1

Wi(t) = max

(∫ t

0

χ(s)ds, 1

)
. (169)

215

Theorem 2 With the definitions of Theorem 1, suppose additionally that 216

n∑
j=2

(β1
1j − β3

1j)Ij(0; ϵ) > 0. (170)

That is, the initial difference between the infective force on vaccinated and unvaccinated 217

members of the population is positive. Suppose further that 218

σ = 1 and Ij(0; ϵ) > 0. (171)

Suppose an optimal vaccination policy for each ϵ is given by U(t; ϵ) and suppose that 219

U(t; ϵ) has uniformly bounded finite support. Then, there exists an η depending only on 220

α, τ , w and the model parameters such that, for any U satisfying the condition (2) as 221

defined in Theorem 1 222

ϵ ∈ (0, η) ⇒ H(U(t; ϵ)) > H(U(t; ϵ)). (172)

Moreover, there is a sequence of optimal vaccination policies U(t; ϵ) satisfying 223

lim
ϵ→0

(
W 1(t; ϵ)

ϵ

)
= 1 ∀t s.t.

∫ t

0

χ(s)ds > 0. (173)

To make things clearer in the course of this proof, note that H will be written as 224

H(U ; ϵ) (174)

where the ϵ refers to the size of the population N1 under consideration. 225

Proposition 2.1 226

It remains to show that, for sufficiently small ϵ and fixed α, τ and w, there is no U 227

satisfying the conditions (2) that is the optimal vaccination policy. To do this, the 228

following proposition is required. 229

Proposition 2.1 Suppose that I1(0; ϵ) = 0 for all ϵ. Consider, for ϵ ≤ 1 any bounded 230

vaccination policy U(t; ϵ) given by 231

U1(t; ϵ) =

{
U1(t; 1) if W1(t; 1) < ϵ

0 otherwise
and Ui(t; ϵ) = Ui(t; 1) ∀i ̸= 1. (175)

Then, if H(U(t; ϵ); ϵ) is the value of the objective function for a given value of ϵ, 232

ϵ > ϵ′ ⇒ H(U(t; ϵ); ϵ) ≥ H(U(t; ϵ′); ϵ′). (176)
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Proof: Fix ϵ and ϵ′ such that ϵ > ϵ′. Define the vaccination policy U∗(t,∆; ϵ) to be 233

U∗
1 (t,∆; ϵ) =

{
(ϵ−ϵ′+W1(∆;ϵ′))

∆ if t < ∆
U1(t; ϵ

′) otherwise
and U∗

i (t,∆; ϵ) = Ui(t; 1) ∀i ̸= 1.

(177)
Then, in particular 234

W ∗
1 (t,∆; ϵ) =

t(ϵ− ϵ′ +W1(∆; ϵ′))

∆
∀t < ∆. (178)

Now, as U(t; ϵ) is bounded by some M , it is necessary that W1(t; ϵ) is bounded above 235

by tM . Conversely, W ∗
1 (t; ϵ) is bounded below by (ϵ−ϵ′)t

∆ for t < ∆. Thus, taking ∆ 236

sufficiently small gives 237

W ∗
1 (t,∆; ϵ) > W1(t; ϵ) ∀t < ∆. (179)

Moreover, note that, assuming ∆ < ϵ′, if t > ∆ is chosen such that W1(t; 1) < ϵ′ < ϵ, 238

then 239

U∗
1 (t,∆; ϵ) = U1(t; ϵ

′) = U1(t; ϵ) = U1(t; 1) (180)

and hence 240

W ∗
1 (t,∆; ϵ) > W1(t; ϵ) ∀t s.t. W1(t; 1) < ϵ′. (181)

Finally, note that if W1(t; 1) ≥ ϵ′ then W1(t; ϵ
′) = ϵ′ and hence

W ∗
1 (t,∆; ϵ) = W ∗

1 (∆;∆) +

∫ t

∆

U1(s; ϵ
′)ds (182)

= ϵ− ϵ′ +W1(∆; ϵ′) +

∫ t

∆

U1(s; ϵ
′)ds (183)

= ϵ− ϵ′ +W1(∆; ϵ′) +W1(t; ϵ
′)−W1(∆; ϵ′) (184)

= ϵ (185)

and so 241

W ∗
1 (t,∆; ϵ) = ϵ ≥ W1(t; ϵ) ∀t ≥ 0. (186)

Moreover, 242

W ∗
i (t,∆; ϵ) = Wi(t; ϵ) ∀t ≥ 0 and ∀i ∈ {2, ..., n}. (187)

Thus, in particular, by Theorem 1, proved in [3], for each i ∈ {1, ..., n}, 243

I∗i (t,∆; ϵ)+R∗
i (t; ∆; ϵ)+IV

∗

i (t,∆; ϵ)+RV ∗

i (t,∆; ϵ) ≤ Ii(t; ϵ)+Ri(t; ϵ)+IVi (t; ϵ)+RV
i (t; ϵ)
(188)

and 244

R∗
i (t; ∆; ϵ) ≤ Ri(t; ϵ) (189)

where the f∗
i (t,∆; ϵ) are the values of the model variables under the U∗(t,∆; ϵ) 245

vaccination policy and the fi(t; ϵ) are their values under the U(t; ϵ) vaccination policy. 246

Now, for all ∆ > 0 and all f and i 247

f∗
i (0,∆; ϵ) = fi(0; ϵ) (190)

so, as all model variables except Si and SV
i have derivatives that are bounded 248

independently , there exists some L such that, for all 249

f ∈ {Ii(t,∆; ϵ), IVi (t,∆; ϵ), Ri(t,∆; ϵ), RV
i (t,∆; ϵ)}, 250

|f∗
i (∆;∆; ϵ)− fi(0; ϵ)| = |f∗

i (∆;∆)− f∗
i (0;∆)| < L∆. (191)
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Moroever, the initial conditions are the same for f(0; ϵ) and f(0; ϵ′) except in the case of 251

S1(0; ϵ). Thus, 252

|f∗
i (∆;∆; ϵ)− fi(0; ϵ

′)| < L∆ ∀f ∈ {Ii(t,∆; ϵ), IVi (t,∆; ϵ), Ri(t,∆; ϵ), RV
i (t,∆; ϵ)}.

