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ABSTRACT

Cognitive functioning in older age has a huge impact on quality of life and physical and mental
health. Whilst most research in cognition in older age has focussed on mean levels, there is some
evidence that individuals with cognitive functioning that varies a lot around this may have different
risk factors and outcomes to those with less variable functioning. Existing approaches to investigate
such intraindividual variability (IIV) typically involve deriving a summary statistic for each person
from residual error around a fitted mean. However, such methods ignore sampling variability,
prohibit the exploration of associations with time-varying factors, and are biased by floor and ceiling

effects. To address this, we fitted a mixed-effects location scale beta-binomial model to estimate
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average per-trial probability and IV in a word recall test with the English Longitudinal Study of
Aging (ELSA). After adjusting for mean performance, in an analysis of 9,873 individuals observed
across 7 (mean: 3.4) waves we found IIV to be greater: at older ages; with lower education; in
females; with more difficulties with activities of daily living; in later cohorts; and when interviewers
recorded issues which may have affected the tests. Our study identifies groups with more varying
cognitive performance, which has implications for their daily functioning and care. Further work is

needed to identify the impact of this for future health outcomes.
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Cognitive test, intraindividual variability, older adults, beta binomial, mixed effects model,

heteroscedasticity

Cognitive functioning in older people has profound implications for current and future health and
wellbeing [1, 2]. In the absence of therapeutical cures for dementia, for example, changes in
cognitive performance can aid the early identification of individuals at increased risk of developing
the condition, paramount for the design and implementation of interventions that may delay the onset
of faster deterioration [3, 4]. Traditionally, research in cognitive decline has focused on the study of
individual differences and on the identification of risk factors for rate of mean change [5]. However,
some have investigated inconsistency in performance [6]. For example, evidence is emerging that
inconsistency across different cognitive tasks in a single occasion (cognitive dispersion) is a potential
early marker of pathological changes in the brain and shows its association with critical outcomes [7-
9]. In addition, intraindividual variability (ITV) in performance can be measured in the same task

over shorter (same visit) or longer (visit-to-visit) periods of time. MacDonald, Li and Backman
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reviewed the empirical evidence linking IV in cognitive performance with neural correlates and
discussed possible mechanisms that may explain such associations [10]. With a focus on IIV in
reaction time, Kochan et al. used data from the Sydney Memory and Ageing Study, a longitudinal
study of older adults in Australia, and reported that greater IIV, but not greater mean reaction time,
significantly predicted survival time after adjusting for sociodemographic factors, cardiovascular risk
index and apolipoprotein €4 status [11]. Similarly, Gamaldo et al. examined differences in 11V
between impaired and unimpaired participants of the Baltimore Longitudinal Study of Aging, and
showed that individuals who had received a diagnosis of dementia had greater variability in
attention, executive function, language and semantic memory at least 5 years before the onset of
cognitive impairment compared to individuals who remained free of dementia, demonstrating the

potential role of II'V as an early indicator of pathological changes [12].

Despite the increasing interest in IV, the analytical approaches commonly used to quantify it in
longitudinal studies are limited. Some researchers have considered the average amount of deviation
(residual error around a fitted mean) in an individual’s performance over time [13, 14]. However this
does not adjust for sampling variability given the finite number of within-person observations, and
the resulting individual-level summary statistic is not amenable to the exploration of associations of
IV with time-varying factors. Alternatively, Gamaldo et al. fitted multilevel (MLM) or growth
curve models to repeated measurements of the outcome of interest, and then compared models which
assume the residual IIV to be constant to models which allow it to depend on fixed effects, e.g.
diagnostic status [12]. However, this assumes that people within each group have the same IIV. We
have previously shown that in an MLM, the residual IIV can instead be assumed to contain

systematic variation that can be explained, depending not only on fixed effects (as in Gamaldo et al.
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[12]), but on random effects as well, in mixed-effects location scale (MELS) models [15-17]. MELS
models allow for the association of IIV with predictors which may be time-varying, or otherwise, to
be investigated. They further allow for residual differences between people in their IIV to be
estimated via random effects, and their association with the individual mean to be investigated via

correlated random effects [18].

