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Abstract

This paper presents a theoretical investigation of the spread of infectious diseases (including Covid-19) in a

population network. The central idea is that a population can actually be considered as a network of interlinked

nodes. The nodes represent the members of the population, the edges between the nodes the social contacts

linking 2 population members. Infections spread throughout the population along these network edges. The

actual spread of infections is described within the framework of the SIR compartmental model. Special

emphasis is laid on understanding and on the interpretation of phenomena in terms of concepts borrowed from

condensed-matter and statistical physics. To obtain a mathematical framework that deals with the influence

of the network structure and topology, the original SIR model by Kermack and McKendrick was augmented,

leading to a system of differential equations that is in principle exact, but the solution of which appears to be

intractable. Therefore, combined algebraic/numerical solutions are presented for simplified (approximative)

cases that nevertheless capture the essentials of the effect of the network details on the spread of an infection.

Solutions of this kind were successfully tested against the results of direct statistical simulations based on

Monte-Carlo methods, indicating the appropriateness of the model. Expressions for the (basic) reproduction

numbers in terms of the model parameters are presented, and justify some mild criticisms on the widely spread

interpretation of reproduction numbers as being the number of secondary infections due to a single active

infection. Throughout the entire paper, special attention is paid to the concept of herd-immunity, its nature

and its definition. The model allows for obtaining an exact (algebraic) criterion for the most relevant form of

herd-immunity to occur in unvaccinated populations. Analysis of the effects of vaccination leads to an even

more general version of this criterion in terms of not only the model parameters but also the effectiveness of the

vaccine(s) and the vaccination rate(s). This general criterion is also exact within the context of the SIR model.

Furthermore it is shown that the onset of herd-immunity can be considered as a 2nd-order phase transition

of the kind that is known from thermodynamics and statistical physics, thus offering a fundamentally new

viewpoint on the phenomenon. The role of percolation is highlighted and extensively investigated. It is shown

that the herd-immunity transition is actually related to a percolation transition, and marks therewith the

transition from a regime where the cumulative infections grow into a large macroscopic cluster that spans a

major part of the population, towards a regime were the cumulative infections only occur in smaller secondary

clusters of limited size. It appears that percolation phenomena become particularly important in the case

of (strict) lock-downs. It is also demonstrated how a system of differential equations can be obtained that

accounts for the presence of such percolation phenomena. The analyses presented in this paper also provide

insight in how various measures to prevent an epidemic spread of an infection work, how they can be optimised

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.22275842doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.06.01.22275842
http://creativecommons.org/licenses/by-nc-nd/4.0/


and what potentially deceptive issues have to be considered when such measures are either implemented or

scaled down. Herd-immunity appears to be a particularly tricky concept in this respect. Phenomena such as

a saturation of the cumulative infection number or a fade-out of the number of active infections may easily be

mistaken for a stable case of herd-immunity setting in, whereas in reality such phenomena may be no more

than an artefact of protective or contact-reducing measures taken, without any meaning for the vulnerability

of a population at large under normal (social) conditions. On the other hand, the paper also highlights and

explains the theoretical possibility of ”smothering” an epidemic via very restrictive measures that prevent it

from developing out of a limited number of initial seed-infections.
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Glossary of most common symbols

ss fraction/rate of susceptible nodes/population members

si active-infection rate

sr removed-infection rate

s cumulative rate of infections

s0 initial value of active infection rate

s0,b initial value of active infection rate in bulk the cluster

s0,c′ initial value of active infection rate in the secondary clusters

se final value (asymptotic) of cumulative infection rate

wi transmission probability

pi transmission rate/parameter/constant

pr constant of removal

nxy number of xy pairs (x, y = s, i, r)

ν number of contacts to a single node/population member

〈syx〉 average number of nodes of type y surrounding a node of type x (y, x = s, i, r)

fcn contact-frequency: number of contacts made per node per unit time

fcl contact-frequency: number of contacts made per link per unit time

fcp contact-frequency: number if contacts made per unit time throughout entire population

n number nodes/members in a population

n0 number of initial infections

ne final value of the number cumulative infections

ns number of susceptibles

ni number of active infections

nr number of removed infections

nb relative (total) size of bulk cluster(s)

ns,c′ relative total size of secondary clusters

asin expansion coefficient for nth term in series expansion of 〈ssi〉 (n = 0, 1, 2....)

aisn expansion coefficient for nth term in series expansion of 〈sis〉 (n = 0, 1, 2....)

R reproduction number

R0 basic reproduction number

s1,2,3 roots of 3rd order polynomial approximation of 〈ssi〉
s± roots of 2nd order polynomial approximation of 〈ssi〉, or 3rd order of 〈sis〉
t time

N integer, scales the size of squares representing/enclosing a social bubble (size: 2N + 1× 2N + 1)

ξ0 relative reduction of social-bubble size at t = 0

ξe relative reduction of social-bubble size for t→∞
ε effectiveness of vaccine

ξv, xv vaccination rate, relative reduction of social-bubble size as a result of vaccination
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xc percolation threshold

ξ correlation length

Sc, Sc′ cluster size (number of nodes/members)

S0, Sb size of the bulk cluster (number of nodes/members)

Sc, Sc′ relative cluster size (number of nodes/members)

S0 relative size of the bulk cluster (number of nodes/members)

Sc′ expectation value of relative total size of secondary clusters

Ac cluster area
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0. Introduction

The Covid-19 pandemic has spurred an enormous scientific interest in the spread of infective

diseases and in the evolution op epidemic outbreaks of such diseases. For a long time these

subjects had only appealed to a limited group of researchers, and the overall scientific output

dealing with them had been somewhat on the modest side. Possibly responsible for this

is (in part) the enormous progress in medicine, especially during the second half of 20th

century, which has provided mankind with effective treatments and prophylactics against a

wide variety of severe infections. Large-scale epidemic or even pandemic spread of dangerous

pathogens, without a cure being available, was considered a thing of the past by many. The

Covid-19 outbreak has shattered this wide-spread illusion in a most dramatic way.

Another reason for the somewhat limited interest in the subject of epidemic infection out-

breaks is the nature of the subject itself, which, at a closer look, is one of (at least) substantial

complexity. This complexity makes it a highly non-trivial exercise to capture even the most

elementary features of the phenomenon in simple mathematical formulas that can be dealt

with by algebraic methods alone. Even one of the earlier, and still frequently used, models

for the spread of infectious diseases, known as the SIR model and proposed by Kermack and

McKendrick [1], leads to a set of differential equations that does not allow for an algebraic

solution except in the simplest of cases. However, it deals with some essential elements of an

epidemic by parting the population in 3 categories of population members: susceptibles (S)

that have not been infected but which are vulnerable to infection, active infections (I) spread-

ing the infection via transmission to susceptible, and removed infections (R) representing

those members that have been infected but who are no longer infectious (able to spread the

infection). In its mathematical form introduced by Kermack and McKendrick, to be referred

to as the standard SIR-model hereafter, the model is able to reproduce some remarkable fea-

tures of epidemics like for instance the fact (often observed in real outbreaks) that no matter

how easily transmitted the pathogen involved may be, a finite part of a population that falls

victim to an epidemic will always remain uninfected (i.e. susceptible). Infection removal

turns out to be responsible for this observation. Only when infections are not removed, and

each active infection in a population will remain an active infection indefinitely, the entire

population gets infected in the end. However, also the fact that not only the standard SIR

model but also its extended versions require numerical techniques and, depending on the

complexity of a particular model, quite the necessary computational power (CPU-time), is

a reason to be considered for the fact that mathematical epidemiology is a field with quite

some unexplored territories. Only during the last two decades or so, computational power

previously only available from main-frame of super computers has become readily available to

a wide community of researchers (and some problems in mathematical epidemiology simply

do require that power).

Some characteristics of epidemic growth of infections are not dealt with by the standard

SIR-model however. When we look closer at the concept of a population from an epidemio-
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logical perspective, it is clear that a population actually represents a network of population

members (nodes in mathematical terms), with each member being either in contact or in-

volved in some other kind of ”interaction” with other members (nodes) in the population.

The standard SIR-model does not account for this network structure. It is obvious however,

that this network structure is likely to have an influence on the propagation of an infection

through a population. In physical systems consisting of networks or showing network-like

structures (such as crystal lattices, porous media, electric circuits etc.), effects related specif-

ically to the network characteristics of the system are not only common but, actually, the

rule. There is no reason to assume that population networks will make an exception in this

respect, especially not in the context of infection propagation. In fact, the spread of an in-

fection through a population lattice can be perceived as a physical process analogous to the

flow of a liquid trough a porous medium, or to the (macroscopic) polarisation of spins on a

lattice or network under the influence of the (microscopic) interactions between the individual

spins (for which the Ising model, which we will encounter more than once throughout this

paper, represents the simplest case [2]). The standard SIR model, however, treats the spread

of infectious diseases in terms of an analogue of the so-called mean-field approaches used in

physics to describe systems with collective interactions. The environment of the population

members (nodes) of a specific type (S, I or R) is considered the same for all members of the

type and equal to some average over all the members of that type. Local fluctuations and

lattice effects are averaged out. This yields a fair approximation in some cases, but generally

leads to quantitative and, possibly, even qualitative differences from the exact behaviour of

an infection in a given population and for given parameters.

An important phenomenon directly related to physical systems with a network structure

is percolation (for a good introduction to the subject see [3]). Percolation becomes relevant

when larger numbers of nodes in a network are removed (either randomly or according to

some spatial distribution function), or become ”inert” in the sense that they can no longer

pass-on an interaction of some kind. Examples are the removal of spins on an Ising lattice,

the replacement of magnetic atoms or ions by non magnetic ones in real magnetic systems, or

the removal of joints in a network of resistors. The essence of percolation is the formation of a

single macroscopic cluster of ”active” or non-removed nodes that spans throughout the entire

population, having a size of the same order of magnitude as the size of the population. Such

a cluster is formed when the number of removed or ”inert” nodes is sufficiently low. In cases

where there are no nodes removed at all, the cluster becomes identical with the population.