(192)
As only the W1 policy has an unbounded derivative in the ∆ → 0 limit, it is also true 253

that 254

|f∗
i (∆;∆; ϵ)− fi(0; ϵ

′)| < L∆ ∀f ∈ {Si(t,∆; ϵ), SV
i (t,∆; ϵ)} and i ̸= 1. (193)

Moreover, note that (here suppressing the dependence on ϵ)

S∗
1 (∆;∆) =

S∗
1 (0;∆)

N1(ϵ)
(N1(ϵ)−W ∗

1 (∆;∆))e

∑n
j=1

[
β1
1j

µ1
j

R∗
j (∆;∆)+

β3
1j

µ2
j

RV ∗
j (∆;∆)

]
(194)

= σ(ϵ− (ϵ− ϵ′)−W1(∆; ϵ′))e

∑n
j=1

[
β1
1j

µ1
j

Rj(0;ϵ)+
β3
1j

µ2
j

RV
j (0;ϵ)

]
+O(∆) (195)

= σ(ϵ′ −W1(0; ϵ
′))e

∑n
j=1

[
β1
1j

µ1
j

Rj(0;ϵ
′)+

β3
1j

µ2
j

RV
j (0;ϵ′)

]
+O(∆) (196)

= S1(0; ϵ
′) +O(∆) (197)

and hence, 255

|S1(∆;∆; ϵ)− S1(0; ϵ
′)| < L′∆ (198)

for some L′ > 0. Now, as (again suppressing the dependence on ϵ) 256

S1(∆;∆) + I1(∆;∆) +R1(∆;∆) + SV
1 (∆;∆) + IV1 (∆;∆) +RV

1 (∆;∆) = ϵ, (199)

it is necessary that 257

|SV
1 (∆;∆; ϵ)− (ϵ− ϵ′)| ≤ L′′∆ (200)

for some L′′ > 0. Thus, in particular, the values of the model variables f∗
i at time ∆ 258

converge to the initial conditions of the ϵ′ case, except that 259

lim
∆→0

(SV
1

∗(0;∆)) > SV
1 (0; ϵ′). (201)

Moreover, note that for any t ≥ 0, 260

W ∗
i (∆ + t,∆; ϵ)−W ∗

i (∆;∆; ϵ) = Wi(∆ + t; ϵ′)−W1(∆; ϵ′) (202)

and so, as U∗ is bounded in [∆,∞) 261∣∣∣∣(W ∗
i (∆ + t,∆; ϵ)−W ∗

1 (∆;∆; ϵ)

)
−Wi(t; ϵ

′)

∣∣∣∣ < L′′′∆ ∀t > 0 (203)

for some L′′′. Thus, define variables with a hat to denote those from the disease 262

trajectory with initial conditions given by 263

f̂i(0; ϵ
′) := lim

∆→0

(
f∗
i (∆;∆; ϵ)

)
(204)

and with vaccination policy given by Wi(t; ϵ
′). Then, by considering the starred 264

variables to come from an epidemic started at time t = ∆, Lemma 4.7 shows that 265

lim
∆→0

(f∗
i (t; ∆; ϵ)) = f̂i(t; ϵ

′). (205)
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Thus, one can take the ∆ → 0 limit in (188) and (189) to show 266

Îi(t; ϵ
′) + R̂i(t; ϵ

′) + ÎVi (t; ϵ′) + R̂V
i (t; ϵ

′) ≤ Ii(t; ϵ) +Ri(t; ϵ) + IVi (t; ϵ) +RV
i (t; ϵ) (206)

and 267

Ri(t; ϵ
′) ≤ Ri(t; ϵ). (207)

Taking t → ∞ in these inequalities shows that 268

R̂i(∞; ϵ′) + R̂i(∞; ϵ′) ≤ Ri(∞; ϵ) +RV
i (∞; ϵ) and R̂i(∞; ϵ′) ≤ Ri(∞; ϵ) (208)

and hence, for any κi ∈ [0, 1],

R̂i(∞; ϵ′) + κiR̂i(∞; ϵ′) = (1− κi)R̂i(∞; ϵ′) + κi(R̂i(∞; ϵ′) + R̂i(∞; ϵ′)) (209)

≤ (1− κi)Ri(∞; ϵ) + κi(Ri(∞; ϵ) +RV
i (∞; ϵ)) (210)

= Ri(∞; ϵ) + κiR
V
i (∞; ϵ). (211)

Summing these inequalities over i gives 269

Ĥ(Ŵ (t; ϵ′); ϵ′) ≤ H(W (t; ϵ); ϵ). (212)

Finally, note that by Lemma 4.9, as the only change between cases Ĥ and H is an 270

increase in one of the values of SV , 271

H(W (t; ϵ′); ϵ′) ≤ Ĥ(W (t; ϵ′); ϵ′) (213)

which, combined with (212) completes the proof of this proposition. 272

Theorem 2 273

This allows the overall proof of Theorem 2. The proof will rely on Theorem 1, which 274

allows the creation of an O(1) decrease in the objective function by reducing ϵ. By 275

comparing a sequence of policies satisfying (2) with a sequence that does not satisfy (2) 276

and using Proposition 2.1, one can then create a sequence of optimal policies such that 277

the associated sequence of objective values decreases by at least a fixed quantity at each 278

step (and thus will eventually become negative, giving a contradiction). 279

Suppose (for a contradiction) that Theorem 2 does not hold for some fixed α, τ and 280

w. Thus, for any η > 0, there is an ϵ ∈ (0, η) such that, for some U satisfying (2), 281

H(U(t; ϵ); ϵ) ≤ H(U(t; ϵ); ϵ). (214)

By optimality of U(t; ϵ), (214) must in fact be an equality, and so it can be assumed 282

that U(t; ϵ) = U(t; ϵ), which will be done in the remainder of this proof (that is, if for 283

some ϵ there is an optimal solution satisfying (2), then it will be assumed that U 284

satisfies (2)). Thus, there is some ϵ0 such that 285

H(U(t; ϵ0); ϵ0) ≤ H(Ũ(t; ϵ0); ϵ0) (215)

where Ũ is defined by (4). Now, for ϵ < ϵ0, define U0(t; ϵ) by 286

U0
1 (t; ϵ) =

{
U1(t; ϵ0) if W1(t; ϵ0) < ϵ

0 otherwise
and U i(t; ϵ) = U0

i (t; ϵ0) ∀i ̸= 1 (216)

and note that this means that 287

U0(t; ϵ0) = U(t; ϵ0) ∀t ≥ 0. (217)
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By (163) in the proof of Theorem 1, there exists some δ1 > 0 such that, for all ϵ < δ1, 288

H(U0(t; ϵ); ϵ) > H(Ũ
0
(t; ϵ); ϵ)+

1

2

∫ τ

z0

(1−α)P (t)

[
(1−Y∗)κ1(X(t)−Y (t))+(1−κ1)X(t)

]
dt.

