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Abstract
The genomic profiling of circulating tumor cells (CTCs) in the bloodstream should provide clinically relevant
information on therapeutic efficacy and help predict cancer survival. However, the molecular
characterization of CTCs has so far proven extremely difficult. A variety of technologies have been
developed for CTC isolation, but so far the impact on the genomic assessment of CTCs has not been fully
evaluated. To fill this gap, here we contrasted the genomic profiles of CTC pools recovered from blood
samples obtained from four metastatic colorectal cancer (mCRC) patients using three different enrichment
strategies (CellSearch, Parsortix, and FACS). Our results suggest clear differences in the mutational burden
of CTC pools depending on the enrichment method used, with all evaluated methods returning a
somewhat limited representation of the mutational spectrum of individual tumors, potentially due to allelic
dropout during whole-genome amplification. Nevertheless, the CTC pools from Parsortix, and in part,
CellSearch, showed diversity estimates, mutational signatures and drug-suitability scores remarkably close
to the ones found in matching primary tumor samples. In contrast, FACS CTC pools were substantially
enriched in apparent sequencing artifacts, which led to much higher estimates of genomic diversity.
Although CTC genomics still faces technical challenges, our results suggest that CTC-derived metrics can
reflect the diversity scores seen in primary tumor lesions thus highlighting the utility of CTCs to assess the
heterogeneity status of individual tumors, and to help clinicians prioritize drugs in mCRC.

1. Introduction
Although research on cancer biology has traditionally been hampered by sampling issues, with most
approaches relying on highly-invasive, risky, and, sometimes, difficult to obtain solid tissue biopsies
(Marrugo-Ramírez, Mir, and Samitier 2018; Robertson and Baxter 2011; Chi 2016), strong evidence has
emerged in recent years that the peripheral blood, as well as other body fluids, offer a valuable source of
cancer-associated materials (K. Pantel and Speicher 2016; Crowley et al. 2013). As opposed to tissue
biopsies, liquid biopsies represent a minimally invasive alternative to capture clinically-relevant information
about tumors (Krebs et al. 2014), including circulating tumor cells (CTCs). CTCs are thought to consist of
cells shed by the primary tumor (PT) and metastatic lesions into the bloodstream, and have become the
subject of intense research due to their likely role in the metastatic process (Klaus Pantel and
Alix-Panabières 2017; Krebs et al. 2014; Castro-Giner and Aceto 2020). In recent years, multiple studies
have demonstrated the clinical significance of CTCs for prognosis and therapeutic management, with CTC
burden being correlated with unfavorable overall survival in several cancer types (Magbanua et al. 2019;
Silveira et al. 2021; Basso et al. 2021; Chemi et al. 2019).

Importantly, sequencing studies exploring the genomic landscape of CTCs (Chemi et al. 2019; Gulbahce et
al. 2017; Magbanua et al. 2018; Court et al. 2020) have shown that the mutational profiles of CTCs generally
reflects the overall genomic composition of matched primary and metastatic lesions. Collectively, these
results suggest that CTC diversity represents the overall tumor heterogeneity probably better than single
tumor tissue biopsies, and incorporating CTC genomic information is expected to increase the clinical
value of liquid biopsies by providing better predictions of therapeutic sensitivity and survival outcome
(Pailler et al. 2019; Paoletti et al. 2018).

Nevertheless, implementing a comprehensive molecular characterization of CTCs into routine clinical
procedures has, so far, proven extremely challenging (Rossi and Zamarchi 2019; Kowalik, Kowalewska, and
Góźdź 2017). Indeed, despite the numerous strategies already available for isolating CTCs (Bankó et al.
2019), ranging from methods based on physical properties of cells (i.e., size and deformability) to others
based on biological characteristics (e.g., cell surface marker expression), CTCs are typically present at very
low numbers in the blood and can show a wide range of phenotypes (Neves et al. 2021; Kowalik,
Kowalewska, and Góźdź 2017; Hyun et al. 2016). As a consequence, these technologies are likely to differ
in their detection sensitivity and recovery rates but, to date, comparative analyses across distinct
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technologies are lacking (Neves et al. 2021). Of particular interest to us, it remains unclear how the different
isolation methods can have an impact on the assessment of the genomic landscape of CTCs.