When a large enough number of nodes is (randomly) removed however, the macroscopic

cluster starts breaking up into many smaller isolated clusters, until at some critical value of

the removal rate the macroscopic cluster vanishes completely, leaving only so-called secondary

clusters of ”microscopic” size. The latter is referred to as the percolation transition, which

has all the characteristics of a real phase transition from the viewpoint of statistical physics,

including universality, scaling laws and critical exponents. Percolation transitions have a

huge impact on the properties of real systems. In magnetic systems for instance, they relate

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.22275842doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.01.22275842
http://creativecommons.org/licenses/by-nc-nd/4.0/


to a collapse of the magnetic order (magnetisation), whereas in resistor networks they are

accompanied by a notable increase in the equivalent resistance of the network. It may be

obvious that, by their very nature, percolation phenomena may also play a role in the spread

of infectious diseases. Their is a conceptual similarity for instance between the (random)

replacement of magnetic atoms in a solid by non-magnetic ones and (random) vaccination

of susceptible members of a population network. Vaccination with a vaccine that provides

full immunity against infection turns a susceptible member of a population into an ”inert”

member that will not only remain uninfected but, inherently, will also not be able to pass on an

infection to another member. The relevance of percolation to the problem of epidemic growth

of infections is clear therewith. Despite this, the role of percolation in an epidemiological

context has not been investigated extensively. Of the first notable research efforts dealing

with the issue (like for instance [4]) a significant part has been presented only quite recently.

One of the reasons for this must be sought in the fact that it is notoriously difficult to capture

the essence as well as the complexity of percolation phenomena in mathematical formulas:

easy as they are to visualise, describing them in mathematical terms is an entirely different

matter. Therefore, computer simulations are the most widely used tool for investigating

percolation. Monte-Carlo techniques provide a very useful (and frequently deployed) method

in this respect [5], since these techniques can simulate the actual process of (random) node-

removal and, where appropriate, its evolution with time. They also allow for a comprehensive

evaluation of results. However, a disadvantage of Monte-Carlo methods is that they require

(very) substantial computational efforts for achieving meaningful results and, correspondingly,

a lot of CPU time compared to many other computational exercises. Hence, it was only after

(relatively) fast and powerful computing facilities had become readily available on a thus

far unprecedented scale during the last few decades, that the possibility of actually using

Monte-Carlo techniques became easily accessible to a wider scientific audience. It is therefore

not unsurprising that, until very recently, the role of percolation in the epidemic spread of

infections has attracted only a relatively modest level of attention by the scientific community.

Another issue with Monte-Carlo simulations is that the results they generate do not readily

provide theoretical insight into the simulated phenomenon. They are experiments in their own

right, carried out on a computer instead of in a laboratory, but nevertheless they often require

further analysis in the same way data obtained in the real world need to be analysed before

they make sense.

The first aim of this paper is to deal with the aforementioned shortcomings of the standard

SIR-model, and to incorporate the network structure of the population into a more general

model. Such a model should thus account for lattice correlations as well as percolation effects.

The partition of the population in susceptibles, active infections and removed infections is

maintained. Only a 4th partition is introduced as an option, consisting of vaccinated popula-

tion members who are (partially) immune to infection. However, the purpose of the model is

insight, not numbers1. It consist of a mathematical framework that incorporates the influence

1A variation on the famous sentence by Richard Hamming: ”The purpose of scientific computing is insight,

not numbers”.
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of the network structure through expansion of key physical quantities as a (Taylor) series in

the number of cumulative infections. These series expansions replace their simplified (linear)

counterparts in the differential equations of the standard SIR-model. This approach leads

to formulas which are exact, but only in a strictly formal sense, since the coefficients in the

series expansions cannot be calculated ”ab initio” in the majority of the cases of interest.

Therefore, the framework is less suitable for making accurate predictions on how an existing

epidemic in the real world will develop (the results presented in this paper make clear how-

ever that such predictions are generally highly problematic anyway). Nevertheless, valuable

insights can be obtained on the basis of the model, as well as (qualitative) rules of thumb

that can be of use during efforts to bring an actual epidemic under control. The model is

extensively tested against data provided by Monte-Carlo simulations for both vaccinated and

unvaccinated populations.

Another phenomenon addressed extensively in this paper is herd-immunity. A concept first

mentioned in the literature by Potter [6] (following his experience as a veterinarian during

an outbreak of the bacterial infection Brucella Abortus among cattle), herd-immunity has

been a slippery subject ever since. In fact, the concept of herd-immunity is not even well-

defined [7]. Within the scientific community there are many definitions circulating. One of

the most prominent ones defines herd-immunity as the stage in the evolution of an epidemic

where the number of active infections has reached its peak, after which it is dropping down to

eventually fade-out. However, the fact that the active infection rate drops does not imply an

immediate return to normality. The transmission of the infection to susceptible population

members will still go on for a while and new infections will continue to emerge. Another

definition of herd-immunity, one that resonates more with intuition, is in a more literal sense

and is obtained when we define herd-immunity as the stage in the evolution of an epidemic

where the number of active infections has become almost negligible, leaving a population

immune to new major (epidemic) outbreaks of the pathogen involved under all circumstances.

It is obvious that these 2 definitions are conceptually related, and therefore probably also

relate to the same underlying mechanisms, thus illustrating the confusion that surrounds

the concept of herd-immunity. As to the underlying mechanisms there is some confusion as

well. In the standard SIR-model, herd-immunity (no matter which definition is used of the

2 definitions mentioned) is a direct result of infection removal. However, the achievement of

herd-immunity is often illustrated/explained in a pictorial way on the basis of a (partially

immunised) population network in which (fully) immunised members block the routes of the

infection towards susceptible members of the population, thus ”screening” them from active

infections. Obviously the mechanisms leading to herd-immunity are not entirely clear as well,

or at least the subject of ambiguity. It does even occur that in the same paper results from

the standard SIR-model are quoted (for instance to calculate the herd-immunity threshold),

whereas an explanation of herd-immunity is given in terms of the aforementioned pictorial

scheme (see [8] for example). An additional aim of this paper is therefore to bring some

clarity in these issues. The inclusion, also presented in this paper, of the network-structure
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of populations and percolation effects into a generalised SIR-model seems to provide an ideal

foundation for such an effort.

Another central aspect of mathematical epidemiology are reproduction numbers, among

which the basic reproduction number R0 has a special status. Reproduction numbers are

usually defined as the total number of secondary infections that a single active infection

generates from a given moment in time onwards. The basic reproduction number R0 is a

special case here, and represents the total number of secondary infections generated by a

single active infection present at the start of an outbreak (t = 0). In practice, estimates for

reproduction numbers are calculated in many different ways. However, a closer inspection

shows that very often such calculations are in fact approximations based on a rather crude

translation of the actual concept of reproduction numbers, as it is defined, into an algebraic

expression in terms of the parameters of an underlying epidemiological model (such as the

SIR-model). For instance, the expression for R0 on the basis of the standard SIR-model is

very often written as R0 = pi/pr, where pi and pr are the central parameters of the SIR-model,

namely the transmission rate (pi) and the rate of removal, or constant of removal (pr). The

reasoning thereby is that τ = 1/pr represents the average lifetime of an active infection (pr

has dimension 1/time) and that with a transmission rate pi (which also has dimension 1/time)

the total number of infections generated during the lifetime of an active infection present at

t = 0 is simply given by R0 = τpi = pi/pr. But what is entirely ignored here is that the

number of susceptibles is not a constant during the lifetime of an active infection and may

even vary substantially when pr is small (i.e. τ is large) relative to pi. Since the (temporal)

values of reproduction numbers are often considered as indicators for herd-immunity (for

instance, the herd-immunity threshold obtained on the basis of the standard SIR-model is

often expressed as 1 − 1/R0) a more detailed discussion about them seems inevitable in the

context of this paper. The aim is to clarify how exact, non-approximative, expressions for

reproduction numbers can be given on the basis of the generalised SIR-model presented here,

as well as to see whether (and how) the network structure of a population has an effect

on reproduction numbers generally, and what the precise relation is between reproduction

numbers and herd-immunity.

This paper is primarily written with a readership consisting of physicists and (mathemat-

ical) epidemiologists in mind. In line with this objective, much emphasis is laid on analogies

between epidemiological phenomena and phenomena in physics. Concepts and notions bor-

rowed from statistical and condensed matter physics make their appearance regularly (though

this may not be mentioned explicitly on every occasion). The issues dealt with are addressed

therewith from a physics perspective, with the aim of providing a wider viewpoint on a the

spread of infectious diseases, a topic that not only gained an enormous (instant) relevance

when the Covid-19 pandemic broke out, but which will remain of importance in times still to

come.

The general outline of the paper is as follows. Chapter 1 presents the generalised SIR-

model that accounts for network-effects and local fluctuations. Chapter 2 deals with repro-
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duction numbers and their interpretation. Semi-algebraic solution methods for 3 relevant

approximative examples of the basic differential equations of the generalised SIR-model (pre-

sented in chapter 1) are discussed in chapter 3. In chapter 4 the generalised SIR-model is

tested against to results of Monte-Carlo simulations of epidemic outbreaks in an SIR context.

Chapter 5 deals with properties and consequences of the model, and with several important

insights obtained from it that lay the basis for the more detailed discussion of herd-immunity

presented in the next chapter. Chapter 6 is entirely devoted to herd-immunity. It addresses

the general mechanisms responsible for herd-immunity, the definition of herd-immunity and

the herd-immunity threshold. As a logical follow up of chapter 6, chapter 7 deals with vac-

cination and vaccine-acquired herd-immunity. Finally, chapter 8 gives an in-depth account

of the role of percolation effects in the spread of infectious diseases and establishes an inter-

esting link between herd-immunity transitions and phase transitions as they are known from

statistical physics. It is also shown how the generalised SIR model presented in chapter 1 is

able to account for these percolation effects.
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1. SIR-model with network correlations and local fluctuations

We represent the population in which the epidemic is spreading as a network (or lattice) of

nodes (lattice points) connected by links (lattice bonds) to other nodes in the network (see

fig. 1). The nodes represent the individuals belonging to the population, links connecting 2

nodes the social interaction between the individuals represented by the nodes. As such, the

multiple of links connecting a single node to other nodes in the network can be seen as the

social network of the individual represented by the central node. It is along these links that

the infection is transmitted and the epidemic spreads.