Whilst MELS models typically assume that, conditional on the random effects, the response variable
is Normally distributed, this is likely to be violated with a bounded discrete outcome [19], where
floor and ceiling effects can lead to underestimated II'V for people returning high, or low, mean
scores. Under such circumstances, a beta-binomial model has been shown to improve statistical
inference [20]. Beta-binomial models have a location (p) and scale (6) parameter, each of which can
be allowed to differ across fixed and random effects in an analogous manner to a MELS model.
Given @ captures heterogeneity in the average per-trial probability, factors associated with IIV can

thus be investigated.

Since the evidence on factors associated with differences in IIV over time is limited, we use a MELS
beta-binomial model to investigate visit-to-visit IV in a word recall test in the English Longitudinal
Study of Ageing (ELSA). Our aim is to understand the factors associated with IIV in a test of
episodic memory in older adults, using a modelling approach appropriate to this bounded discrete

outcome.
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METHODS

Cohort

Participants were from the English Longitudinal Study of Ageing (ELSA) [21], an ongoing panel
study that contains a nationally representative sample of the English population aged 50 and over
living in households, previously described [22, 23]. Interviews at baseline (2002—2003) were carried
out with 11,391 individuals (5,186 men and 6,205 women); the overall response rate was 70% at the
household level and 67% at the individual level. After the baseline interview, follow-up interviews
took place at regular 2-year intervals in 2004-2005 (wave 2), 20062007 (wave 3), 2008-2009
(wave 4), 2010-2011 (wave 5), 2012-2013 (wave 6) and 2014-2015 (wave 7). Refresher samples
were added at waves 3, 4, 6 and 7 to ensure the study remained representative of the target age
group. Participants gave full informed consent to participate in the study. We restricted our sample to
core participants responding to at least one wave when aged 65 years old or older, and to
observations for which the participant did not report having Alzheimer’s disease or dementia,

organic brain syndrome, senility or any other serious memory impairment.

Cognitive function.

Memory was measured using a 10-word recall test that has earlier been used in the Health and
Retirement Study [24]. Participants were presented with a list of 10 words that were read out to them
and asked to recall as many words as they could both immediately and, with no prior notice, five
minutes later and after they had been asked to complete other survey questions. A total of four

versions of the 10-word lists were available and were randomly allocated by computer. The number
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of correctly recalled words was used as a measure of memory (range: 0-20 words) adding the results

from both the immediate and delayed recall tests.

Covariates

Information on participants’ age, sex, education, and difficulties with Activities of Daily Living
(ADLs) were recorded at each wave. In addition, the interviewer reported whether there were any
factors which may have impaired the participants’ performance during the cognitive tests. Education
was categorised into higher (college / university), secondary and no qualifications. For difficulties
with ADLs, participants were asked if they had any difficulty dressing (including putting on shoes
and socks), eating (including cutting up food), bathing and showering, getting in and out of bed and
walking across a room, and a scale counting the number of items participants had difficulties with
was derived from this. Interviewer-recorded factors which may have affected the cognitive tests
included: the participant being blind or having poor eyesight, being deaf or having poor hearing,
being too tired, illness or physical impairment, impaired concentration, being very nervous or
anxious, having other mental impairment, an interruption or distraction, a noisy environment,
problems with the testing computer, difficulty in understanding English, or any other factors. This

was a binary variable, indicating whether there were no, or at least one, such issue recorded.

Analytical approach

A mixed-effects location scale (MELS) beta-binomial model was fitted to repeated measurements of
the longitudinal outcome, the word recall test score. The beta-binomial model assumes that each
observed value of the outcome (each score out of 20, in our case) has an underlying, unobserved

probability which is sampled from a beta distribution. The shape of the beta distribution from which
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these probabilities are drawn is defined by an average per-trial probability parameter p (a.k.a. u) and
a variability (or scale or dispersion) parameter € (a.k.a. ¢ or ) [25, 26]. When 6 is 2, then every
probability, from 0 to 1, is equally-likely. When 8 < 2 then dispersion is greater and extreme
probabilities near 0 and 1 become more likely than the mean, whilst when 6 > 2 the distribution of
probabilities becomes concentrated around the mean [25, 27]. Supplementary Figure S1 plots

expected distributions of test scores given different values for these parameters.