In order to identify an efficient strategy for the downstream genomic profiling of CTCs in metastatic
colorectal cancer (mCRC), here we contrasted three different CTC-enrichment approaches —CellSearch® ,
Parsortix® and Fluorescence-Activated Cell Sorting (FACS). While all methods evaluated struggled here
with data quality issues, our results indicate that Parsortix and, in part, CellSearch are able to provide
genomic heterogeneity scores, mutational signature profiles and therapeutic targets compatible with those
found in matching primary tumor samples.

2. Material & Methods

2. 1 Patient selection and blood collection
We enrolled four mCRC patients diagnosed between October 2017 and September 2019 at the Hospital
Universitario de Ourense, Spain, with histologically proven CRC, and either therapy naive or showing
evidence of progression. On the same day, we collected three blood samples per patient and stored them
into three different containers, one for each CTC-enrichment protocol, at room temperature: CellSave
Preservative tubes (Menarini Silicon Biosystems, Italy) for CellSearch, Transfix CTC-TVT tubes (Cytomark,
UK) for Parsortix and cell-free DNA BCT CE tubes (Streck, NE, USA) for FACS. In addition, we obtained a
formalin-fixed paraffin-embedded (FFPE) block of the primary tumor (PT) from each patient. Importantly, all
specimens were obtained and collected after written informed consent from all subjects using a protocol
approved by the Clinical Ethic Committee of Pontevedra-Vigo-Ourense (2018/301 approved 19/06/2018).

2.2 CTC enrichment
We processed all samples within 96 hours after the blood was drawn using three different strategies for
CTC enrichment. The CellSearch® system (Menarini, Silicon Biosystems, Bologna, Italy) enumerates and
isolates CTCs of epithelial origin (CD45-, EpCAM+, and CK8+, 18+, and/or 19+). The Parsortix® platform
(ANGLE plc, UK) traps CTCs due to their larger size and lower compressibility than blood cells. The FACS
strategy separates CTCs based on custom markers; in our case EpCAM+/CD45-/CK7,8+.

2.2.1 CellSearch
For each sample, we processed 7.5 mL of whole blood in the CellTracks Autoprep system using the
Circulating Tumor Cell Kit (Menarini, Silicon Biosystems, Bologna, Italy). This kit consists of ferrofluids
coated with epithelial cell-specific anti-EpCAM antibodies to immuno-magnetically enrich epithelial cells
and a mixture of antibodies directed to cytokeratins (CKs) 8, 18, and 19 conjugated to phycoerythrin (PE); an
antibody to CD45 conjugated to allophycocyanin (APC); and a nuclear dye 4′,6-diamidino-2-phenylindole
(DAPI). Afterward, we analyzed the processed samples with the CellTracks Analyzer II according to the
manufacturer’s instructions. We identified the CTCs as round or oval cells with an intact nucleus (DAPI
positive), CK positive and CD45 negative (Fig. S1). We stored the CTC-enriched samples at −80 °C.

2.2.2 Parsortix
We loaded 7.5 mL of peripheral whole blood per sample into a Parsortix microfluidic device (Angle plc, UK).
We enriched the samples in disposable Parsortix cassettes with a gap size of 6.5 µm (GEN3D6.5, Angle
Inc., Guildford, UK) and at 99 mbar of pressure, according to the manufacturer’s guidelines. After
separation, we collected the captured cells in 200 µL of PBS and stored them at −80 °C.

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.22275905doi: medRxiv preprint 