Even the analysis of relatively simple networks and lattices is, in general, a complicated

matter however. In most cases, many typical phenomena that may take place in a network,

such as cluster-formation and percolation-transitions, defy an exact (algebraic) treatment,

and their full analysis requires numerical methods or even rigorous computer-simulations.

The purpose of this section however, is to capture some of the essential features of the spread

of an epidemic in a phenomenological algebraic model that offers not only the possibility

to obtain semi-quantitative results but, above all, more insight into the mechanisms and

phenomena involved.

Following the standard SIR-model [1], we assume 3 ”types” of individuals or nodes: s)

susceptible ones (uninfected but vulnerable to infection via social contacts), i) infectious ones

(active, transmissible infections), and r) removed infections, that relate to individuals that

have either recovered from an infection and acquired (indefinite) full immunity, or individuals

that have succumbed to an infection (unlike in real life, there is no difference between these

two possibilities from a strictly mathematical viewpoint). To avoid unnecessary complications

we assume that each individual keeps contact with the same number ν of other individuals in

the population. That is, each node is connected via links to an equal number of other nodes

in the network.

As soon as the first active infections occur in the population (either by having been ”im-

ported” from outside the population or by any other feasible mechanism) and the epidemic

starts spreading, the respective population-fractions ss, si, sr of respectively susceptible, in-

fected and removed nodes/individuals start to evolve with time. However, it is easy to see

that, by definition:

ss + si + sr = 1 (1.1)

The standard SIR-model is entirely centred around these quantities ss, si, sr and is based

on viewpoints similar to those underlying the mean-field descriptions of thermodynamic phase

transitions. Local fluctuations in the environments (social networks) of the individual nodes

are neglected (in fact even ignored). The environment of a node (i.e. the nodes linked to a

particular node) is supposed to be homogeneous, with each node in the environment being of

type s, i, or r with a probability given by ss, si, sr respectively.
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Fig. 1.1: Schematic representation of a population network. There are 3 types of nodes:

susceptibles (◦), active infections (•), removed infections (⊗). The dashed square symbolises

the social network of the node in the center (central grey dot).

With pi representing the rate of transmission of infection (per active infection and per

susceptible individual) and pr the rate of infection-removal, the following coupled set of (non-

) linear differential equations describes the time-evolution of the epidemic in the SIR-model:

ṡi = pi si ss − ṡr (1.2)

ṡs = − pi si ss (1.3)

ṡr = pr si (1.4)

where the dotted symbols represent the time-derivatives. We now introduce the cumulative

number of infections at a given time:

s = si + sr (1.5)

in terms of which ss can be expressed (via (1.1)) as ss = 1 − s, so that by also using eq.

(1.4) we can rewrite eqs. (1.2) and (1.3) as:

ṡi = pi si (1− s) − pr si (1.6)

ṡ = pi si (1− s) (1.7)

The rationale behind the term pi si ss = pi si (1−s) is that a fraction si of the population is

infected and that each individual contacted by an infected person is susceptible to transmission
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with equal probability ss (the fraction of susceptible individuals among the total population).

It is mainly in this particular Ansatz that the analogy between mean-field methods in the

theory of thermodynamic phase transitions and the SIR-model is rooted (for a brief outline

of mean-field methods see [2] for instance). However, it is well known that such an approach

does not come without significant shortcomings, even in a qualitative sense. Not only the local

fluctuations are ignored, but also the correlations that exist between probabilities of finding

individual nodes linked to nodes of a certain type. Such correlations nearly always arise

and depend on the particular geometry and topology of the lattice or network (the number

of surrounding nodes to which each particular node is linked (ν) plays a crucial role in this

respect for instance). This is particularly important in the context of percolation-phenomena,

which can be seen as a useful paradigm for understanding group- or herd-immunity (as we

will see later on).

To obtain an approach that, at least in a formal sense, takes account of local fluctuations

and the above-mentioned correlations, we focus on the different type of links (or pairs of

nodes) that can be identified in the network. We have links connecting an active infection (i)

with a susceptible (s) node, links connecting an active infection with another active infection,

links connecting a susceptible node with a removed infection (r) and so on. When the epidemic

spreads, the total numbers of these links or pairs in the network (nxy, x, y = s, i, r) evolve with

time until a stationary (equilibrium) state is reached (marking the end of the epidemic). From

simple considerations (adopted from solid-state physics where they are applied to crystal-

lattices), the following relations between the numbers of pairs of each type and the number ν

of social contacts of an individual can be obtained:

2nii + nis + nir = nνsi (1.8)

2nss + nis + nsr = nνss (1.9)

2nrr + nir + nsr = nνsr (1.10)

where n represents the total number of nodes in the population/network. The idea here is

that each node is equally attributed to (divided among) the ν links connecting it to the other

nodes in the network. As such, a link connecting a node of type x (x = s, i, r) to a node of

type y (y = s, i, r) accounts for 1/ν of an x-type node and 1/ν of an y-type node (and when

x=y for 2/ν of an x-type node). Summing over all the links (which is equivalent to summing

over all the pairs of nodes connected via a (single) link) should yield the total number of s-,

i- and r-nodes in the network.

We number the nodes of each particular type x = s, i, r from 1 to nsx. Let νyx(lx) be the

number of nodes of type y = s, i, r linked to the lx-th node of type x.
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We introduce:

< syi > =
1

ni

∑
li

νyi(li) =
1

nsi

∑
li

νyi(li) (1.11)

< sys > =
1

ns

∑
ls

νys(ls) =
1

nss

∑
ls

νys(ls) (1.12)

< syr > =
1

nr

∑
lr

νyr(lr) =
1

nsr

∑
lr

νyr(lr) (1.13)

The < syx > represent the average number of y-type nodes linked to an x-type node (where

the average is taken over all the nodes of x-type in the network). It is easy to verify that when

x 6= y, the numbers of xy-links or pairs in the network are directly related to the averages

< syx > via:

nxy = nsx < syx > = nsy < sxy > (1.14)

and when y = x via:

nxx =
1

2
nsx < sxx > (1.15)

where the division by 2 corrects for double-counting x-nodes. By using these identities and

dividing out the nsx, eqs. (1.8), (1.9) and (1.10) can be rewritten for those cases where

si, ss, sr 6= 0 as:

< sii > + < ssi > + < sri >= ν (1.16)

< sss > + < sis > + < srs >= ν (1.17)

< srr > + < sir > + < ssr >= ν (1.18)

a result not too surprising in itself.

Transmission of infection may take place only upon contact between individuals with an

active infection (i) and a susceptible person (s), i.e. between i-type and s-type nodes in

the network (forming an i-s pair). The rate of transmission is therefore proportional to the

number of i-s pairs nis and can be expressed as:

ṡ =
p′inis
n

(1.19)
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which may serve as a replacement for eq. (1.7), whereas the rate of change of the active

infections can be written as:

ṡi =
p′inis
n
− pr si (1.20)

to replace eq. (1.6). The parameter p′i is the rate of transmission per i-s pair. Using (1.11)

and (1.14) we can rewrite (1.19) as:

ṡ = (p′i/n)
∑
li

νsi(li) = p′isi < ssi > (1.21)

and (1.20) as:

ṡi = p′isi < ssi > − prsi (1.22)

It is worth noticing that (1.21) and (1.22) are in fact exact results for infinitely large

populations and finite si (and as such expected to apply also very well to finite yet sufficiently

large populations). They constitute an exact generalisation of the standard SIR-model that

accounts, at least in principle, for fluctuations and for correlations arising from to the typical

network-structure of the population.

To demonstrate how the master-equations (1.6) and (1.7) of the standard SIR-model relate

to their generalisation in the form of (1.21) and (1.22) it is useful to focus more closely on

the parameters pi and p′i and to express them in terms of other relevant parameters. For that

purpose we introduce the frequency fcn, which stands for the number of contacts made per

node (or individual) per unit of time, as well as the transmission probability wi, which is the

probability that the infection is passed on from one person to another upon contact. It is

easy to see from its definition implied by (1.6) and (1.7) that:

pi = wifcn (1.23)

so that the normalised rate of new infections in the standard SIR-model (eq. (1.7)) can be

reexpressed as:

ṡ = wifcn si (1− s) (1.24)

The total number of pairs (i.e. links) in the network is np = νn/2 (each node is connected

via ν links, each link is shared by 2 nodes). Now, let fcl be the number of contacts per unit

time made via a single link.
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The total number of contacts per unit time made throughout the entire population can now

be written straightforwardly as:

fcp =
νnfcl

2
(1.25)

and, since it is easy to see that fcn = νfcl, alternatively as:

fcp =
nfcn

2
(1.26)

Of all the np = νn/2 pairs (i.e. links) in the network, a fraction:

αsi =
nsi
np

=
2nsi
νn

(1.27)

consists of s− i pairs. For the number of s− i contacts per unit time we get:

fsi = αsifcp =
nsifcn
ν

(1.28)

Using this result, the normalised rate of new infections in our generalisation of the SIR-model

is now obtained as as:

ṡ =
wifsi
n

=
wifcnnsi
νn

(1.29)

which, since nsi/n = si ssi (see (1.11)), can be rewritten as:

ṡ =
wifcn si ssi

ν
(1.30)

Comparison of (1.21) and (1.30) shows that we can identify p′i as p′i = wifcn/ν = pi/ν

(which is in fact quite a logical result that also follows from the definition of wi and pi). In

addition we have from (1.16):

ssi = ν − ( sii + sri ) (1.31)

so that (1.30) can be reworked into:

ṡ = pisi
ssi
ν

= pisi

(
1− sii + sri

ν

)
(1.32)
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An alternative (but equivalent) expression for ṡ can be obtained by deploying the symmetry

relation (see (1.14)):

nsi = ni ssi = ns sis (1.33)

by which we can also write nsi/n as:

nsi/n = ss sis = (1− s) sis (1.34)

Substitution into (1.29) then yields (with wifcn/ν = pi/ν):

ṡ =
wi fcn (1− s) sis

ν
=

pi (1− s) sis
ν

(1.35)

And with sis written as (see eq. (1.17)):

sis = ν − ( sss + srs ) (1.36)

we thus obtain:

ṡ = pi (1− s)
(

1− sss + srs
ν

)
(1.37)