(218)
where 289

X(t) =
n∑

j=1

β1
1jIj(t; ϵ) + β3

1jI
V
j (t; ϵ), (219)

290

Y (t) =
n∑

j=1

β2
1jIj(t; ϵ) + β4

1jI
V
j (t; ϵ) (220)

and 291

P (t) = exp

[
−

n∑
j=1

(
β1
1jRj(t; 0)

µ1
j

+
β2
1jR

V
j (t; 0)

µ2
j

)]
. (221)

Note that ρ0, τ and Y∗ are independent of U0, but X(t), Y (t) and P (t) are not. 292

However, note that 293

dIi(t; ϵ)

dt
≥ −µ1

i Ii(t; ϵ) (222)

and so 294

X(t)− Y (t) ≥
n∑

j=2

(β1
1j − β3

1j)e
−µ1

j tIj(0; ϵ) > 0, (223)

by the assumption (170), giving a bound that is independent of U0. Moreover, 295

X(t) ≥ X(t)− Y (t) > 0. (224)

Finally, for ϵ ≤ 1, 296

P (t) ≥ exp

[
−

n∑
j=1

(
β1
1jNj(ϵ)

µ1
j

+
β2
1jNj(ϵ)

µ2
j

)]
≥ exp

[
−

n∑
j=1

(
β1
1jNj(1)

µ1
j

+
β2
1jNj(1)

µ2
j

)]
> 0

(225)
and this bound is again independent of U0. Thus, 297

H(U0(t; ϵ); ϵ) > H(Ũ
0
(t; ϵ); ϵ) +K ∀ϵ < δ1 (226)

for some constant K > 0 where this is now independent of U0. Now, by assumption, 298

there must exist some ϵ1 ∈ (0, δ1) such that U(t; ϵ1) meets the conditions (2) so 299

H(U(t; ϵ1); ϵ1) ≤ H(Ũ(t; ϵ1); ϵ1) (227)

while by optimality 300

H(U(t; ϵ1); ϵ1) ≤ H(Ũ
0
(t; ϵ1); ϵ1) < H(U0(t; ϵ1); ϵ1)−K. (228)

Now, moreover, note that by Proposition 2.1, 301

H(U0(t; ϵ1); ϵ1) ≤ H(U0(t; ϵ0); ϵ0) = H(U(t; ϵ0); ϵ0) (229)

and so 302

H(U(t; ϵ1); ϵ1) ≤ H(U(t; ϵ0); ϵ0)−K. (230)

Now, this can be continued iteratively so that, for any n ≥ 0, 303

H(U(t; ϵn); ϵn) ≤ H(U(t; ϵ0); ϵ0)−Kn (231)
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However, this means that eventually, one finds 304

H(U(t; ϵn); ϵn) < 0 (232)

which is a contradiction. Thus, for each fixed α, w and τ , there must exist some η such 305

that for any ϵ ∈ (0, η), the optimal solution does not satisfy (2). 306

Now, suppose that
∫ t

0
χ(s)ds > 0 and suppose U(t; ϵ) is an optimal solution for each 307

value of ϵ such that, for each t 308

n∑
i=1

W i(t; ϵ) = min

(∫ t

0

χ(s)ds, 1

)
(233)

(note that this can be assumed by Theorem 2 in [3]). Now, suppose that, for some t 309

lim
ϵ→0

(
W 1(t; ϵ)

ϵ

)
̸= 1 and min

(∫ t

0

χ(s)ds, 1

)
> 0. (234)

This means that there exists some δ > 0 such that there is a subsequence ϵm satisfying 310

W 1(t; ϵm)

ϵm
< 1− δ < 1 and lim

m→∞
(ϵm) = 0 (235)

noting that 311

W 1(t; ϵm)

ϵm
≤ 1 ∀ϵm > 0. (236)

However, this means that for each m, U(t; ϵm) satisfies the condition (2) with τ = t, 312

α = 1− δ and w = min

(∫ t

0
χ(s)ds, 1

)
. This is a contradiction to the previous part of 313

the proof (as limm→∞(ϵm) = 0) and hence 314

lim
ϵ→0

(
W ∗

1 (t; ϵ)

ϵ

)
= 1 ∀t s.t. min

(∫ t

0

χ(s)ds, 1

)
> 0, (237)

as required. 315

3 Proof of Theorem 3 316

Recall the definitions from the main text. 317

β′
ij =


β1
ij if i, j ≤ n

β2
i(n−j) if i ≤ n < j ≤ 2n

β3
(n−i)j if j ≤ n < i ≤ 2n

β4
(n−i)(n−j) if n < i, j ≤ 2n

, (238)

318

µ′
i =

{
µ1
i if i ≤ n

µ2
(i−n) if n < i ≤ 2n

, (239)

319

p′i =

{
pi if i ≤ n

κ(i−n)p(i−n) if n < i ≤ 2n
, (240)

320

Mij =
1

1− e
−

∑2n
j=1

β′
ij

µ′
j
Rj(∞;0)

[
δij +

Si(0; 0)e
−

∑2n
j=1

β′
ij

µ′
j
Rj(∞;0)

β′
ij

µ′
j

]
, (241)

and 321

x = M−Tp′ and yi =
Si(0; 0)

Ni
(xi+n − xi) ∀i ∈ {1, ..., n}. (242)

322
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Theorem 3 Suppose that, for all ϵ > 0 323

B(t; ϵ) = ϵ ∀t ≥ 0 (243)

and that all other parameter values and initial conditions are independent of ϵ. Suppose 324

that A(t) is a continuous function with 325

A(0) > 0 (244)

and that the matrix M is invertible. Assuming that ϵ is sufficiently small so that it 326

exists, define 327

τ(ϵ) := inf

{
t :

∫ t

0

A(s)ds = ϵ

}
. (245)