https://paperpile.com/c/BAk1Lm/lSwh
https://doi.org/10.1101/2022.06.02.22275905
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2.3 Fluorescence-activated Cell Sorting (FACS)
In order to obtain the peripheral blood mononuclear cell (PBMC) fraction –to be used as healthy controls–
we took 1 mL from each blood sample and performed Ficoll-Paque gradient centrifugation. We kept the
PBMCs in RNA later (Ambion, TX, USA) at -80ºC until genomic DNA (gDNA) extraction. The remaining
blood volume (7-9 mL) was then used for CTC staining and collection. After validating our FACS protocol
using spike-in experiments (see Supplementary note 1), we followed a similar approach to Miller et al.
(2012) and first lysed the red blood cells using BD Pharm Lyse lysing solution (BD Biosciences, NJ, USA)
following the fabricant recommendations. When needed, we repeated the lysing step up to three times. We
then resuspended the cells in phosphate-buffered saline (PBS) solution and filtered them with a 70 μm cell
strainer (Falcon, NY, USA). We used the FIX & PERM™ Cell Permeabilization Kit (Invitrogen, MA, USA) and
incubated the filtered cell suspensions with antibodies (BD Biosciences, NJ, USA) against the epithelial cell
adhesion molecule (EpCAM; PerCP-Cy5.5, IgG1λ, clone EBA-1) and the leukocyte common antigen CD45
(FITC, IgG1κ, clone HI30) with reagent A for 25 minutes in the dark at room temperature for fixation. Cells
were then washed once with 500 µL of PBS and centrifuged at 200 x g for 5 minutes. We resuspended the
cell pellet in 1 ml of PBS and incubated it with an antibody against the epithelial markers cytokeratins 7 and
8 (CK7,8; PE, IgG2ɑ/κ, clone CAM 5.2) and reagent B for 20 minutes in the dark at room temperature for
permeabilization. We washed once again and resuspended the cells in 500 µl of PBS. Finally, we selected
and collected 3 µl of PBS pools of CTCs based on an EpCAM+/CD45-/CK7,8+ phenotype (Fig. S2) using a
FACSAria III (BD Biosciences, NJ, USA). We analyzed the data using the FACSDiva (BD Biosciences, NJ,
USA) and FlowLogic software (Miltenyi Biotec, Germany).

2.3 Whole-genome amplification of CTC-pools
Given the large collection volume (~200 µl) from both CellSearch and Parsortix, we initially performed
genomic DNA (gDNA) extraction of the CTC enriched samples obtained from these platforms using the
QIAamp DNA Blood Mini Kit (Qiagen, Germany) before performing whole-genome amplification (WGA)
using the Ampli1 kit (Menarini Silicon Biosystems, Italy). For CellSearch and Parsortix samples, we carried
out the WGA starting with 1 µl of DNA and CTC pools from FACS were amplified directly. In order to avoid
contamination, we worked in a laminar-flow hood and used a dedicated set of pipettes and UV-irradiated
plastic materials. We included positive (10 ng/µl REPLIg human control kit, Qiagen, Germany) and negative
(DNase/RNase free water) controls during the amplification and used the Ampli1 QC Kit to evaluate the
amplification. Samples with a positive signal for at least two PCR fragments were selected to increase the
total dsDNA content using the Ampli1 ReAmp/ds kit. We then removed the kit adaptors by incubating at 37
ºC for 3 h a mixture of 5 µl of NEBuffer 4 10X (New England Biolabs, MA, USA), 1 µl of MseI 50U/µl (New
England Biolabs, MA, USA), 19 µl of nuclease-free water and 25 µl of dsDNA followed by a step at 65 ºC for
20 min for enzyme inactivation. Finally, we purified the samples with 1.8X AMPure XP beads (Agencourt,
Beckman Coulter, CA, USA), quantified the DNA yield with Qubit 3.0 fluorometer (Thermo Fisher Scientific,
MA, USA) and checked the amplicon size distribution with the D1000 ScreenTape System in a 2200
TapeStation platform (Agilent Technologies, CA, USA).

2.4 FFPE and PBMCs bulk gDNA isolation
We performed the extraction of bulk gDNA from FFPE samples using the QIAamp DNA FFPE tissue kit
(Qiagen, Germany) by incubating and shaking at 60 ºC for 1 h before slicing them and adding a
deparaffinization solution (DS). We performed a 56ºC incubation step for 1 h and when needed, performed
a second addition of DS in a new tube in order to remove remaining paraffin. We used the QIAamp DNA
Blood Mini Kit (Qiagen, Germany) for the extraction of gDNA from PBMCs bulks and estimated DNA yield
using the Qubit 3.0 fluorometer (Thermo Fisher Scientific, MA, USA) and DNA integrity with the Genomic
DNA ScreenTape Assay (Agilent Technologies, CA, USA).
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2.5 Whole-exome sequencing
CTC pools and bulk sequencing libraries were constructed at the Spanish National Center for Genomic
Analysis (CNAG; http://www.cnag.crg.eu) with the SureSelect XT and Agilent Human Exon v5 kits (Agilent
Technologies, CA, USA). In total, seven whole-genome amplified CTC-pools (two from FACS: P4 and P5,
one from CellSearch: P1 and 4 from Parsortix: P1, P3, P4 and P5) and four FFPE bulk samples were
sequenced at 100X and four PBMCs samples at 60X. All samples were run on an Illumina NovaSeq 6000
(PE100) at CNAG.