The differential equation relating sr to si remains unchanged in the presence of correlations

and is, as before, represented by (1.4). Comparison of (1.32) and eq. (1.7) thus shows that

extending the SIR-model by including correlations arising from the typical network structure

of the population implies (at least in a mathematical sense) in fact nothing more than replacing

the factor (1− s) in (1.7) by
(

1− ( sii + sri )
ν

)
, or the factor si by

(
1− ( sss + srs )

ν

)
. With

ṡ written as in either (1.32) or (1.37), we thus obtain 2 equivalent equations to replace (1.6),

respectively given by:

ṡi = pisi

(
1− sii + sri

ν

)
− prsi (1.38)

ṡi = pi(1− s)
(

1− sss + srs
ν

)
− prsi (1.39)

By arbitrarily combining one of the equations (1.32) and (1.37) with one of the equations

(1.38) and (1.39), we obtain a system of 2 ordinary differential equations by which (in prin-

ciple) the variation of s and si with time is defined (and indirectly, via (1.1) and (1.5), also

the variation of ss and sr). However, an actual solution of such a system requires the explicit

algebraic form of either sii and sri or sss and srs to be known. It is for that purpose
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that we seek an appropriate parameter in terms of which not only the si, ss and sr but also the

averages sxy (x, y = i, s, r) can be expressed. That is, we look for an independent quantity

in terms of which the entire problem can be parametrised. Strictly speaking, time (t) meets

that requirement, but is also an inappropriate/impossible choice since we actually want to

solve si, ss and sr for t. A proper choice however is s. Accounting for the cumulative number

of infections, s = s(t) can only increase with time. As a result, s(t) is a bijective function

of t (i.e. each t corresponds to a unique value of s). This implies that a parametrisation

of individual quantities in terms of only s is possible and, moreover, entirely equivalent to a

parametrisation of those quantities in terms of t (as such, s plays a role similar to that of the

state-variables in thermodynamic systems).

However, the task of finding a representation of the sxy in terms of s is a tough problem

bedevilled with difficulties that also arise in the analysis of Ising-problems (or lattice-problems

in general). Ironically, the root cause of these difficulties is actually the same thing that we

seek to incorporate into our present analysis, namely the lattice- or network correlations. They

very often prevent an easy systematic enumeration of the states of the system that correspond

to a specific value of a relevant state-variable (as a consequence, the exact solution to the 3D

Ising-problem is still an open issue for instance). A pragmatic way out of these difficulties is

to consider the exact sxy as series expansions in s:

sxy =

∞∑
k=0

axyk s
k (1.40)

to be truncated at will in practice, thus providing us with approximations for the sxy in the

form of finite-order polynomials in s.

We now assume a scenario where the initial number of active infections at the onset of

an epidemic is finite but almost negligible at the scale of the total population, so that si ≈ 0

at t = 0. We furthermore assume that no infections were present before the start of the

epidemic, so that there are no recovered and immune individuals at t = 0 and therefore

sr(0) = 0 (exactly). For such a situation, we can easily identify the expansion parameters asi0
and ais0 as asi0 = ν and ais0 = 0, so that (see, respectively, (1.31) and (1.36)):

ν − ( sii + sri ) = ssi = ν +

∞∑
k=1

asik s
k (1.41a)

ν − ( sss + srs ) = sis =

∞∑
k=1

asik s
k (1.41b)
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Substituting of (1.41a) for the terms in brackets respectively in (1.38) and (1.32) we get:

ṡi = pisi

1 +

∞∑
k=1

asik s
k

ν

 − prsi (1.42a)

ṡ = pisi

1 +

∞∑
k=1

asik s
k

ν

 (1.42b)

whereas substitution of (1.41b) for the terms in brackets in respectively (1.37) and (1.39)

yields:

ṡi = pi(1− s)
∞∑
k=1

aisk s
k

ν
− prsi (1.43a)

ṡ = pi(1− s)
∞∑
k=1

aisk s
k

ν
(1.43b)

As to the series expansions in (1.42a,b) it should be emphasized that only cases where

asi1 < 0 have relevance and ”physical” meaning, since generally 〈ssi〉 must decrease with

increasing s. This to hold, also when s << 1, specifically requires that asi1 < 0.

After truncation of terms of order > 3 in the series expansions in (1.42a,b) we have:

ṡi ≈ pisi

(
1 +

asi1
ν
s +

asi2
ν
s2 +

asi3
ν
s3

)
− prsi (1.44a)

ṡ ≈ pisi

(
1 +

asi1
ν
s +

asi2
ν
s2 +

asi3
ν
s3

)
(1.44b)

The prime purpose of truncating terms specifically of order > 3 here is that 3 is the largest

polynomial order that offers the possibility of a relatively simple analytical solution of (1.42a).

Another benefit is that it keeps the number of model-parameters within limits, while still

allowing for a fair to very good description of the exact s−dependence of ssi and ssi .

Eqs. (1.42a,b) and (1.44a,b) provide a most insightful example of how correlations and fluc-

tuations enter the mathematics of the problem and into the basic equations of the SIR-model.

Comparison with (1.6) and (1.7) shows that the inclusion of correlations and fluctuations into

the SIR-model comes down to nothing more than a replacement of the term (1− s) in (1.6)
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and (1.7) by a series expansion of the form (1 + asi1 s/ν + asi2 s
2/ν + asi3 s

3/ν + ...). Since the

expansion coefficients asik are generally expected to be functions of ν, the characteristics of the

population network (and more in particular the number ν of social contacts of an individual)

thereby enter the problem via the quotients asik /ν. Only if the coefficients asik were proportional

to ν, the influence of ν would cancel out against the ν-dependence of the asik . This is generally

not the case however, and it is therefore already, that the structures of social networks within

a population can be considered as a key factor in the evolution of an epidemic. This is in

itself not an entirely new or unexpected insight (in fact it provides the epistemic basis for all

practical measures limiting social contacts in order to bring outbreaks of infectious diseases

under control). The particular merit of eqs. (1.42a,b) and (1.44a,b) however is that they put

this already known viewpoint in simple mathematical terms that allow for a better under-

standing of the phenomena involved. It may be obvious that similar considerations also apply

to the expansion coefficients aisk and the quotients aisk /ν, and therefore also to eqs. (1.44a,b)

(for which truncation of terms of order > 3 has the same benefits as in the case of (1.42a,b)).
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2. Reproduction numbers

The main results from the model outlined in this paper primarily evolve around the parameters

pi and pr, with an additional role for the parameters accounting for the network structure of

the population. However, the dynamics of the spread of infectious diseases is often described

and analysed in terms of different key parameters: the (well-known) basic reproduction number

R0 [1] and the effective reproduction number R(t). These are defined, respectively, as the total

number of new active infections generated by a single active infection already in existence at

t = 0 , and as the total number of new active infections generated by a single active infection

counted from a moment in time t > 0 onwards. On the basis of the present model, expressions

for R0 and R can be given in direct accordance with these definitions.

Consider an ensemble of ni = n0 active infections at time t = t0. Due to infection- removal,

the ensemble decays over time according to ṅi = −prni so that for t ≥ t0:

ni(t) = n0 e
−pr(t−t0) (2.1)

where ni(t) represents the remaining number of active infections at an instant t. The (average)

total number of new infections generated after t = t0 by an infection active at t = t0 ≥ 0 is

thus given by:

R =
1

n0

∞�

t0

pi ni(t)
〈ssi(t)〉
ν

dt = pi

∞�

t0

e−pr(t−t0) 〈ssi(t)〉
ν

dt

which can be reexpressed as:

R = − pi
pr

∞�

t0

〈ssi(t)〉
ν

de−pr(t−t0) (2.2)

thus establishing the effective reproduction number R. Note that R number is time dependent :

R = R(t0).

Introducing:

Q = Q(t0, pi, pr, ν) ≡ −
∞�

t0

〈ssi(t)〉
ν

de−pr(t−t0) (2.3)

we can write the identity for R given by (2.2) as:

R = Q · pi
pr

(2.4)
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The factor Q accounts for the depletion of the reservoir of susceptibles that results from the

spread of the infection (i.e. the reduction of ss and therewith of 〈ssi〉 with increasing s(t)).

The basic reproduction number R0 can now be considered as the value for R in the special

case where t0 = 0 and Q = Q(0, pi, pr, ν) ≡ Q0. That is:

R0 = Q0 ·
pi
pr

(2.5)

In the literature, reproduction numbers are often linked to criteria for epidemic spreading

of an infection. For instance, it is often stated that an (exponential) increase in the number

of infections will emerge when R > 1 (R0 > 1 ), whereas the infection rates will decline and

fade-out when R < 1 (R0 < 1 ). To illustrate such criteria, a pictorial impression of epidemic

evolution is often presented, in which active infections pass on their infection to a total of R

susceptibles which, once infected themselves, pass on their infection to another R susceptibles

etc. The result is a ”tree” of infections, in which each infection forms a node (branch splitting)

from which its infection is passed on along a total of R outgoing branches, so that after N

generations (branch splittings) a total of RN infections can be (indirectly) assigned to a single

infection. Although quite illustrative and of considerable educational value, this picture is

not entirely correct however. For instance, it ignores the depletion, accounted for by Q,

of the reservoir of susceptibles upon progression of the epidemic. This depletion continues

to progress for t > t0 as well. As such, each generation of new infections will find less

susceptibles available to pass the infection on to than the previous generation. Therefore,

the frequently drawn image (for the purpose of explaining exponential growth of the number

of (cumulative) infections with time) of an infection tree with an equal R-related number of

branches ”growing” out of each infected node does not give a fully correct representation of

what actually happens. In chapter 5 we will see that, although often taken for granted, also

the condition R > 1 (R0 > 1) for epidemic growth of the number of infections requires serious

(re)consideration.
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3. Solving the differential equations

a) 3rd-order polynomial approximation of 〈ssi〉

Truncation of the terms of order >3 in the series expansions representing ssi in (1.42a,b)

has the advantage that the resulting set of ODE’s (1.44a,b) can be solved easily via partially

analytical methods. With ṡi = ṡ (∂si/∂s) we can rewrite (1.44a) as:

ṡ

(
∂si
∂s

)
= ṡ − prsi

which, upon writing (1.44b) as ṡ = si Pi(s), can be reworked into:(
∂si
∂s

)
= 1 − pr

Pi(s)
(3.1)

Substitution of the term in brackets in (1.44a) for Pi(s) subsequently yields:(
∂si
∂s

)
= 1 − νpr/pi

ν + asi1 s + asi2 s
2 + asi3 s

3

which we rewrite as: (
∂si
∂s

)
= 1 − νpr/a

si
3 pi

(s− s1)(s− s2)(s− s3)
(3.2)

with s1,2,3 representing the roots (real and complex) of the 3rd-order polynomial asi3 s
3 +

asi2 s
2 + asi1 s + ν = 0, which can be calculated exactly via the somewhat tedious algebraic

scheme of Cardano’s method (see, for instance, [1]). This scheme is easily implemented in a

computational procedure however. We rewrite the fraction on the right-hand side of (3.2) via

decomposition by parts:(
∂si
∂s

)
= 1 −

(
νpr
asi3 pi

)[
a

(s− s1)
+

b

(s− s2)
+

c

(s− s3)

]
(3.3)

where the a, b, c are readily obtained as:

a =
s3 − s2

s2s3(s3 − s2) + s1s3(s1 − s3) + s1s2(s2 − s1)
(3.4a)

b =
s1 − s3

s2s3(s3 − s2) + s1s3(s1 − s3) + s1s2(s2 − s1)
(3.4b)
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and:

c =
s2 − s1

s2s3(s3 − s2) + s1s3(s1 − s3) + s1s2(s2 − s1)
(3.4c)

Integration of (3.3) is straightforward:

si =

�
1 −

(
νpr
asi3 pi

)[
a

(s− s1)
+

b

(s− s2)
+

c

(s− s3)

]
ds

= s − νpr
asi3 pi

· log
(

(s− s1)a(s− s2)b(s− s3)c
)

+ C (3.5)

where the complex logarithm function is implicated, and C represents the constant of inte-

gration. The latter follows from the (initial) condition that si = s = s0 when t = 0:

C =
νpr
asi3 pi

· log
(

(s0 − s1)a(s0 − s2)b(s0 − s3)c
)

(3.6)

so that (3.5) can be rewritten as:

si = s − νpr

asi3 pi
· log

(
(s0 − s1)a(s0 − s2)b(s0 − s3)c

(s − s1)a(s − s2)b(s − s3)c

)
(3.7)

Via substitution of this result into (1.44b), the following non-linear ordinary differential equa-

tion for s as a function of t is obtained at last:

ṡ ≈ pi

(
1 +

asi1
ν
s +

asi2
ν
s2 +

asi3
ν
s3

)[
s − νpr

asi3 pi
· log

(
(s0 − s1)a(s0 − s2)b(s0 − s3)c

(s − s1)a(s − s2)b(s − s3)c

)]

(3.8)

which can only be solved numerically, thus finalising the solution of the system of ODE’s

given by (1.44a) and (1.44b).

b) 3rd-order polynomial approximation of 〈sis〉

When approximating 〈sis〉 via a series expansion up to 3rd order in s, we can obtain the

solution of the system of ODE’s that (1.43a) and (1.43b) therewith become along somewhat

similar lines.
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We have:

ṡ = pi(1− s)
〈sis〉
ν

= pi(1− s) ·
(ais1 s + ais2 s

2 + ais3 s
3)

ν
(3.9a)

or:

ṡ

s (1− s)(s− s+)(s− s−)
=

ais3 pi

ν
(3.9b)

where the s± represent the roots of ais3 s
2 + ais2 s + ais1 = 0. Via separation by parts and

some algebra we can write:

1

s (1− s)(s− s+)(s− s−)
=

a

s
+

c

1− s
+

c

s− s+

− d

s− s−
(3.10)

where:

a =
1

s+s−
b =

1

s+(1− s+)(1− s−)

c =
1

s+(1− s+)(s+ − s−)
d =

1

s−(1− s−)(s+ − s−)

(3.11)

Remember that ṡdt = ds since s is a ”state variable”. The solutions of the differential

equations (3.9a,b) are now easily obtained by substitution of (3.10) into:

�
ds

s (1− s)(s− s+)(s− s−)
=

ais3 pi t

ν
+ C (3.12)

yielding, apart from a constant of integration:

�
ds

s (1− s)(s− s+)(s− s−)
= log

{
sa

(1− s)b
· (s− s+)c

(s− s−)d

}
(3.13)

where, as in subsection a), the complex logarithm function is applied. Via substitution of

(3.11) for a, b, c, d into (3.13) we get, after some algebra:

log

s
1

s+s− ·
(

(s− s+)(1− s)−s2+
) 1
s+(1− s+)(s+ − s−)

·
(

(s− s−)(1− s)−s2−
) 1
s−(1− s−)(s− − s+)

 =
ais3 pi t

ν
+ C (3.14)
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The constant of integration C is determined by value s′ of s at some arbitrary time t = t′ > 0 :2

C =

log

s′
1

s+s− ·
(

(s′ − s+)(1− s′)−s2+
) 1
s+(1− s+)(s+ − s−)

·
(

(s′ − s−)(1− s′)−s2−
) 1
s−(1− s−)(s− − s+)

 − ais3 pi t
′

ν



(3.15)

Combining (3.14) and (3.15) we then obtain:

log


( s
s′

) 1
s+s− ·

(
(s− s+)(1− s)−s2+
(s′ − s+)(1− s′)−s2+

) 1
s+(1− s+)(s+ − s−)

·
(

(s− s−)(1− s)−s2−
(s′ − s−)(1− s′)−s2−

) 1
s−(1− s−)(s− − s+)

 =
ais3 pi (t− t′)

ν
(3.16)

Note that the argument of the logarithm is always real, for when one of the roots s± is complex,

the other one is its complex conjugate. Solving s(t) for given t directly from this equation

cannot be done via algebraic methods and requires a numerical procedure. However, the

entire s-t curve can be obtained straightforwardly by using (3.16) to calculate t as a function

of s and subsequently swap the axes. In principle, the parameters t′ and s′ can thereby be

chosen in an arbitrary way.

The remaining ODE for si, obtained by truncating terms of order > 3 in the series expan-

sion in (1.43a), reads:

ṡi = pi (1− s) ·
ais1 s + ais2 s

2 + ais3 s
3

ν
− prsi (3.17)

This equation must be solved via numerical integration under substitution of the appropriate

values for s(t) obtained on the basis of (3.16). This then concludes the solution of (1.43a)

and (1.43b) for this case.

2Taking an arbitrary moment in time instead of t = 0 as a reference for the calculation of the constant of

integration will be of use in chapter 7.
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c) 2nd-order polynomial approximation of 〈ssi〉

Truncation of the series expansion of 〈ssi〉 down to the terms of order ≤2 provides a

relatively simple approximative expression for si(s) that nevertheless contains a lot of the

essential features of exact si vs s relations, and thus provides an excellent ”toy-model” for

studying some of the fundamentals of the spread of infectious diseases through a population.

This case is basically the limiting case where asi3 → 0 in the 3rd-order expansion case discussed

under a).

With Pi(s) = pi(ν + asi1 s + asi2 s
2)/ν for this case, eq. (3.1) becomes:(

∂si
∂s

)
= 1 − νpr/pi

ν + asi1 s + asi2 s
2

(3.18)

which we rewrite as: (
∂si
∂s

)
= 1 − νpr/a

si
2 pi

(s− s+)(s− s−)
(3.19)

with s+ and s− representing the roots (real and complex) of the equation asi2 s
2 +asi1 s+ ν = 0,

as given by:

s± =
asi1
2asi2

(
−1 ±

√
1 − 4 ν asi2 / (asi1 )

2

)
(3.20)

which have the rather convenient property that s+s− is given by the very simple expression

s+s− = ν/asi2 , which will be of use later.

Eq. (3.19) can be rewritten as:(
∂si
∂s

)
= 1 −

(
νpr/a

si
2 pi

s+ − s−

)[
1

(s− s+)
− 1

(s− s−)

]
(3.21)

and its integration is straightforward:

si =

�
1 −

(
νpr/a

si
2 pi

s+ − s−

)[
1

(s− s+)
− 1

(s− s−)

]
ds

= s −
(
νpr/a

si
2 pi

s+ − s−

)
log

(
s− s+

s− s−

)
+ C (3.22)

with, again, the complex logarithm function used, and C the constant of integration. The

latter follows from the (initial) condition that si = s = s0 when t = 0.
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We have:

C =

(
νpr/a

si
2 pi

s+ − s−

)
log

(
s0 − s+

s0 − s−

)
(3.23)

so that (3.22) can be rewritten as:

si = s −
(
νpr/a

si
2 pi

s+ − s−

)
log

(
(s0 − s−) (s− s+)

(s0 − s+) (s− s−)

)
(3.24)

Using this result, the ODE for s in this case can then be integrated (which also requires a

numerical procedure as in the case for the 3rd-order approximation of 〈ssi〉 discussed under

a), thus concluding the solution of the set of coupled ODEs (1.42a,b) in the present approxi-

mation.

As a general remark, it should be mentioned that solutions for s(t) have ”physical” meaning

only for 0 ≤ s ≤ 1 , and when they describe a situation where ṡ ≥ 0, since (by definition) the

cumulative number of infections cannot decrease with time. As such, physical solutions are

confined to the specific interval of s-values where:

ṡ = pi si
〈ssi〉
ν

= pi (1− s)
〈sis〉
ν

> 0

that is, where:

〈ssi〉 ≡ asi3 s
3 + asi2 s

2 + asi1 s+ ν > 0 ∧ 〈sis〉 ≡ ais3 s
3 + ais2 s

2 + ais1 s > 0 (3.25)
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4. Simulations

The merits of the extension of the standard SIR-model presented in the previous chapters

(essentially consisting of the introduction of the series expansions (1.11),(1.12) and (1.13))

can be demonstrated very well on the basis of results from simulations of the spread (in an

SIR context) of infections through entire populations.