Suppose that U satisfies the condition 328

n∑
i=1

Ui(s) = min

(∫ t

0

χ(s)ds, 1

)
(246)

where χ is defined in (169). Then, for sufficiently small ϵ, the objective function is 329

given by 330

H(U(t; ϵ)) = H(0) + yTW (τ(ϵ); ϵ) + o(ϵ). (247)

Moreover, if there is a unique element of y equal to the minimum of y then the optimal 331

vaccination policy (to leading order in ϵ) is uniquely given by 332

Ui(t; ϵ) =

{
A(t) if i = min{yi : i ∈ {1, ..., n}} and

∫ t

0
A(s)ds < ϵ

0 otherwise
. (248)

Proposition 3.1 333

Note that the n-group model can be considered as a 2n-group model once vaccination 334

has finished - an idea that is formalised in the below proposition. 335

Proposition 3.1 Define for i ∈ {1, ..., n}, 336

(Sn+i, In+i, Rn+i) := (SV
i , IVi , RV

i ). (249)

Define further 337

σi(ϵ) =

{
−Si(0;0)Wi(τ(ϵ))

Ni
if i ≤ n

Si−n(0;0)Wi−n(τ(ϵ))
Ni−n

if n < i ≤ 2n
(250)

and 338

ρi(ϵ) := Ri(∞; ϵ)−Ri(∞; 0) ∀i ∈ {1, ..., 2n}. (251)

Then, ρi(ϵ) is o(1) as ϵ → 0 and 339

σi =
1

1− e
−

∑2n
j=1

β′
ij

µ′
j
Rj(∞;0)

[
ρi+Si(0; 0)e

−
∑2n

j=1

β′
ij

µ′
j
Rj(∞;0)

2n∑
j=1

βij

µ′
j

ρj+o(σi)+
2n∑
j=1

o(ρj)+O(ϵ2)

]
.

(252)

Proof: As A is continuous, there is some region (0, δ) such that 340

A(0)

2
< A(t) < 2A(0) (253)
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and hence 341∫ δ

0

A(t)dt >
δA(0)

2
. (254)

This lower bound is independent of ϵ and hence, for sufficiently small ϵ, 342∫ δ

0

A(t)dt > ϵ. (255)

Now, by assumption, 343

n∑
i=1

Ui(t; ϵ) =

{
A(t) if

∫ t

0
A(s)ds < ϵ

0 otherwise
. (256)

By continuity and the definition of τ(ϵ), 344∫ τ(ϵ)

0

A(t)dt = ϵ (257)

and note that it is necessary that τ(ϵ) = O(ϵ) as 345

τ(ϵ) ≤ 2ϵ

A(0)
(258)

for sufficiently small ϵ. 346

Now, all of the variables are bounded independently of ϵ in the interval [0, τ(ϵ)] 347

(including U , which is bounded by 2A(0)). Moreover, assuming Ni > 0 for each 348

i ∈ {1, ..., n}, 349

Ni −Wi > Ni − ϵ >
mini(Ni)

2
(259)

for sufficiently small ϵ. Thus, in particular, all of the derivatives of the model variables 350

are bounded and so 351

Si(τ(ϵ); ϵ) = Si(0; 0) +O(ϵ) (260)

with analogous results for the other model variables, noting that the initial conditions 352

are identical in each case. Thus, in particular, 353

dSi

dt
(t; ϵ) =

dSi

dt
(0; ϵ)− Si(0; 0)(Ui(t; ϵ)− Ui(0; ϵ))

Ni −Wi(0; ϵ)
+O(ϵ) ∀t ∈ (0, ϵ), (261)

noting that the Ui(t; ϵ) are the only quantities that can change by an O(1) amount in 354

O(ϵ) time. Now, one can set Ui(0; ϵ) = 0 to reduce notation (noting that the model 355

depends only on the integral of Ui). Moreover, as Wi(0; ϵ) = 0, the initial conditions are 356

independent of ϵ and τ(ϵ) = O(ϵ), integrating gives 357

Si(τ(ϵ); ϵ) = Si(0; 0) + τ(ϵ)
dSi

dt
(0; 0)− Si(0; ϵ)Wi(τ(ϵ); ϵ)

Ni
+O(ϵ2). (262)

Similarly, 358

SV
i (τ(ϵ); ϵ)) = SV

i (0; 0) + τ(ϵ)
dSV

i

dt
(0; 0) +

Si(0; 0)Wi(τ(ϵ); ϵ)

Ni
+O(ϵ2) (263)

while for the other model variables, fi, there is no O(1) change to the derivative so 359

fi(τ(ϵ); ϵ)) = f(0; 0) + τ(ϵ)
dfi
dt

(0; 0) +O(ϵ2). (264)
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Now, for times t ≥ τ(ϵ), one has Ui(t; ϵ) = 0 and so a standard multi-group SIR model 360

(with initial conditions given by the model variables evaluated at time τ(ϵ)) is recovered. 361

Thus in particular, the final number infected can be formulated in terms of a final size 362

equation as follows. Define, for i ∈ {1, ..., n}, 363

(Sn+i, In+i, Rn+i) = (SV
i , IVi , RV

i ). (265)

This new 2n group model has the same behaviour as the original model if the 364

parameters are 365

β′
ij =


β1
ij if i, j ≤ n

β2
i(n−j) if i ≤ n < j

β3
(n−i)j if j ≤ n < i

β4
(n−i)(n−j) if n < i, j

, µ′
i =

{
µ1
i if i ≤ n

µ2
(i−n) if i > n

(266)

and 366

p′i =

{
pi if i ≤ n

κ(i−n)p(i−n) if i > n
. (267)

Thus, integrating the Si equation between τ(ϵ) and t+ τ(ϵ) gives

d

dt
(log(Si)) = −

2n∑
j=1

β′
ij

µ′
j

dRj

dt
(268)

⇒ ln(Si(t+ τ(ϵ); ϵ)) = ln(Si(τ(ϵ); ϵ))−
2n∑
j=1

β′
ij

µ′
j

[
Rj(t+ τ(ϵ); ϵ)−Rj(τ(ϵ); ϵ)

]
(269)

⇒ Si(t+ τ(ϵ); ϵ) = Si(τ(ϵ); ϵ)e
−

∑2n
j=1

β′
ij

µ′
j

[
Rj(t+τ(ϵ);ϵ)−τ(ϵ)

dRj
dt (0;0)