Instead of directly modelling the probability for each observed count, the beta-binomial models this
distribution of probabilities, via p and 6. Whilst a MELS model is typically a Gaussian model, we
use the terminology here as we include both fixed (population) and random (individual) effects in (1)
the linear predictor for p (the ‘location’ of the beta distribution), and (2) in the linear predictor for
(the ‘scale’ of the beta distribution, where low estimated values of 8 imply greater intraindividual

variability (IIV) in task performance).

Covariates added to the linear predictor for p were age, cohort (the year of reaching age 65), sex,
educational qualification, the number of ADLs with which the respondent reported difficulty, and
whether the interviewer reported whether there were any factors which may have impaired the
participants’ performance during the cognitive tests. These covariates were also included in the
linear predictor for . For the linear predictor for p, any non-linearity in the association between age
and the outcome was first assessed by fitting restricted cubic regression splines with different sets of
knots as recommended by Harrell (2015) [28], and the best-fitting function of age was selected and
fitted. Interactions of age with each of sex, educational qualifications, number of ADL difficulties,
and issues potentially impairing test performance were also added, in turn, to the linear predictor for

p to see if they improved model fit. Model fit was assessed via Pareto smoothed importance
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sampling leave-one-out (PSIS-LOO) cross-validation [29]. In addition, random effects were included
in both the functions for p and 6 to account for unobserved heterogeneity between individuals. In the
predictor for p, a random intercept estimated the between-individual variability in p at the mean age,
and a random slope estimated the between-individual variability of the effect of age (as a linear term
fitted across the whole age range) on p. In the linear predictor for 6, a random intercept estimated the
extent to which people differed in their IIV (specifically in how dispersed the beta distribution from
which the underlying probability of test success was drawn). Random effects were assumed

multivariate normally distributed, allowing for non-zero correlations between them.

The models were fitted using Bayesian estimation via MCMC methods in Stan (2.21.0), using the
brms package (2.16.1) in R (4.1.0) [30-32]. Results are reported as means of posterior distributions
and 95% credible intervals. See the Supplementary Materials for further details of these (and other

sensitivity) analyses, and sample code.

RESULTS

A total of 9,873 individuals were included in the final cohort (see Supplementary Figure S2). Of
these, n = 2,202 (22.3%) were reported as dying during the study period, whilst the mortality
status of 2,477 (25.1%) was reported as unknown at the final wave (wave 7), with the remaining
5,194 (52.6%) reported as alive at that wave. N = 396 (4.0%) of the final cohort were reported as
having a memory problem in at least one survey (these, and subsequent, surveys for such
participants were not included in the model). On average, participants included in the final cohort

contributed data to 3.4 data collection waves, distributed across waves as follows: 1% data
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collection wave: n = 5,283 (53.5%); 2"%: n = 4,566 (46.2%); 3'%: n = 4,149 (42.0%); 4'": n = 4,728

(47.9%); 5 n = 4,811 (48.7%); 6!: n = 5,037 (51.0%); 7: n = 4,917 (49.8%).

Table 1 shows the baseline characteristics of included individuals, including by whether they
contribute data to every wave after becoming eligible or not. It indicates that those who did not
contribute data to every wave after becoming eligible had, on average, a lower memory test
score, were older, had lower educational qualifications, had more difficulties with ADLs, and

had more issues recorded by the interviewer which may have affected the cognitive tests.

See Supplementary Materials for further summary statistics, including by exclusion status and
drop-out status (Tables S1-S2), and also for all estimates from the models presented below

(Table S3).

Association of covariates with p (average per-trial probability)

A restricted cubic spline for age, with 4 knots points, was fitted in the fixed part of the linear model
for p (see Supplementary Materials). Figure 1 presents the estimated average per-trial probability of
providing a correct answer in the word recall test, across age. It indicates that, on average, this
probability decreased with age — i.e. older participants were less likely to recall the words earlier

presented — with the rate of this decline greater from around 80 years of age.