For the purpose of the aforementioned simulations, populations were considered in the

form of a 2-dimensional (2D) square lattice, each node of a lattice representing a population

member, while the edges of the lattice connect the nodes to their 4 nearest-neighbours con-

tacts. Contacts were not restricted to nearest-neighbour contacts only however. To simulate

the effects of a wider variety of restrictive social measures, nodes could also be considered

as being at the centre of a (2N + 1) × (2N + 1) square of nodes representing potential con-

tacts (note that there is always an even number of contacts to a single node in such cases).

The values of N could be chosen at will. The limit of N → ∞ was approximated through

a simulation where the contacts of a node were selected among all other members of the

population. Nodes could be labelled as either susceptible (S), infected (I) or removed (R),

in accordance with the SIR context chosen as the epidemiological model or setting. Periodic

boundary conditions were applied to guarantee that all nodes have a similar ”social bubble”,

i.e. an equal number of contact-links connected to it.

The spread of an infection through a population can basically be seen as a stochastic

process of a Markov type [1]. Such processes are particularly suited for simulations on the

basis of a Monte-Carlo scheme (see [2] p. 17ff). With code written in Fortran, the algorithm

used here was basically as follows. First of all, the population lattice is brought in its initial

state by labelling all population members (nodes) as susceptible (S), except for a fixed number

of randomly selected population members (nodes) that will be labelled as infected (I) and serve

as initial infections. Random selection of nodes is done by calculating their 2D coordinates

on the square lattice on the basis of 2 (pseudo-) random numbers provided by the build-in

random-number generator of the compiler. Then the simulation of the actual spread of the

infections through the population begins and proceeds in the following way. A member of the

population (node) is selected at random. Then a 2nd node is selected in the same way from

the nodes in the contact environment of the 1st node (that is, from the nodes linked to the

1st node as its possible contacts). If the 1st node is labelled infected (I) and the 2nd node is

susceptible (S), or vice versa, a pseudo-random random number r is generated and compared

to the transmission probability wi = pi/2 (chosen by the user as a constant). If r ≤ wi

the infection is passed on to the susceptible node by labelling it as infected as well (instead

of susceptible). For the purpose of simulating infection removal, another node (population

member) is then selected, again at random. If this node turns out to be labelled as infected, a

new random number r is generated and compared to the (user-defined) constant of infection

removal pr. If r ≤ pr , the node is relabelled as a removed infection (R). This entire procedure

of infection and subsequent removal is repeated a vast number of times.
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When such a procedure is applied to each population in a large ensemble of Ne populations

that are all in same state, an average number of Nt ≈ Ne pi si 〈ssi〉 of infections will be

transmitted, whereas an average total of Nr ≈ Np pr si active infections will be removed. It

is easy to see therewith that successive application of this procedure to a single population

simulates the process of infection and removal described by the master equations (1.38) and

(1.39).

The spread of the infection can be followed at arbitrary time scales by regularly monitoring

the status (S,I or R) of all nodes in the population. The unit of time is itself the subject

of a certain arbitrariness as well in this respect. In can be defined as corresponding to a

fixed but arbitrarily chosen number of successive contacts made. In the simulations presented

throughout this paper, the unit of time was taken such that it spans a number of contacts

equal to the number of nodes/members in the population. So, in a single unit of time each

member of the population makes exactly 1 contact on average.

Fig. 4.1 illustrates the results of a simulation for a case where pr = 0 and contacts of

the nodes were selected throughout the entire population. Every node is a potential contact

to every other node therewith. Such cases represent the equivalent of the so-called mean- or

molecular-field cases in the theory of (magnetic) phase transitions [3]. They are limiting
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Fig. 4.1: Number of cumulative infections nc as a function of time (main figure) and ṡ(s)

(inset) obtained from a simulation with node-contacts selected throughout the entire popula-

tion network (2D square lattice). Dashed/dotted curves: standard SIR-model. Parameters:

population size n = 20012, transmission probability wi = pi/2 = 0.5, decay/removal constant

pr = 0, number of initial infections n0 = 999.
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cases, for which the standard SIR-model represented by eqs. (1.6) and (1.7) is actually exact.

As such, they make an excellent test case to verify whether the simulation scheme described in

the above may be a useful validation tool for models that go beyond the standard SIR-model.

Simulations presented throughout this paper were generally carried out on population lat-

tices with a number of nodes typically in the order magnitude of 106. The data presented in

fig. 4.1 for instance where obtained from a simulation where the population was represented

by a 2001 × 2001 square lattice (i.e. n = 4004001 nodes). These are quite large population

population sizes indeed, which comes with the advantage that simulations become less prone

to the typical finite-size effects that often complicate the interpretation of Monte-Carlo simu-

lations for systems of relatively small size (see [2] p. 35ff). It should also be noted that such

population sizes are actually quite realistic. A 2001×2001 square lattice consists of a number

of nodes in the order of the size of the population of a country like Norway for example [4].

The simulation data presented in fig. 4.1 are in perfect agreement with the standard SIR-

model. The dashed curve in the main figure shows the cumulative number of infections vs.

time as obtained by solving eq. (1.7) for the same initial conditions and parameters used in

the simulation (i.e. n0 = 999 so that s0 = n0/n = 2.4950 · 10−4, pi = 2wi = 1, pr = 0). The

solutions of the standard SIR-model are given by a so-called logistic function [5] in this case:

s(t) = si(t) =
1

ae−pit + 1

where a = (1 − s0)/s0. The simulated data follow the dashed curve remarkably well, and

create confidence therewith in the adequacy of the implemented simulation scheme. An even

more significant match with the standard SIR-model can be observed in the variation of ṡ

vs. s shown in the inset of fig. 4.1. The standard SIR-model yields ṡ = pis(1 − s) for

pr = 0 (see eqs. (1.6) and (1.7)), which is represented by the dotted curve in the inset. The

datapoints (O) show ṡ as obtained from a numerical evaluation from the simulated data. The

(near) perfect agreement between the simulated data and the standard SIR-model is again

obvious. As such, we may conclude that the simulations provide very reliable data for this

case. It should also be noted in this respect that the large size of the populations used in

the simulations already seems to pay off in the absence of any visual stochastic noise in the

simulated data (which smoothly follow the dashed/dotted curves).

Simulations of cases where pr 6= 0 confirm the adequacy of the simulation scheme even

more. When contacts to a single node are again selected from the entire population, the

standard SIR-model applies to these cases as well. Figs. 4.2a/b show the results of simulations

for the same (initial) conditions as the results shown in fig. 4.1, except that pr = 0.5 instead

of pr = 0. Figs. 4.2a shows the simulated number of cumulative infections nc, and fig. 4.2b

the number of active infections ni = nsi , in both cases as a function of time. The dotted

curves represent the corresponding numerical solutions of the system of differential equations

(1.6) and (1.7) for respectively nc and ni (n.b. remind that nc = ns ni = nsi).
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(a) (b)

Fig. 4.2: Data obtained from a simulation with pr 6= 0 and node-contacts selected throughout

the entire population network (2D square lattice) for a): number of cumulative infections nc as

a function of time, and b): number of active infections as a function of time. Dotted curves:

standard SIR-model. Parameters: population size Np = 20012, transmission probability

wi = pi/2 = 0.5, decay/removal constant pr = 0.5, number of initial infections n0 = 999.

Fig. 4.3: Simulated data for ṡ/si (left vertical axis) and ṡi/si (right vertical axis), obtained

from the same simulations as the data in fig. 4.2. Dotted lines: standard SIR-model (i.e.

ṡ/si = pi(1 − s) and ṡi/si = pi(1 − s) = pr (extrapolated to s = 1)). Dashed vertical line

s = se: maximum s reached during the epidemic. Parameters: the same as for fig. 4.2.
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Due to the removal of active infections, not the entire population gets infected during the

epidemic in this case 3, and the cumulative number of infections will reach a final value

ne < n (see the dashed horizontal line in fig. 4.2a indicating n = 20012).

The simulated data in figs. 4.2a/b match the curves given by the standard SIR-model to

a high degree of accuracy. We may therefore conclude that not only the stochastic nature of

infection transmission, but also the stochastics of infection removal (decay) have been imple-

mented correctly and realistically in the simulation scheme. This is further corroborated by

fig. 4.3, which shows both ṡ/si and ṡi/si as a function of s, as derived on the basis of the data

presented in fig. 4.2a/b via a simple numerical evaluation of ṡ and ṡi (se = ne/n indicates

the maximum rate of cumulative infections reached). The data thus obtained agree very well

with the standard SIR-model (where ṡ/si = pi(1 − s) and ṡi/si = pi(1 − s) − pr): each set

of datapoints obviously follows the straight line that the standard SIR-model predicts for it,

especially for mid-range values of s. Only at the very edges of the s-interval that applies,

some stochastic noise becomes noticeable. This is due to the fact that both at the beginning

as well as at the end of any (real) epidemic, the number of active infections is relatively low

and therefore subject to (temporal) fluctuations. The fact that this phenomenon apparently

presents itself also in the simulation process deserves attention, since it does not reveal any

shortcomings in either the algorithms used in the simulation or their implementation. On the

contrary, it is rather to be considered as a realistic artefact of an appropriate simulation of

the stochastic processes involved in an actual epidemic.

However, as mentioned earlier, the standard SIR model is only a (mean-field like) approx-

imation. Its breakdown comes when the social bubble of the nodes is increasingly reduced

from an environment that spans the entire population (in which case the standard SIR model

is exact) to smaller environments that contain only a limited number of nodes serving as

contacts. This is clearly illustrated in figs. 4.4a/b, which respectively show 〈ssi〉 and 〈sis〉 as

a function of s for a series of simulations with pr = 0, so that the entire population becomes

infected in the end and s varies between 0 and 1 as a consequence. The contacts of each node

were selected from a (2N +1)× (2N +1) square of nodes surrounding it. For each simulation,

a different value of N was taken, so that the size of the social bubble of the nodes (given by

ν = (2N + 1)2− 1) differed per simulation. The values of N varied N = 2 to N = 16 (that is,

the size of social bubbles varied from 24 to 1088). The dotted lines 〈ssi〉 = 1− s in fig. 4.4a

and 〈sis〉 = s in fig. 4.4b represent the standard SIR model. The departure (with increasing

N (and ν)) in the behaviour of 〈ssi〉 and 〈sis〉 with s from the mean-field characteristics of the

standard SIR model cannot be missed. This observation strongly indicates that the incorpo-

ration of the influence of the structure of the social networks and the size of the social-bubbles

into the analysis is not merely an exercise, but rather a matter of plain necessity, and that

the standard SIR model has serious shortcomings in this respect.