2.6 Data processing and variant calling
After trimming amplification and sequencing adapters from the raw FASTQ files, we aligned the sequencing
reads from CTC pools, tumor and healthy samples to the Genome Reference Consortium Human Build 37
(GRCh37) using the MEM algorithm in the BWA software (Li 2013). Following a standardized best-practices
pipeline (Van der Auwera et al. 2013), we filtered out reads with low mapping quality. We next performed a
local realignment around indels, and removed PCR duplicates. We identified somatic single nucleotide
variants (SNVs) for each CTC-capture method using the multi-sample variant-calling feature implemented in
MuTect2 software, taking as input the BAM files of the different sample types available (i.e., tumor bulk +
CTC-pool + healthy control). We then used FilterMutectCalls to remove calls in any sequence context
artifacts or contamination fractions (but see Supplementary note 2 and Fig. S3). Afterwards, the genotypes
of variants showing a coverage depth ≥ 10, alternative allelic depth ≥ 2 and allele frequency estimates
ranging from 0.05 to 0.75 were kept for downstream analysis. For all datasets, we merged the inferrred
SNV calls and performed variant annotation using Annovar software (v.20200608) (Wang, Li, and
Hakonarson 2010).

2.7 Mutational Signatures
For all datasets, we ran sigProfilerExtractor (Ashiqul Islam et al. 2021) under default parameters to identify
de novo mutational signatures for single-base substitutions (SBS), followed by the assignment of the
decomposed signatures to known COSMICv3 SBS96 signatures (Alexandrov et al. 2020).

2.8 PanDrugs
We used PanDrugs (Piñeiro-Yáñez et al. 2018) (http://www.pandrugs.org) –a web-based platform that
attempts to match genomic data to available drug therapies in order to guide personalized treatment
selection– to explore changes in therapeutic options and drug suitability scores across the different
datasets. For that purpose, we first ran PanDrugs using a VCF with the list of exonic mutations identified in
the tumor bulk sample of each patient to identify CRC-specific therapeutic candidates. Next, we extracted
the drug score (that ranges from −1 to 1 and measures the suitability of each drug using a database of
curated gene-drug relationships and the collective gene impact) to identify the top 25 therapeutic
candidates in the PT samples. Afterwards, we performed a new query with PanDrugs using the exonic
mutations in each of the CTC samples to examine whether the CTC-derived genomic information identifies
similar therapeutic options and drug sensitivity scores as for the bulk.

2.9 MATH scores
For the datasets with an unknown number of CTCs or with CTC counts > 1, we additionally estimated the
mutant-allele tumor heterogeneity (MATH) score (Mroz and Rocco 2013). The MATH score is based on the
distribution of allele fractions among somatic mutations and is calculated as the percentage ratio of the
width of the data to the center of its distribution:

𝑀𝐴𝑇𝐻 =  100 ×  𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑉𝐴𝐹) 
𝑚𝑒𝑑𝑖𝑎𝑛 (𝑉𝐴𝐹)
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Importantly, since MATH scores are sensitive to unreliable allele frequency estimates stemming from sites
with poor sequencing coverage depth, for their calculation we applied an additional filter to restrict our
mutation calls to positions showing a depth of coverage ≥ 25 and alternative allelic depth ≥ 5.

3. Results

3.1 CTC-counts
Patient-level CTC counts were available for two of the selected CTC-capture methods (as the Parsortix
platform does not provide CTC counts). Using the CellSearch system, we isolated one CTC from patient P1,
whereas no CTCs were detected for the remaining patients. Importantly, although we were able to recover
potential CTCs from all patients using FACS (P1 = 2 CTCs; P3 = 6 CTCs; P4 = 2 CTCs; P5 = 1 CTC), after
whole-genome amplification we only obtained high-quality sequencing libraries for patients P4 and P5.