Figure 2 presents the estimated odds ratios (OR) for the remaining covariates in the linear predictor
for p. It indicates the probability of correctly recalling words declined, on average, as the number of
difficulties with ADLs increased, with an OR of 0.96 (95% Credible Interval 0.95, 0.97) indicating a
4% lower odds of recalling a word correctly for each activity reported to be performed with

difficulty. Mean test score was lower when the interviewer recorded issues potentially affecting the

10


https://doi.org/10.1101/2022.06.01.22275869
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2022.06.01.22275869; this version posted June 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

test, with an OR of 0.77 (95% Credible Interval 0.75, 0.79). An estimated OR of 1.24 (95% Credible
Interval 1.21, 1.27) indicated that the odds of recalling a word correctly were 24% higher for females
than males. The odds were also higher in those with a higher level of education: compared to no
educational qualifications, those with secondary educational qualifications had an OR of 1.31 (95%
Credible Interval 1.28, 1.35), and those with HE qualifications had an OR of 1.54 (95% Credible
Interval 1.50, 1.58). Finally, the odds were higher in later cohorts, with an OR of 1.16 (95% Credible
Interval 1.14, 1.18) for each 1 S.D. (standard deviation) increase in the covariate (or 1.02 (95%

Credible Interval 1.02, 1.02) for each year later participants were born).

There was no evidence that the associations of any of these covariates with p differed across age (see

Supplementary Materials).

Association of covariates with 8 (11V)

Figure 3 presents the estimated change in the log of the intraindividual variability (IIV) or dispersion
parameter, 6, for each modelled characteristic (NB lower values of 6 indicate greater IIV: e.g.
Supplementary Figure S1). It indicates that older people had greater IIV in memory scores, on
average, with log(6) estimated to be to be -1.38 (95% Credible Interval -1.70, -1.08) lower for each 1
S.D. increase in age at survey (or by -2.01 (95% Credible Interval -2.47, -1.57) for each decade of
age). As Figure 3 also illustrates, higher educational qualifications were associated with lower ITV,
with those who completed secondary school, for instance, having an estimated log(6) higher by 0.54
(95% Credible Interval 0.18, 0.91), compared to individuals without qualifications. IIV was greater
for individuals with more difficulties in their ADLs, with log(6) reducing by an average of -0.25
(95% Credible Interval -0.35, -0.14) for each activity performed with difficulty. IIV was higher for
females, with log(6) lower by an average of -0.41 (95% Credible Interval -0.75, -0.09) compared to

11
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males. When the interviewer had recorded issues which might have affected the tests, the IIV was
higher, with log(0) reducing by an average of -2.76 (95% Credible Interval -3.13, -2.43). Later
cohorts were also estimated to have greater IIV, with log(6) lower by -1.01 (95% Credible Interval -
1.32,-0.73) for each 1 S.D. increase in the covariate (or -0.13 (95% Credible Interval -0.16, -0.09)

for each year later participants were born).

Participant effects

The random part of the model indicated that the correlation between average per-trial probability (p)
at 70.5 years of age (random intercept) and rate of change in p (random slope) was estimated at 0.38
(95% Credible Interval 0.29, 0.48), suggesting that individuals with poorer episodic memory at age
70.5 years of age experienced a faster rate of decline in memory. Those who tended to score higher
in the memory test (more positive random intercept for p) tended to have lower IIV (higher log(6)),
with a posterior mean correlation of 0.45 (95% Credible Interval 0.38, 0.53) between the random
intercept (at 70.5 years of age) for p and the random intercept of the predictor for log(6). Finally, the
posterior mean correlation between the random slope for p and the random intercept for IIV (log(8))
was 0.27 (95% Credible Interval 0.07, 0.48), indicating that those with slopes which decline less
steeply (i.e. more positive estimates for the random slope) tended to have lower IIV (i.e. a higher

estimate for log(60)).

DISCUSSION

We have shown that I1V in a visit-to-visit test of episodic memory in older English adults
participating in the English Longitudinal Study of Ageing (ELSA) changed across age, seX,

education, the number of difficulties with activities of daily living (ADLS), cohort, and reported
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challenges when performing the test. We simultaneously estimated 11V alongside the average per-
trial probability in a mixed-effects location scale (MELS) beta-binomial model, finding that people
with a higher probability of recalling words correctly tended to have lower 11V, and those with a

more gradual decline in mean performance over time also tended to have lower I1V.