3This phenomenon will be addressed extensively in Chapter 6
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Fig. 4.4: 〈ssi〉 (a) and 〈sis〉 (b) as a function of s, for a series of simulations with social

bubbles consisting of (2N + 1) × (2N + 1) squares with N = 16 (◦), N = 12 (�), N = 10

(4), N = 8 (�), N = 6 (5), N = 4 (♦), N = 2 (+). Parameters: population size n = 20012,

transmission probability wi = pi/2 = 0.5, decay/removal constant pr = 0, number of initial

infections n0 = 999.
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Fig. 4.5: 3rd-order polynomial fits (dashed curves) of data (solid curves) for 〈sis〉 vs s from

simulations with pr = 0 and N = 6, ν = 168 (a) and N = 10, ν = 440 (b). Other parameters:

the same as for fig. 4.2. Best-fitting values for ais1 , ais2 and ais3 indicated in each figure.
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The usefulness of the method, presented in chapter 1, of dealing with the network structure

via (truncated) series expansions in s for 〈ssi〉 and 〈sis〉 can be illustrated well by deriving

values of the expansion coefficients from the simulated data for either 〈ssi〉 or 〈sis〉, taking

these values as input for calculations of s as a function of time (t) (by solving either (1.42a,b)

or (143a,b)), and comparison of the results with the s− t-data obtained from the simulations.

It turns out that the variations of 〈sis〉 with s shown in fig. 4.4b can be described very well

by a 3rd-order polynomial of the type ais1 s + ais2 s
2 + ais3 s

3 for all cases simulated (note that

the standard SIR model is in fact a limiting case here with ais1 = 1, ais2 = 0, ais3 = 0). This

is clearly illustrated by fig. 4.5a and fig. 4.5b, in which the results of the best fits of the

expansion coefficients ais1 , ais2 , ais3 to the data for 〈sis〉 vs s obtained from the simulations

for N = 6 and N = 10 are shown as representative examples. It is easy to see that, with

the best-fitting values taken for ais1 , ais2 and ais3 , the 3rd-order polynomials (dashed curves)

describe the simulations (solid curves) to quite an acceptable level indeed. This is also true

for the other cases investigated in this respect (i.e. N = 1, 2...16). That the best-fitting

values for ais1 thus obtained provide by themselves an excellent reflection of the breakdown

of the standard SIR model deserves special attention here. Fig. 4.6 shows these values as a

function of ν (i.e the number of contacts per node ν or, equivalently, the social-bubble size).

For very large values of ν, the value of ais1 reaches towards its asymptotic value ais1 = 1 given

by the standard SIR model (which represents the limiting case for ν → ∞). In the lower

ν-regime however, the value of differs significantly from its mean-field value ais1 = 1, and upon

decreasing ν well below ν ≈ 300 there is actually a collapse that disqualifies the standard SIR

model even as an approximation in this regime of ν-values.
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Fig. 4.6: Variation of ais1 with ν
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Fig. 4.7: s vs t for pr = 0 and N = 2, 4, 6, 8, 10, 12. Dashed curves: fit. Dotted curves:

standard SIR model (not indicated for N = 12)
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When pr = 0 (and therefore si = s), the differential equations for si become identical

to those for s, so that, depending on whether we use an expansion for respectively 〈ssi〉 or

〈sis〉, we only have to solve either (1.42b) or (1.43b) to obtain s as a function of t. For

N = 12, 10, 8, 6, 4, 2 (ν = 624, 440, 288, 168, 80, 24), the variation of s with t was calculated

by numerically solving (1.43b) (see section 3b for details) for the best fitting values of ais1 ,

ais2 and ais3 for each N (as obtained from the previously mentioned fits of 〈sis〉 vs s). The

results are shown in figs. 6a-f. In each case, the marked datapoints represent the simulations

and the dashed curves the respective solutions of (1.43b). The dotted curves relate to the

results given by the standard SIR model for the particular set of parameters used here (i.e.

wi = pi/2 = 0.5, s0 = 2.4950 · 10−4). The agreement between the solutions of (1.43b) and the

simulated data is equally noticeable as the discrepancy that grows (with increasingN) between

them and the results from the standard SIR model. The significance of this observation is

twofold. One one hand it shows that the method of expressing 〈sis〉 as a series expansion in

s has its merit. On the other hand, it further corroborates our previous observations about

the inadequacies of the standard SIR model and the mean-field approach that underlies it.

When pr 6= 0 (so that si 6= s), we have to solve either both equations (1.42a) and (1.42b)

or both equations (1.43a) and (1.43b) simultaneously. Using 3rd-order polynomial approxi-

mations for 〈sis〉 vs s is not a viable option however. The reason is that 〈sis〉 drops sharply

towards zero upon approaching s = se (as a consequence of the removal of infections). At low

to intermediate values of s, 〈sis〉 may still be approximated well by a 3rd-order polynomial

as a function of s (as in the pr = 0 case), but the approach of s = se is accompanied by a

rather steep drop in 〈sis〉 towards zero (for an example see fig 4.8). The resulting functional

dependence of 〈sis〉 on s over the entire interval s0 ≤ s ≤ se can no longer be appropriately

described by a 3rd order polynomial in s, and using (1.43a,b) is therefore not an option.

Fortunately, the dependence of 〈ssi〉 on s does show the desired characteristics and can be

approximated fairly well in terms of a 3rd-order polynomial, at least for N - and ν-values not

too low (see fig. 8). We can
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Fig. 4.8: Variation of 〈ssi〉 and 〈sis〉 with s for wi = pi/2 = 0.5, pr = 0.25 and N = 10.
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therefore use (1.42a,b) to investigate the cases where pr 6= 0. Such cases are of particular

additional interest, since they offer an extra possibility to demonstrate the merits of expressing

〈ssi〉 or 〈sis〉 as series expansion in s, by showing that they not only allow for an accurate

reproduction of the simulated s − t curves (cumulative infections) but of the si − t curves

(active infections) as well. The procedure for this is conceptually similar to the one followed

in the above for the pr = 0 cases. We fit the simulated 〈ssi〉 vs s data with a polynomial

of the type 1 + asi1 s + asi2 s
2 + aso3 s

3 and take the best fitting values of the coefficients ais1 , ais2
and ais3 as input for solving the differential equations (1.42a,b) via the algebraic/numerical

method outlined in section 3a.

Fig. 4.9 shows the results obtained in this context for wi = pi/2 = 1, pr = 0.25 and

N = 12, 10, 8 (ν = 624, 440, 288). The graphs in the left column show the simulated data

(marked as grey circles) of si vs t, as well as the corresponding results obtained on the basis

of the standard SIR model for the parameters involved (solid curves). The graphs in the right

column show the same simulated data (also marked in grey) as in the graph to their left, but

then with the solution of (1.42a,b) (solid curve) for the values of ais1 , ais2 and ais3 best fitting

to the respective 〈ssi〉 vs s data obtained from the simulations. The left column shows again

a dramatic failure of the standard SIR model. In contrast, the column to the right shows an

excellent (N = 12) to still quite reasonable (N = 8) match between the simulated data and

the solutions of (1.42a,b). This includes the position of the maximum so dramatically and

consistently missed by the standard SIR model in the left column.

In case of the cumulative infection rate s vs t, the agreement between the simulated data

and the corresponding solutions of (142a,b) is even slightly better than in the case of the

active-infection rate si. This is clearly shown in fig. 4.10. The solutions of (142a,b) (solid

lines) follow the simulated data (markers) extremely well. We also see that with decreasing

N , the curves show a tendency to shift to the right along the t-axis. A similar tendency can

be observed in the curves for pr = 0 shown in fig. 4.7. This tendency can be understood as a

direct manifestation of network and correlation effects. For instance, when the social bubbles

become smaller, the relative decrease of the number of susceptibles that an active infection

has left in its bubble after transmitting its infection to one of its contacts becomes larger.

For smaller social bubbles, there is also an increased tendency towards the formation of small

clusters of active infections sharing parts of their social bubble with other active infections.

This typically leads to the kind of slow-down of the spread of the infection that we see in fig.

4.10. The solutions of (1.42a,b) follow this process perfectly well, in contrast to the standard

SIR model which, from its very concept, does not account for network and correlation effects

at all.

In conclusion we can say that the approximation of 〈ssi〉 and 〈sis〉 as series expansions in

s works quite satisfactory, especially in the pr = 0 cases but also when pr 6= 0, provided N

(or, more general ν) is not too small in the latter cases. Simulations show that the effects of

a finite size of the social bubbles becomes noticeable at fairly large sizes already. Even for
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Fig. 4.9: si vs t for pr = 0.25 and N = 8, 10, 12. Left column: simulated data (markers) and

standard SIR model (solid curve). Right column: simulated data (markers) and model based

on series expansion of 〈ssi〉. Other parameters: same as in fig. 4.2.
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Fig. 4.10: s vs t for pr = 0.25 and N = 12, 10, 8 (other parameters: same as in fig. 4.2.).

Simulated data (markers) and solutions of (1.42a,b) (solid curves). Dotted curve in upper

figure: standard SIR model (as indicated in grey).
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N = 12, a situation where the total number of possible contacts of a single node is as large

as 624, both the variations of s and si with time (t) show significant quantitative variations

from the mean-field behaviour that applies in the limiting case N, ν → ∞ and for which

the standard SIR model is exact. Now, in real life, a number of 624 is a very large size

for the social bubble of an average single member of a population when considered in an

epidemiological context. From an epidemiological viewpoint, the social bubble of an individual

in a population contains only those members of the population contacted intensively enough

by the individual on a regular basis to make a transmission of an infection carried by one of the

contacting members to the other possible (albeit not necessarily certain). As such, the social-

bubble size depends on the critical exposure/uptake for the pathogen involved, defined as

the exposure/uptake necessary for a full blown infection to develop in a population member:

a lower critical exposure increases the social-bubble size. Also the route of transmission

affects the social bubble size (airborne pathogens have their own notoriety in this respect).