3.2 Tumor mutational burden
Across all patients, we found sharp differences in the number of somatic mutations (SNVs) identified with
the different CTC-capture methods (Fig. 1). While the number of mutations called with both CellSearch and
Parsortix datasets were close to, or lower than, the number of mutations observed in the matched PT bulk
samples, the mutation counts in the FACS CTC pools were consistently much higher (by one order of
magnitude) than in the bulk samples. Remarkably, regardless of the CTC-capture strategy, we found a very
small overlap in mutation calls between CTC pools and PT datasets: Parsortix (average of 4.6%), CellSearch
(3.4%) and FACS (0.4%).

Figure 1. SNV abundance per CTC-capturing method. Barplots depicting the total number of SNVs identified by MuTect2 for each
dataset. Number of SNVs shown at the bottom of each bar. Bar colors reflect the different input material or capturing method: gray =
FFPE primary tumor (PT) sample; gold = CellSearch CTC pool; blue = Parsortix CTC pool; pink = FACS CTC pool. Error bars are only
available for bulk tumor samples and reflect the 95% confidence interval. Orange bars depict the amount of shared sites between
CTC-datasets and PT samples. The y-axis is in log scale.
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Similarly, within each patient, the number of mutations shared between CTC pools captured with distinct
methods was generally small (Fig. 2a). In any case, we identified a considerable number of CTC-specific
mutations across datasets, including non-silent ones (Fig. 2a and Fig. S4).

Furthermore, within the PT samples, the median variant allele frequency (VAF) of the shared mutations with
CTC pools ranged from 0.19 (Parsortix - P4) to 0.09 (FACS - P5), suggesting that the isolated CTCs are
derived from minor subclones within the PTs (Fig. 2b). Similar VAF scores were observed between the
CellSearch and Parsortix CTCs. In P4 we found a significant difference between Parsortix and FACS (Fig.
2b), with the FACS CTCs being generally enriched with mutations at low frequency.

Importantly, as shown in Fig. 2b, the CTC pools showed a clear depletion of clonal (i.e., allele frequency ≥
0.4) mutations observed in the PT samples. While these results may appear surprising - as, in theory, clonal
mutations in the PT should appear in all CTCs sampled-, the failure to identify such mutations can be, in
part, explained due to the limited coverage breadth of the CTCs. Indeed, across all samples, only a small
fraction (5 to 39%) of regions harboring clonal variants in the PTs was covered with sequencing reads in the
CTC pools (Table SI). Moreover, after looking at the coverage statistics of heterozygous single-nucleotide
polymorphisms (SNPs) (Fig. S5), we additionally found strong evidence of allele dropout (ADO) taking place
during WGA. Despite being particularly obvious in the FACS datasets -which showed an averaged ADO of
67% for the heterozygous sites called-, all CTC pools showed some degree of ADO (CellSearch ADO: 9%
and Parsortix ADO: 9%) which very possibly interfered with the identification of clonal mutations.

Figure 2. Genomic profiling and clonality of CTC-pools. a. Occupancy matrix of shared sites (P1 = 41 SNVs; P4 = 65 SNVs; P5 = 100
SNVs) across the CTC-capture methods within patients. Different colored tiles reflect different mutation status: dark grey=mutation;
white=reference/missing data. Patient ID shown on the right. b. Boxplots depicting the bulk-level VAF estimates of the SNVs shared
with the CTC pools. Boxplot colors represent the different CTC-capture methods. Statistical analysis was performed using the two
sample KS-test to compare bulk VAF estimates of shared sites between CTC-capture methods. Significant p-values shown above
boxplots.

3.3 Measuring intratumor genomic heterogeneity (ITH)
Afterwards, we explored potential differences in intratumor genomic heterogeneity (ITH) estimates
between PT and CTC samples by examining the frequency distribution of somatic mutations across the
different datasets. Importantly, since several of our CTC samples comprised only one cell, the subsequent
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analyses were limited to datasets with either an unknown number of CTCs or CTC counts > 1, and included
the Parsortix CTCs from patients P1, P3, P4 and P5, and the FACS CTCs from patient P4.

As illustrated in Fig. 3a-b (and Fig. S6a-b), we found significant differences in the distribution of VAF
estimates between PT and CTC pools. In patient P4, specifically, both FACS and Parsortix datasets showed
an enrichment towards low frequency variants when compared to the corresponding PT sample. Moreover,
a quantile-quantile (Q-Q) plot further revealed contrasting differences in the skewness of the VAF
distributions stemming from the different CTC-capture methods (Fig. 3b). Indeed, while the Parsortix CTCs
encompassed a larger number of mutations at intermediate frequencies when compared to the matched
PT sample, the FACS CTCs showed a substantial depletion of this class of mutations.