]
+O(ϵ2) (270)

as Rj(0; 0) = 0 for each j. Now, note that for any t ≥ 0, 367

Si(τ(ϵ); ϵ)+Ii(τ(ϵ); ϵ)+Ri(τ(ϵ); ϵ) = Si(t+τ(ϵ); ϵ)+Ii(t+τ(ϵ); ϵ)+Ri(t+τ(ϵ); ϵ) (271)

and hence, taking t → ∞ and using Lemma 4.3 shows that 368

Si(τ(ϵ); ϵ) + Ii(τ(ϵ); ϵ) +Ri(τ(ϵ); ϵ) = Si(∞; ϵ) +Ri(∞; ϵ). (272)

Hence, by (264), 369

Si(τ(ϵ); ϵ)+Ii(0; 0)+τ(ϵ)

[
dIi
dt

(0; 0) +
dRi

dt
(0; 0)

]
= Si(∞; ϵ)+Ri(∞; ϵ)+O(ϵ2). (273)

Now, substituting this into the limit of (270) as t → ∞ shows that

Ri(∞; ϵ) =Si(τ(ϵ); ϵ) + Ii(0; 0) + τ(ϵ)

[
dIi
dt

(0; 0) +
dRi

dt
(0; ϵ)

]
− Si(τ(ϵ); ϵ)e

−
∑2n

j=1

β′
ij

µ′
j

[
Rj(∞;ϵ)−τ(ϵ)

dRj
dt (0;0)

]
+O(ϵ2). (274)

By treating this model as a model that has initial conditions given by the variable 370

values at time τ(ϵ), one sees that these initial conditions differ from the initial 371

conditions of the ϵ = 0 model by O(ϵ) (where no vaccination occurs in either case). This 372

means that Proposition 1.2 can be used (as the vaccination policies U must have 373

uniformly bounded finite support for sufficiently small ϵ) and so there exists some 374

function δ(ϵ) such that, for all sufficiently small ϵ, 375

|Rj(∞; ϵ)−Rj(∞; 0)| < δ(ϵ) ∀j and δ(ϵ) = o(1). (275)
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Thus, in particular, one can define functions ρj(ϵ) such that 376

Rj(∞; ϵ) = Rj(∞; 0) + ρj(ϵ) ∀j ∈ {1, .., 2n} (276)

and 377

ρj(ϵ) = o(1) as ϵ → 0. (277)

Furthermore, defining σi such that 378

σi(ϵ) =

{
−Si(0;0)Wi(τ(ϵ))

Ni
if i ≤ n

Si−n(0;0)Wi−n(τ(ϵ))
Ni−n

if n < i ≤ 2n
(278)

gives 379

Si(τ(ϵ); ϵ) = Si(0; 0) + τ(ϵ)
dSi

dt
(0; 0) + σi(ϵ) +O(ϵ2) ∀i ∈ {1, .., 2n}. (279)

Now, when σi(ϵ) = 0 for all i, it must be the case that ρi(ϵ) = 0 for all i as the final size
is unchanged (as no vaccination has taken place). Thus, in this case, (274) can be
linearised to give

O(ϵ2) = τ(ϵ)

[
dSi

dt
(0; 0) +

dIi
dt

(0; 0)

+
dRi

dt
(0; 0)e

−
∑2n

j=1

β′
ij

µ′
j
Rj(∞;0)

−dSi

dt
(0; 0) + Si(0; 0)

2n∑
j=1

β′
ij

µ′
j

dRj

dt
(0; 0)

].
(280)

Note that this equality does indeed hold, as in the no vaccination case 380

dSi

dt
(0; 0) +

dIi
dt

(0; 0) +
dRi

dt
(0; 0) = 0 (281)

is the conservation of population law, while

−dSi

dt
(0; 0) + Si(0; 0)

2n∑
j=1

β′
ij

µ′
j

dRj

dt
(0; 0) = −dSi

dt
(0; 0) + Si(0; 0)

2n∑
j=1

β′
ij

′Ij(0; 0) = 0.

(282)

This means that, for non-zero σi, all terms not dependent on σi or ρi cancel and so the
linearisation becomes

ρi = σi − σie
−

∑2n
j=1

β′
ij

µ′
j
Rj(∞;0)

− Si(0; 0)e
−

∑2n
j=1

β′
ij

µ′
j
Rj(∞;0)

2n∑
j=1

β′
ij

µ′
j

ρj + o(σi) +
2n∑
j=1

o(ρj) +O(ϵ2)

(283)

and so 381

σi =
1

1− e
−

∑2n
j=1

β′
ij

µ′
j
Rj(∞;0)

[
ρi+Si(0; 0)e

−
∑2n

j=1

β′
ij

µ′
j
Rj(∞;0)

2n∑
j=1

β′
ij

µ′
j

ρj+o(σi)+
2n∑
j=1

o(ρj)+O(ϵ2)

]
.

(284)
as required. 382
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Proposition 3.2 383

The result of Proposition 3.1 can be written as a system of equations for vectors σ and ρ 384

σ = Mρ+ o(σ) +
2n∑
j=1

o(ρj) +O(ϵ2) (285)

for some matrix M with non-zero determinant by assumption. However, it is important 385

to establish the dominant balance in these equations, which is done through the 386

following proposition 387

Proposition 3.2
ρi(ϵ) = O(ϵ) ∀i ∈ {1, ..., 2n}. (286)

Proof: Suppose that this does not hold. Thus, there must be some sequence ϵm such 388

that, for some i 389

lim
m→∞

(
ρi(ϵm)

ϵm

)
= ∞ and lim

m→∞
(ϵm) = 0. (287)

Define J∗(ϵ) such that 390

J∗(ϵ) = argmax {|ρj(ϵ)| : j ∈ {1, ..., 2n}} . (288)

Now, by the finiteness of {1, ..., 2n}, there exists some subsequence ϵmk
and some fixed 391

J ∈ {1, ..., 2n} such that 392

J∗(ϵmk
) = J ∀k. (289)

For notational convenience, assume that the original sequence ϵm has this property. 393

Note that 394

lim
m→∞

(
σj(ϵm)

ρJ(ϵm)

)
= lim

m→∞

(
σj(ϵm)

ϵ
× ϵ

ρJ(ϵm)

)
= 0. (290)

as σj(ϵ) = O(ϵ) and ϵ = o(ρi(ϵ)) ≤ o(ρJ(ϵ)). Moreover, 395

lim
m→∞

(
O(ϵ2m)

ρJ(ϵm)