Our finding that 11V in the word recall test increased with age, whilst the probability of correctly
recalling words decreased with age, on average, is characteristic of studies of cognitive functioning
in advanced years, as reviewed in MacDonald et al., for example, who further discuss potential
neural mechanisms underlying these age-related changes in 11V [10]. In addition, earlier analyses of
the ELSA cohort have similarly found a faster average rate of decline in average word recall test
performance at older ages [33, 34]. Higher mean memory performance in later cohorts, as we found,
has also previously been reported in ELSA, and related to phenomena such as the Flynn effect [34],

although we additionally found 11V to be greater in later cohorts too.

Our results also indicated that the greater the number of difficulties participants had with ADLs, the
greater their 11V in memory test performance, on average, and the lower their probability of correctly
recalling words too. The ability to perform ADLSs is associated with cognitive, motor and perceptual
functioning [35], and predicts mortality and morbidity [36, 37]: e.g. Fauth et al. found ADL
disability predicted future dementia after controlling for baseline global cognitive status and other
known risk factors [38]. Whilst we are not aware of any studies of 11V in cognitive performance and
ADL functioning in older groups specifically, there have been studies of this association in other
populations. For example, greater 11V as indexed by cognitive dispersion has been found to predict
poorer functioning in basic ADLs in HIV-seropositive individuals without HIV-associated

neurocognitive disorders [39].
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We also found that lower educational levels were associated with greater I1V. In a study of within-
occasion reaction time 11V in cognitive tests, Christensen et al. also found participants with fewer
years of education had, on average, greater 11V [40]. Our results also indicated that, on average,
lower educational levels predicted lower mean performance, mirroring the results of an earlier
analysis of the same word recall test, using ELSA and the American Health and Retirement Study

[41].

When interviewers indicated there were issues which may have affected the cognitive tests, then the
probability of recalling words correctly was lower, on average, and 11V was greater. As Figure 3
indicates, this association was relatively large, and so test reliability is likely to be particularly low
when such circumstances are reported, thus for researchers it is crucial to record any difficulties and

take this into account in analyses.

We found people with a higher estimated probability of answering correctly at the sample mean age
of 70.5 years (random intercept for p) had, on average, lower 11V (random intercept for log(6)).
Indeed, greater 1V in cognitive functioning has been previously found to typically predict lower
mean scores [10]. This was also true at the population level for some of the covariates: for age, ADL
functioning, education, and interviewer-recorded issues with cognitive tests, for instance, values of
covariates which predicted higher 11V also tended to predict lower mean test performance.
Sometimes, however, the converse was true: for example, whilst females were estimated to have
higher mean memory score than males, their 11V was, on average, greater. With regard to the
association of sex with mean performance, this concurs with Zaninotto et al., who also found
females in the ELSA cohort to have a higher mean memory test score than males, with no

moderating effect of age [33], although less explicit attention has been paid to the estimated effects
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of sex on 11V in memory-based tasks (cf. reaction time tasks, where females typically found to have
greater 11V than males throughout adulthood) [42-44]. Similarly, whilst later cohorts were estimated
to have a higher probability of correctly recalling words, their 11V was estimated to be greater too.
This points to the utility of estimating the location (average per-trial probability, in our case) and
scale (11V) of repeatedly-measured cognitive tests: estimating quantities which are, to an extent,
orthogonal, with each providing uniquely informative streams of information concerning underlying
constructs of interest. We also found that those estimated to have poorer episodic memory at the
sample mean age of 70.5 years experienced, on average, a faster rate of decline in memory,
concurring with a latent group analysis of this outcome in ELSA participants aged 65-79 conducted
by Olaya et al. [45]. In addition, our results indicated that those whose mean performance declined
less steeply had, on average, lower I1V. At the individual-level, then, there tends to be a clustering

together of higher mean performance, more gradual mean decline and lower IV, and vice versa.