Interestingly, in the Parsortix CTCs, we found a significant positive correlation between the VAF estimates
of shared mutations between the CTC pool and the PT sample (Fig. 3c). As for the FACS CTCs, although a
positive trend was found, the relationship was not significant (similar to the results of the remaining
datasets - Fig. S6c).

We also observed sharp differences in the levels of ITH, as measured by MATH scores, among
CTC-capture methods. In patient P4, the Parsortix CTCs and the PT sample returned highly concordant
MATH scores (43.6 and 43.0, respectively), while the FACS dataset displayed a much larger MATH score
(62.8) (Fig. 3d). Importantly, very similar MATH scores were also observed between the remaining Parsortix
CTCs and the PT samples (Fig. S6d).

Figure 3. Measuring ITH through CTC pools. a. Histograms depicting the variant allele frequency (VAF) distribution of somatic
mutations for the different datasets of patient P4. Different datasets highlighted with different colors: PT = grey; FACS = pink; Parsortix
= blue with dataset ID shown on the right. Histograms scaled to percentages. b. Q-Q plot comparing the distribution of allele
frequency estimates in CTC pools and PT samples of patient P4. Statistical analysis was performed using the two sample KS-test to
compare the VAF distribution between CTC pools and PTsamples. KS D (distance) statistic and p-values are shown on the upper left
side of the plot. c. Scatter plot describing the similarity of VAF scores of overlapping sites between CTC pools and PT samples. Solid
lines represent the best fit from regression analysis. R2 scores and p-values are shown on the upper left side of the plot. d. Barplot
depicting the MATH scores obtained using the mutation sets passing our strict filtering - Primary tumor = 416 SNVs; FACS = 8193 SNVs;
Parsortix = 46 SNVs (see methods).
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3.4 Mutational signatures
We next explored the mutational signatures in the different datasets to look for potential differences
between CTC pools and PT samples (Fig. 4a). Across all datasets, SigProfilerExtractor identified a total of
five different mutational processes, with PT samples being predominantly enriched in “clock-like” (i.e.,
ageing) COSMIC signatures SBS1 and SBS5. A similar contribution of SBS1 and SBS5 was also found in the
CellsSearch and Parsortix CTC datasets, albeit the lower cosine similarity score (cosine similarity: 0.505)
obtained - likely due to the limited number of mutations available for signature assignment in these
datasets. In contrast, FACS CTCs were predominantly characterized by signature SBS46 (65% in both
cases), a mutational signature typically associated with sequencing artifacts.

3.5 Drug suitability scores
Finally, using the list of exonic positions available, we collected the best drug candidates for each dataset
in order to evaluate potential changes in the type and sensitivity of therapeutic options between CTC pools
and PT samples (Fig. 4b). Across patients, both FACS and CellSearch CTCs recovered, in most cases, the
top candidate drugs (i.e., with the highest D-Score) identified with the corresponding PT samples. The
Parsortix CTCs, on the other hand, often returned only a subset of treatment options identified in the
matched PT. In any case, the fact that all CTC-capture methods showed a significant positive correlation in
drug sensitivity scores between CTCs and PT samples (Fig. 4c) appears to indicate that the CTC genomic
profiles offer reliable information for prioritizing therapeutic strategies in CRC.

Figure 4. Mutational signatures and drug sensitivity concordance. a. Barplots depicting the proportion of mutations contributing to
the different signatures/processes across the different samples. Sample IDs are shown at the bottom and patient IDs are shown at the
top. Different colors reflect the identified mutational signature with the COSMIC SBS ID shown at the right of the plot. Legend asterisks
distinguish mutational signatures identified by SigProfilerExtractor showing suboptimal cosine similarity scores (i.e., < 0.90). b. Tile
plots depicting the overlap between the top-3 drug candidates in primary tumor (PT) samples (ordered from left to right) and
corresponding CTC-pools. Tiles colored according to drug sensitivity score (D-score). Gray tiles correspond to therapeutic options not
recovered by PanDrugs for that specific sample. c. Scatter plot depicting the correlation between the best therapeutic candidates
(measured using the D-score) identified in both PT and CTC samples. Shape distinguishes the different patients while colors reflect
the different CTC-capture methods. Solid lines represent the best fit from regression analysis. R2 scores and p-values are shown on
the bottom right side of the plot.
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4. Discussion
The isolation of CTCs remains challenging largely because of their scarcity in peripheral blood and
phenotypic heterogeneity. While recent technological advances have resulted in improved capture
strategies, most available methods differ in key aspects such as enrichment efficiency, cell viability, and
throughput. Studies evaluating the implications of different CTC-capture methods on downstream analyses
are scarce, and it remains unclear whether distinct enrichment approaches can provide compatible
descriptions of the mutational landscape of CTCs.