)
= lim

m→∞

(
ϵm × O(ϵm)

ρJ(ϵm)

)
= 0, (291)

396

lim
m→∞

(
o(σj(ϵm)))

ρJ(ϵm)

)
= lim

m→∞

(
o(1)× σj(ϵm)

ρJ(ϵm)

)
= 0 (292)

and 397∣∣∣∣ lim
m→∞

(
o(ρj(ϵm))

ρJ(ϵm)

)∣∣∣∣ ≤ lim
m→∞

(∣∣∣∣o(ρj(ϵm))

ρj(ϵm)

∣∣∣∣) = 0. (293)

Note that there is some abuse of notation in these calculations, but, for example, an 398

O(ϵ2) term in the limit represents any function which is O(ϵ2). Thus, dividing (285) by 399

ρJ(ϵm) and taking m to ∞ shows that 400

lim
m→∞

(
Mρ

ρJ(ϵm)

)
= 0. (294)

Define 401

ρ̂(ϵ) :=
ρ(ϵ)∑2n

j=1 |ρj(ϵ)|
(295)

and note that 402∣∣∣∣(
∑2n

j=1 |ρj(ϵm)|
ρJ(ϵm)

)∣∣∣∣ ∈ [1, 2n] (296)
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and thus remains finite and non-zero. Thus

0 = lim
m→∞

(
Mρ

ρJ(ϵm)

)
(297)

= lim
m→∞

(∑2n
j=1 |ρj(ϵm)|
ρJ(ϵm)

×M ρ̂(ϵm)

)
, (298)

which means 403

0 = lim
m→∞

(
M ρ̂(ϵm)

)
. (299)

However, note that 404

2n∑
j=1

|ρ̂i(ϵ)| = 1 (300)

and hence the sequence ρ̂ is bounded. Thus, by the Bolzano-Weierstrass Theorem, there 405

must be some subsequence mk such that limk→∞(ρ̂(ϵmk
)) exists and is equal to some 406

ρ∗ where 407

2n∑
j=1

|ρ∗j | = 1. (301)

However, then, by continuity and the fact that M is invertible, 408

Mρ∗ = 0 ⇒ ρ∗ = 0 (302)

which is a contradiction to (301) as required. Thus, it must be the case that ρ(ϵ) = O(ϵ) 409

Theorem 3 410

Combining Proposition 3.2 with the fact that σi = O(ϵ) means that (285) can be 411

written as 412

σ = Mρ+ o(ϵ). (303)

Thus, one can multiply the equation by M−1 to get 413

ρ = M−1σ + o(ϵ). (304)

Hence, given vectors p and q where 414

pi := pi and qi = piκi ∀i ∈ {1, ..., n}, (305)

the change to the objective function is given by

(p, q)Tρ = (p, q)T
[
M−1σ + o(ϵ)

]
(306)

:= xTσ + o(ϵ). (307)

Now, note that, for i ∈ {1, ..., n}, 415

σi = −Si(0; 0)Wi(τ(ϵ); ϵ)

Ni
(308)

while, for i ∈ {n+ 1, ..., 2n} 416

σi = −σi−n. (309)

Hence, one can write (307) as 417

(pT , qT )ρ = yTW (τ(ϵ); ϵ) + o(ϵ), (310)
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where

y =
Si(0; 0)

Ni

[
− (x1, ....xn)

T + (xn+1, ..., x2n)
T

]
, (311)

as required by Theorem 3. The only restriction is that all the Wi are non-negative and 418

that 419
n∑

i=1

Wi(τ(ϵ); ϵ) = ϵ (312)

and so the optimisation problem becomes 420

min{yTw : w ≥ 0 and
n∑

i=1

wi = ϵ}. (313)

Now, by Theorem 1, proved in [3] and stated in the appendices, it must be the case that 421

the objective function is non-increasing in w. Thus, in particular, one must have 422

y ≤ 0 (314)

as otherwise, if yi > 0 then setting w = ϵei (where ei is the ith canonical basis vector) 423

means that 424

H(U(t; ϵ)) = H(U(t; 0)) + yiϵ+ o(ϵ) (315)

and so, for sufficiently small ϵ, 425

H(U(t; ϵ)) > H(U(t; 0)) (316)

which is a contradiction. Hence, y ≤ 0 which means that the optimisation problem is an 426

example of a continuous knapsack problem and one can readily see that a solution given 427

is by 428

w∗
i =

{
ϵ if i = min{yi}
0 otherwise

. (317)

As this minimum is unique by assumption, this is the unique leading order optimal 429

solution to the optimisation problem. 430

A technical note is that this only proves the form of the optimal solution to leading 431

order. Indeed, if 432

wi = w∗
i + o(ϵ), (318)

then the optimal objective value is unchanged to leading order. Hence, this restriction is 433

given in the statement of the theorem (although in practice is unimportant). 434

4 Supplementary lemmas 435

This section contains the supplementary lemmas that have been used in the proofs of 436

Theorems 1-3. All but two of these lemmas were proved in [3] and so their proofs will 437

not be reproduced here, but they have been included for completeness and for ease of 438

access. The exceptions are Lemma 4.8 and 4.9. 439

Lemma 4.1 440

Lemma 4.1 Consider a continuous, time-dependent, matrix A(t) which satisfies 441

A(t)ij ≥ 0 ∀t ≥ 0 and ∀i ̸= j (319)
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and a constant matrix B that satisfies 442

Bij ≥ 0 ∀t ≥ 0 and ∀i ̸= j. (320)

Then, suppose that each element of A(t) is non-increasing with t and that 443

A(t)ij ≥ Bij ∀t ≥ 0 and ∀i ̸= j. (321)

Moreover, define an initial condition v and suppose that y and z solve the systems 444

dy

dt
= A(t)y and

dz

dt
= Bz (322)

with 445

y(0) = z(0) = v ≥ 0. (323)

Then, 446

y(t) ≥ z(t) ≥ 0 ∀t ≥ 0. (324)

Proof: This was proved as Lemma B.2 in [3] 447

Lemma 4.2 448

Lemma 4.2 Define the set of functions 449

Fi(t) :=

{
Si(t), Ii(t), Ri(t), S

V
i (t), IVi (t), RV

i (t)

}
. (325)

Then, for all t ≥ 0 and i ∈ {1, ..., n}, 450

0 ≤ f ≤ Ni ∀f ∈ Fi(t). (326)