This study has several strengths. The ELSA cohort is designed to be representative of the older-
aged English population, with comparisons of sociodemographic data with that from the national
census suggesting this is broadly the case, and with further refreshment cohorts bolstering the
representation of ages which attenuate with time [23]. By employing a MELS model, we were
able to investigate the association of both time-varying and invariant factors with 11V, an
opportunity lost if instead deriving an individual-level summary statistic for I11\VV. A MELS model
also adjusts for sampling variability [18], unlike methods which do not allow the within-
individual sample size to inform the estimate of 11V. In addition, by using a beta-binomial model
we have applied an analytical method appropriate to bounded discrete outcomes [19], avoiding

bias in estimates of IIV due to floor/ceiling effects [20].
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This study also has limitations, however. There is the possibility of bias due to selection into the
study. Whilst ELSA is designed to be representative of the target population, as in any
longitudinal cohort there is attrition, and we additionally do not observe the outcome for people
responding by proxy (since the word recall test cannot be administered by proxy). If selection
into our analysis depends only on variables included in our models, such as age, sex, education,
difficulties with ADLs, interviewer-recorded issues with cognitive tests, cohort, and observed
values of the outcome, then our models will be unbiased. Having conditioned on these
covariates, if selection into our analysis depends on the outcome, however, then there may be
bias. Furthermore, we assume that the number of observations is independent of the underlying
risk of drop-out (due to death, for example), which may otherwise lead to bias. Whilst there has
been limited research into the issue of missing data in MELS models, it is an important issue
starting to receive attention [46], with the need for further work, including for non-Gaussian
outcomes, where the computational burden of methods designed to ameliorate bias is likely to be
considerable [47]. In addition, our estimate of 11V depends on the fit of the model for the
location (i.e. the linear predictor for average per-trial probability, p). The scientific significance
of the modelled dispersion (11V) parameter 6 therefore depends on the choice of covariates
included in the model for p, and also the extent of any measurement error they have (indeed, the
same would be true of any analytical approach investigating residual error around a model for
the location). We have chosen covariates which are, a priori, of interest, and have tried to keep a
balance between parsimony and detail, but nevertheless the dispersion parameter, 4, may include

variation which could be explained by a richer model for the location of the outcome.
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In summary, analysing a memory test conducted with older people in the ELSA cohort, we found
evidence of systematic differences in 11V, and also, having adjusted for those effects, evidence of
residual between-individual differences in I1V. This indicates that sampling protocols for cognitive
tests which rely on single, or just a few, measurement occasions to estimate mean groups differences
can be prone to considerable measurement error [10]. At the population-level, 11V in cognitive
functioning provided information which was orthogonal to mean performance, emphasising the
importance of explicitly modelling 11V, rather than treating it as just a nuisance. In this study of visit-
to-visit 11V, where measurements were made approximately every two years, inconsistency in task
performance could be the result of both shorter (e.g. within-week, day, hour, etc.), and longer (e.g.
over weeks or months), term changes in mean performance levels. Study designs which repeatedly-
measure cognitive functioning over a variety of timeframes (repeated ‘bursts’ of measurement)
would allow further characterisation of 11V over the shorter and longer term, which may
differentially map onto underlying constructs of interest [48, 49]. Our study adds to the
understanding of the factors associated with IV in cognitive functioning in older ages, providing
insights, beyond mean performance, into the biological mechanisms underlying differences in 11V,
and their role in predicting future outcomes [6, 10, 12]. Future research is needed to investigate the

impact of 11V on health and wellbeing.
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Figure 1. Predicted average per-trial probability (p) in the word recall test (with 95%

Credible Interval) across age.
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Figure 2. Estimated per-trial odds ratios (with 95% Credible Interval) for characteristics

modelled in the linear predictor for average per-trial probability (p) in the word recall test.

Issues affecting tests” L4
| | | |

0.75 1 1.25 1.5 1.75
Odds Ratio

0.77 (0.75, 0.79)

. Average
Characteristic . g
per-trial odds ratio
Cohort® e 1.16 (1.14, 1.18)
Female® ! - 1.24 (1.21,1.27)
Education® \
Secondary \ - 1.31 (1.28, 1.35)
HE ! --- 1.54 (1.50, 1.58)
ADL difficulties® o' 0.96 (0.95, 0.97)
i

@ The estimated average odds ratio for recalling a word correctly in the word recall test per 1 S.D. change in the predictor.

b For categorical predictors: the estimated average odds ratio for recalling a word correctly in the word recall test when
comparing the current category with the reference category. Reference categories as follows: Male (for Female); No

qualifications (for Education); No issues which may have affected cognitive tests recorded (for Issues affecting tests).