In this study, in order to evaluate the impact of different CTC-capture strategies on the downstream
molecular characterization of CTCs, we contrasted the genomic profiles of primary tumor samples against
CTC pools recovered using three different enrichment strategies in four mCRC patients.

Our whole-exome sequencing experiments suggest differences in the mutational loads of CTC pools due
to the enrichment method used. In sharp contrast to the results obtained with the CellSearch and Parsortix
systems, the mutation counts in our FACS CTC pools exceeded by an order of magnitude the number of
mutations observed in the corresponding primary tumor samples. Importantly, the FACS datasets showed
significant enrichment for mutations at lower frequencies, with a high proportion of these mutations being
later linked to a mutational signature associated with sequencing artifacts (i.e., SBS46).

These results suggest that our FACS-derived CTCs might have accumulated DNA lesions along with the
different steps of the protocol. Unfortunately, identifying and subsequently removing these potential errors
is not necessarily straightforward. Although one could argue that setting lower and upper bounds on the
minor allele frequency could potentially prevent downstream variant call artifacts, it should be noted that
sequencing CTC pools must necessarily be preceded by multiple rounds of genomic amplification. Since
most WGA methods inevitably introduce biases in the resulting sequencing data (e.g., uneven genome
amplification, allelic imbalances and dropout), for any given site, the derived allele frequency score will not
necessarily reflect its true frequency in the CTC population sampled. Indeed, in our datasets, these biases
were reflected both in the imbalanced distribution of allele frequencies of heterozygous SNPs and in the
relatively poor concordance in VAFs of shared somatic sites between CTC pools and PT samples.

In any case, and for all datasets analyzed, Parsortix-derived CTC pools provided similar descriptions of ITH
when compared to the corresponding PT samples, with MATH scores in clear agreement with previous
estimates in mCRC (Bettoni et al. 2019). In contrast, this metric was largely overestimated in our FACS
dataset, perhaps as a consequence of the massive amount of potential sequencing artifacts. Moreover,
while the identification of therapeutic candidates was not always identical between CTC pools and PT
samples, all CTC pools analyzed suggested drug-candidates displaying a significant probability of
response, and highly concordant sensitivity scores with the PT samples, thus providing strong evidence
that CTC-based mutational profiles may contribute with valuable guidance for refining treatment tailoring
(Khoo et al. 2016; Siravegna et al. 2017; Parikh et al. 2019).

5. Conclusion
In conclusion, CTC genomics still faces technical challenges for straightforward clinical applications. As
seen throughout our study, all the methods evaluated struggled with data quality issues - potentially
caused by the inherent technical bias introduced by the limiting amounts of input material (Navin 2014)
and/or background DNA contamination (e.g., white blood cells) (Xu et al. 2015) – which resulted in a
somewhat incomplete picture of the mutational landscape of these tumors. Nevertheless, and despite the
limited number of patients analyzed and the failure of some enrichment methods to recover CTCs for all
patients, it is important to highlight that the CTC pools recovered from Parsortix and, in part, CellSearch
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returned comparable ITH estimates, similar mutational signature profiles, and suggested equivalent
therapeutic targets, when compared to those found in matching primary tumor samples.

On this basis, as the performance of technologies for the detection and isolation of CTCs continues to
improve, allowing for more accurate and informative genomic data to be produced (Diamantopoulou,
Castro-Giner, and Aceto 2020), future studies (using larger cohorts) should explore whether the mutational
landscape and genomic diversity of CTC populations can indeed provide clinically relevant prognostic and
predictive information beyond simple enumeration.
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