Proof: This was proved as Lemma B.3 in [3]. 451

Lemma 4.3 452

Lemma 4.3 For each i, 453

lim
t→∞

(Ii(t)) = lim
t→∞

(IVi (t)) = 0. (327)

Proof: This was proved as Lemma B.4 in [3]. 454

Lemma 4.4 455

Lemma 4.4 Suppose that Ii(t) > 0 for some t ≥ 0 and some i ∈ {1, ..., n}. Then 456

Ii(s) > 0 ∀s > t. (328)

An analogous result holds for IVi (t). 457

Proof: This was proved as Lemma B.5 in [3]. 458
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Lemma 4.5 459

Lemma 4.5 Define 460

Π :=
{
i : ∃t ≥ 0 s.t. Ii(t) > 0 or IVi (t) > 0

}
. (329)

Moreover, define 461

Π0 := {i : Ii(0) > 0} (330)

and the n by n matrix M by 462

Mij = Si(0)β
1
ij . (331)

Then, define the connected component C of Π0 in M as follows. The index i ∈ {1, ..., n} 463

belongs to C if any only if there is some sequence a1, ..., ak such that 464

aj ∈ {1, ..., n} ∀j ∈ {1, ..., k}, (332)

465

Ma1,a2Ma2,a3 ...,Mak−1ak
> 0 (333)

and 466

a1 = i and ak ∈ Π0. (334)

Then, 467

(a) i ∈ C ⇒ Ii(t) > 0 ∀t > 0. 468

(b) Π = C ∪Π0. 469

Thus, in particular, 470

i ∈ C ∪Π0 = Π ⇔ I(t) > 0 ∀t > 0. (335)

Proof: This was proved as Lemma B.6 in [3]. 471

Lemma 4.6 472

Lemma 4.6 Suppose that f : ℜn → ℜ is differentiable with bounded derivatives. Define 473

C to be any closed bounded subset of ℜn. Then, f is Lipschitz continuous on C - that is, 474

there exists some L > 0 such that 475

|f(x)− f(y)| < L

n∑
i=1

|xi − yi| ∀x,y ∈ C. (336)

Proof: This was proved as Lemma B.7 in [3]. 476

Lemma 4.7 477

Lemma 4.7 Define the set of functions 478

F :=

{
Si(t; ϵ), Ii(t; ϵ), Ri(t; ϵ), S

V
i (t; ϵ), IVi (t; ϵ), RV

i (t; ϵ) : i ∈ {1, ..., n}, ϵ, t ≥ 0

}
,

(337)
where for each fixed ϵ, these functions solve the model equations with parameters 479

P =

{
βα
ij(ϵ), µ

γ
i (ϵ) : i, j ∈ {1, ..., n}, α ∈ {1, 2, 3, 4}, γ ∈ {1, 2} and ϵ ≥ 0

}
,

(338)
initial conditions 480

I =

{
f(0; ϵ) : i ∈ {1, ..., n}, f ∈ F and ϵ ≥ 0

}
(339)

June 2, 2022 29/33

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.02.22275908doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.02.22275908
http://creativecommons.org/licenses/by/4.0/


and vaccination policy U(t; ϵ). Suppose further that the population sizes are independent 481

of ϵ, except in group 1 where N1(ϵ) satisfies 482

|N1(ϵ)−N1(0)| ≤ ϵ and
S1(0; ϵ)

N1
= σ (340)

for some constant σ. 483

Suppose that 484

|p(ϵ)− p(0)| ≤ ϵ ∀p ∈ P, (341)
485

|fi(0; ϵ)− fi(0; 0)| ≤ ϵ ∀f ∈ F (342)

and that 486

|Wi(t, ϵ)−Wi(t, 0)| < ϵ ∀t ≥ 0. (343)

Moreover, suppose that for each i ∈ {1, ..., n} and ϵ ≥ 0, 487

Ui(s; ϵ) ≥ 0 and

∫ t

0

Ui(s; ϵ)ds ≤ Ni ∀t ≥ 0. (344)

Then, for each δ > 0 and each T > 0 there exists some η > 0 (that may depend on T 488

and δ) such that 489

ϵ ∈ (0, η) ⇒ |f(t; ϵ)− f(t; 0)| < δ ∀f ∈ F and ∀t ∈ [0, T ]. (345)

Proof: An almost identical result was proved in Lemma B.8 from [3], with the only 490

exception being that N1 can vary in this example. However, note that by replacing 491

S1(0;ϵ)
N1(ϵ)

with σ, this lemma can be identically. 492

Lemma 4.8 493

Lemma 4.8 Suppose that i ∈ Π, with Π defined as in Lemma 4.5. Then, 494

IVi (t) = 0 ⇒ SV
i (t)β3

ji = SV
i (t)β4

ji = 0 ∀j ∈ Π. (346)

Proof: Suppose that there exists some t and some i, j ∈ Π such that 495

SV
i (t)β3

ji > 0 and IVi (t) = 0. (347)

Then, by continuity, there exists some a < t such that 496

SV
i (s)β3

ji > 0 ∀s ∈ (a, t). (348)

Moreover, by Lemma 4.4, it is necessary that 497

IVi (s) = 0 ∀s ∈ (a, t), (349)

while, by Lemma 4.5 498

Ij(t) > 0 ∀s ∈ (a, t) (350)

and hence (using the fact that IVi (s) = 0 ∀s ∈ (a, t)) 499

dIVi
dt

≥ SV
i (s)β3

jiIj(t) > 0 ∀s ∈ (a, t) (351)

and so 500

IVi (t) > IVi (a) = 0, (352)

which is a contradiction as required. The final equality then follows as β3
ji ≥ β4

ji ≥ 0. 501
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Lemma 4.9 502

Lemma 4.9 Suppose that the disease trajectories S and S̃ are given by the same model 503

equations, parameters, vaccination policy U and initial conditions except for the fact that 504

SV
1 (0) > S̃V

1 (0). (353)

Then, if the objective functions are denoted by H and H̃ for the two policies, 505

H(U) ≥ H̃(U). (354)

Proof: Define a new disease model, denoted by hats where a new group (n+ 1) is 506

added in such that its unvaccinated compartments behave like the vaccinated 507

compartments of group 1 and its vaccinated compartments are perfectly immune from 508

the disease. That is, 509

β̂1
(n+1)j = β3

1j , β̂2
(n+1)j = β4

1j , and β̂3
(n+1)j = β̂4

(n+1)j = 0 ∀j ∈ {1, ...n}, (355)