¢ The estimated average odds ratio for recalling a word correctly in the word recall test, for each additional difficulty reported

with activities of daily living.

19


https://doi.org/10.1101/2022.06.01.22275869
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2022.06.01.22275869; this version posted June 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Figure 3. Estimated associations (with 95% Credible Interval) of modelled characteristics

with 11V parameter (@; theta) in the word recall test.

Association with log(theta)

Characteristic Greater IV (dispersion)

< ) (dispersion parameter)
Age at survey® - -1.38 (-1.70, -1.08)
Cohort® - -1.01 (-1.32, -0.73)
Female® + ~0.41 (-0.74, -0.09)

Education® é
Secondary + 0.54 (0.18, 0.91)
HE E—O— 0.43 (0.03, 0.83)
ADL difficulties® . -0.25 (-0.35, -0.14)
Issues affecting tests® - E -2.76 (-3.13, -2.43)

I

| | | |
-4 -3 -2 -1 0 1
Estimated change in log(theta)
Note that smaller values of log(#) indicate greater dispersion (11V).
@ The estimated change in log(d) per 1 S.D. change in the predictor.

b The estimated change in log(6) when comparing the current category with the reference category. Reference categories as
follows: Male (for Female); No qualifications (for Education); No issues which may have affected cognitive tests recorded (for

Issues affecting tests).

¢ The estimated change in log(8), for each additional difficulty reported with activities of daily living.
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Table 1. Summary statistics at baseline for individuals included in the model, further

subdivided by whether they contribute data to every wave after becoming eligible for

inclusion or not.

Characteristic at baseline:* | Included in Included in model but | Included in model
I(n= t tribut t tribut t
Mean (SD) or Number of model (n do not contribute data | and contribute data
t ft t ft
individuals (%) 9,873) o every wave after o every wave after
becoming eligible for | becoming eligible
inclusion (n =5,421) | for inclusion (n =
4,452)
Age 70.5 (6.4) 73.1 (7.0) 67.3 (3.5)
Cohort, year turned 65
1971-1980 282 (2.9%) 278 (5.1%) 4 (0.1%)
1981-1990 1595 (16.2%) 1444 (26.6%) 151 (3.4%)
1991-2000 3058 (31.0%) 2098 (38.7%) 960 (21.6%)
2001-2010 3574 (36.2%) 1488 (27.4%) 2086 (46.9%)
2011-2020 1364 (13.8%) 113 (2.1%) 1251 (28.1%)
Sex
Male 4490 (45.5%) 2512 (46.3%) 1978 (44.4%)
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Female 5383 (54.5%) 2909 (53.7%) 2474 (55.6%)
Education

None 4731 (47.9%) 3223 (59.5%) 1508 (33.9%)

Secondary 2849 (28.9%) 1327 (24.5%) 1522 (34.2%)

Higher education

2293 (23.2%)

871 (16.1%)

1422 (31.9%)

Number of activities of

daily living performed with

difficulty®
0
3811 (85.6%)
7723 (78.2%) 3912 (72.2%)
1
375 (8.4%)
1158 (11.7%) 783 (14.4%)
2
160 (3.6%)
521 (5.3%) 361 (6.7%)
3
76 (1.7%)
292 (3.0%) 216 (4.0%)
4
24 (0.5%)
144 (1.5%) 120 (2.2%)
> 6 (0.1%)
35 (0.4%) 29 (0.5%)
Issues with cognitive tests®
No 8634 (87.5%) 4515 (83.3%) 4119 (92.5%)
Yes 1239 (12.5%) 906 (16.7%) 333 (7.5%)
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Word recall test 9.2 (3.7) 7.9 (3.6) 10.7 (3.2)

aWhere baseline is first wave included in the model for each individual.

b Sum of the activities of daily living (ADLs) with which participant reported any difficulty. ADLs include bathing, dressing,

eating, getting in/out of bed, walking across a room.

¢ Interviewers recorded any issues which may have affected the participant’s performance in the cognitive tests.
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