510

β̂1
j(n+1) = β3

j1 β̂2
j(n+1) = β4

j1 and β̂3
j(n+1) = β̂4

j(n+1) = 0 ∀j ∈ {1, ..., n}, (356)
511

βα
(n+1)(n+1) = 0 ∀α ∈ {1, 2, 3, 4} (357)

and 512

µ̂1
n+1 = µ2

1 and µ̂2
n+1 = 1. (358)

Suppose further that all other parameter values are identical, and that the only 513

differences in the initial conditions is that 514

ŜV
1 (0) = S̃V

1 (0) and Sn+1(0) = SV
1 (0)− S̃V

1 (0) > 0. (359)

Then, note that

d(ŜV
1 + Ŝn+1)

dt
= −

n+1∑
j=1

[
ŜV
1 (β̂3

1j Îj + β̂4
1j Î

V
j ) + Ŝn+1(β̂

1
(n+1)j Îj + β̂2

(n+1)j Î
V
j )

]
− Ŝn+1Ûn+1

N̂n+1 − Ŵn+1

(360)

= −(ŜV
1 + Ŝn+1)

n+1∑
j=1

[
β̂3
1j Îj + β̂4

1j Î
V
j

]
− Ŝn+1Ûn+1

N̂n+1 − Ŵn+1

. (361)

Moreover, for i ̸= 1

d

dt
(Ŝi) = −Ŝi

n+1∑
j=1

[
β1
ij Îi + β2

ij Î
V
i

]
− ŜiÛi

N̂i − Ŵi

(362)

= −Ŝi

 n∑
j=2

[
β1
ij Îi + β2

ij Î
V
i

]
+ β1

ij Î1 + β2
ij(Î

V
1 + În+1)

− ŜiÛi

N̂i − Ŵi

. (363)

Thus, with similar calculations for Î, ÎV , R̂ and R̂V , by the initial conditions and by 515

the uniqueness of solution, in the case that Ûn+1 = 0, 516

ŜV
1 + Ŝn+1 = SV

1 ÎV1 + În+1 = IV1 and R̂V
1 + R̂n+1 = RV

1 . (364)

Thus, setting 517

pn+1 = p1κ1, (365)

this means that 518

Ĥ(Û) = H(U) (366)
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for any Û such that Ûn+1 = 0 and Ûi = Ui for any i ̸= n. 519

Now, define a vaccination policy Û
∗
(t; ∆) such that 520

Û∗
i (t; ∆) = Ûi(t) ∀t ≥ 0 and i ̸= n+ 1 (367)

and 521

Û∗
n+1(t; ∆) =

 1
∆

(
SV
1 (0)− S̃V

1 (0)

)
if t ≤ ∆

0 otherwise
. (368)

Then, this means that 522

Ŝn+1(∆;∆) = 0 and ŜV
n+1(∆;∆) = SV

1 (0)− S̃V
1 (0) +O(∆) (369)

while all other variable values at time ∆ differ by at most O(∆) from their initial values. 523

Thus, define by an overbar the model given by the initial conditions which are the same 524

as those in the hat model, but with 525

Sn+1(0) = 0 and S
V

n+1 = SV
1 (0)− S̃V

1 (0). (370)

Suppose also that the vaccination policy in this case is equal to U , which is the 526

pointwise limit of the vaccination policy Û
∗
(t; ∆) (for t > 0). Then, using Proposition 527

1.2, by considering the values of the variables f̂ at time ∆ to be the initial conditions, 528

one finds that for any finite time t, 529

lim
∆→0

(Ĥ(U∗(t; ∆))) = H(U). (371)

Note this holds as it is assumed that U is bounded and so 530

|Wi(t+∆;∆)−Wi(∆;∆)−Wi(t)| = O(∆). (372)

Moreover, note that the only difference between the bar model and the tilde model is in 531

group (n+ 1). However, by the fact that β3
ij = β4

ij = 0 if (n+ 1) ∈ {i, j}, the value of 532

S
V

n+1 is constant and the other variable values are independent of it. Thus, by the 533

uniqueness of solution, this means that 534

H(U) = H̃(U). (373)

Finally, note that by Theorem 1, it must be necessary that for any ∆ > 0 535

Ĥ(U(t; ∆)) ≤ Ĥ(U(t;∞)) = H(U), (374)

where ∆ = ∞ corresponds to no vaccination taking place in group (n+ 1) (and hence 536

the original objective function H is recovered). Thus, 537

H̃(U) ≤ H(U), (375)

as required. 538

Theorem 1 539

Theorem 1 Suppose that U and Ũ are feasible, bounded, Lebesgue integrable 540

vaccination policies. Suppose further that for each i ∈ {1, ..., n} and t ≥ 0 541∫ t

0

Ui(s)ds ≤
∫ t

0

Ũi(s)ds. (376)
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Then, for each t ≥ 0 and i ∈ {1, ..., n} 542

Ii(t) +Ri(t) + IVi (t) +RV
i (t) ≥ Ĩi(t) + R̃i(t) + Ĩvi (t) + R̃V

i (t) (377)

and 543

Ri(t) ≥ R̃i(t). (378)

Moreover, 544

H(U) ≥ H(Ũ). (379)

Proof: A proof of this theorem is given in [3], where it is Theorem 1. Note that the 545

first two results are not in the statement of Theorem 1 in [3], but can be found at the 546

end of the proof. 547

Theorem 2 548

Theorem 2 Suppose that B is differentiable, and that there is an optimal solution U . 549

Then, define the function 550

χ(t) :=

{
A(t) if

∫ t

0
χ(s)ds < B(t)

min(A(t), B′(t)) if
∫ t

0
χ(s)ds ≥ B(t)

(380)

and suppose that χ(t) exists and is bounded. Then, there exists an optimal solution Ũ 551

such that 552
n∑

i=1

W̃i(t) = max

(∫ t

0

χ(s)ds, 1

)
. (381)

Moreover, if χ(t) is continuous almost everywhere, there exists an optimal solution Ũ 553

such that 554
n∑

i=1

Ũi(t) =

{
χ(t) if

∫ t

0
χ(s)ds < 1

0 otherwise
(382)

Proof: A proof of this theorem is given in [3] where it is Theorem 2. 555
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