However, a number well in the hundreds for the (average) epidemiological social-bubble size

in a population seems quite on the high side for even the more infectious of pathogens.

Nevertheless, even in the cases of such large social bubbles, there is a substantial discrepancy

between the actual time evolution of the infection numbers and the one provided by the

standard SIR model for the applying parameter values. This has serious consequences in

relation to the extraction of values for pi and pr from field-data about the spread of an actual

infection. We see from figs. 4.7, 4.9 and 4.10 that the qualitative behaviour of the actual

infection data does not differ significantly from that found for the mean-field case on the

basis of the standard SIR model. It may seem tempting therefore to fit the standard SIR

model to the actual data via adjustment of pi (and optionally pr where relevant). Especially

in cases where only data on s vs t are used, this may result in fits that reproduce the field data

fairly well. However, it is easy to see that the values for pi or pi/pr thus obtained substantially

underestimate the actual values (a reduction of the social bubble size also reduces the growth-

rate ṡ of the number of cumulative infections for given pi or pi/pr). This is a serious problem

indeed, since R0 = pi/pr is often taken for the basic reproduction number (see section chapter

5 section d)), which plays an important role in practice for the assessment of the severeness

of an outbreak/epidemic or of the risks associated with a particular pathogen in itself. More

reliable estimates for pi and pr can be obtained, at least in principle, via the method of series

expansions outlined in this paper or via direct simulation. The problems do not end there

however. It looks like the coefficients of the series expansions for 〈ssi〉 and 〈sis〉 cannot be

calculated easily via simple algebraic methods or easily implemented numerical methods, at

least not for any network of arbitrary structure (for the purpose of this chapter the coefficients

were extracted from data generated by rather CPU intensive simulations for instance). This

is a serious issue, since the structure and topology of the population network are expected

to have a profound impact on at least the quantitative aspects of the spread of an infection,

but perhaps also on the qualitative aspects. In connection to this we may refer to the Ising

problem, where the dimensionality of the lattice (which affects, for instance, the number of
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nearest neighbours to a site/node) has major implications even for the qualitative behaviour

of the system under consideration. The 1-dimensional Ising model does not show any order

at finite temperatures (no matter how low) [6], whereas the 2- and 3-dimensional versions

of the model do exhibit ordering phenomena at temperatures above zero, but with different

values of the corresponding critical temperature and critical exponents [7], the latter putting

the 2 versions in different universality classes. Such observations are typical for systems

with network or lattice features, and there is no reason to assume that population networks

make an exception in this respect, especially since we will see in the coming sections that

the spread of infectious diseases may be associated with its own kind of critical phenomena.

Therefore, the extraction of pi - and pr -values from field data for the purpose of obtaining

highly accurate estimates is a quite a problematic affair troubled by fundamental difficulties.

In order to obtain reliable values for instance, such an extraction cannot go without obtaining

estimates for the coefficients in the series expansions of 〈sis〉 or 〈ssi〉 as well, either from field-

or simulated data.
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5. Properties of the model and its solutions: conditions for an

epidemic, effects of infection removal

Even without solving the sets of differential equations represented by (1.42a,b) and (1.43a,b)

completely, certain results key in the evolution of an epidemic can be derived from them.

a) Criterion for an epidemic to develop from a limited number of infections

From (1.42a) we immediately see that for ṡi to be positive for s → 0 (and thus for

sufficiently low values of s):

pi − pr > 0 (5.1)

This is an interesting result, which actually implies a basic criterion for the possibility that

a number of initial infections, so limited that si = s0 ≈ 0, will grow into a rampant epidemic

or not. Only when the rate of transmission per active infection (pi) is higher than the rate of

removal (pr), the number of active infections nsi (and therewith also the cumulative number

of infections ns) will grow even on the basis of just a very few initial active infections.

All this may sound plausible, but the inequality (5.1) not only provides a mathematical

foundation to common sense in this respect, but also points directly towards general strategies

that can be deployed during the onset of an epidemic. To reduce the spread of infection one

may first of all refer to protective measures or reducing the frequency of social contact (i.e.

reducing fcn). The effect of these is a reduction of pi. The more effective they are, the more

they will reduce pi and the slower the infection will propagate at given pr. On the other

hand one may look at cures and medication (when available). The sooner active infections

can be eliminated the larger pr will become, thus hampering the spread of the infection. In

theory, the possibility even exists of smothering a major outbreak well before it even started:

if by taking appropriate measures the value of pi − pr can be made negative (pi/pr < 1), a

large scale epidemic might be averted. For that to achieve by protective measures alone, it

is important to mention that it is not necessary to reduce pi to zero. Only a reduction of

pi sufficient enough to make pi − pr negative (i.e. pi/pr < 1) will do. It is stressed however

that when such measures fail and (5.1) is actually met, sooner or later the active infection

rate will grow vigorously (in fact exponentially) with time, as may be inferred from (1.42a).

For s � 1, eq. (1.42a) reduces to ṡi = (pi − pr)si , the solution of which is an exponential

function of t, and when pi − pr > 0 the result will be an exponential increase in time of the

active infection rate that may easily grow to epidemic proportions.

An important observation to be made here is that there is no reference to the structure

of the individual social networks in the inequality (5.1): the criterion it represents follows

independently of the social fabric of the population. As such, at least within the context of

the model, (5.1) is universal and applies to all populations, irrespectively of their (social)

network structure.
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b) The maximum number of active infections reached during an epidemic

Furthermore, eq. (1.42a) allows us to obtain an expression for the value of s at which the

overall (global) maximum is reached in the number of active infections. A necessary condition

for such a maximum is ṡi(s) = 0, which relates, in case of a global maximum, to an extremum

both as a function of t and as a function of s. From (1.41a) and (1.42a) we see that that

ṡi = 0 either when si = 0 or when P(s) = pi ssi /ν − pr = 0. The first case (si = 0) can be

discarded, since it relates to the end of the epidemic which, in strict mathematical terms, is

(always) approached asymptotically when t→∞.

We will now evaluate the criterion for a maximum in si for the case where ssi is ap-

proximated by a 2nd order polynomial in s. This case represents the simplest deviation from

the standard SIR model possible. However, as a toy model it can be quite instructive. The

relevant ODE’s and their solutions are given in section 3c.

When a global maximum in si exists in the context of a 2nd-order polynomial approx-

imation of ssi , it must relate to one of the solutions σ = σ± of the quadratic equation

pi ssi /ν − pr ≡ pi(ν + asi1 s+ asi2 s
2)/ν − pr = 0. That is:

σ± =
−asi1 ±

√
(asi1 )2 − 4 νasi2 (pi − pr) /pi

2 asi2
(5.2)

A particular solution σ± actually corresponds to (global) maximum when:

s̈i =

(
ṡi P(s) + si ṡ

∂P(s)

∂s

)
s=σ±

< 0

With ṡi = 0 for s(t) = σ± that is:

∂P (s)

∂s

∣∣∣∣
s=σ±

=
pi(a

si
1 + 2 asi2 σ±)

ν
= ± pi

ν

√
(asi1 )2 − 4 νasi2 (pi − pr)

pi
< 0 (5.3)

which can be met only in case of the minus sign, i.e. by the solution σ−, and (of course) only

when the term under the square-root sign is non-negative.

Since it seems fairly evident that asi1 < 0 we have to distinguish between only 2 regimes of

the expansion parameters, namely asi2 < 0 and asi2 > 0. An epidemic requires pi − pr > 0 to

start and propagate (see section 3a). In such a situation, it can be inferred from (5.2) that

when asi2 < 0 then σ+ < 0 and σ− > 0, and that when asi2 > 0 then σ+ > 0 and σ− > 0. Since

σ− is positive for both asi2 < 0 and asi2 > 0, there can be a local maximum in both cases, its

value being obtained by substitution of s = σ− into (3.24):

si,max = σ− −
(
νpr/a

si
2 pi

s+ − s−

)
log

(
(s0 − s−) (σ− − s+)

(s0 − s+) (σ− − s−)

)
(5.4)
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The maximum in si results from a competition between the production of new infections

ṡ and the removal of already existing infections −prsi. For s-values below σ−, new infections

arise at a higher rate than that existing infections are removed. At s = σ− the generation

of new infections is precisely compensated by the infection removal and a maximum in si

is reached. For s > σ−, the removal of infections over-compensates the generation of new

infections, and a reduction of si sets in so that the epidemic or outbreak gradually fades out.

It is emphasized that, in general, the maximum in si does not mark a simultaneous onset

of a decrease in the growth rate of new infections ṡ.

With ṡ given by (1.32) the maximum in the rate of new infections is given by:

s̈ =
pi
ν

(
ṡi〈ssi〉 + si

∂〈ssi〉
∂t

)
=

pi
ν

(
ṡi〈ssi〉 + si ṡ

∂〈ssi〉
∂s

)
= 0 (5.5)

This equation cannot be solved by algebraical methods in general. However, it is straight-

forward that when the maximum in si (which corresponds to ṡi = 0) and the maximum in ṡ

were to occur at to the same value of s, this would require the 2nd time-derivative of s:

s̈ =
pi
ν

∂〈ssi〉
∂s

=
pi(a

si
1 + 2asi2 σ−)

ν
(5.6)

to vanish. Via substitution of σ− that requirement is easily restated as:

s̈ = −
√

(asi1 )2 − 4 νasi2 (pi − pr) /pi = 0 (5.7)

which holds only for very specific parameter combinations that make the term under the

square-root sign zero. Hence, the maxima in si and ṡ do, in general, not occur at the same

s and t. In fact, unless s̈ = 0, the rate of new infections is always in decline already when si

reaches its maximum at s = σ−, since s̈ ≤ 0 because of the minus sign in front of the square

root in (5.7). The maximum in ṡ therefore precedes the maximum in si, at least in the present

model. This result may be of importance for policy and decision making during an ongoing

epidemic. The observation that the rate of new infections has apparently reached its peak

still means that the peak in the number of active infections is not there yet. Since the burden

on the healthcare system due to an epidemic is largely determined by the number of active

infections, this may have its implications, for instance with respect to matters of healthcare

capacity.

c) The effects of infection removal and the herd-immunity pitfall

The final stage of the epidemic/outbreak is characterised by a stabilisation (asymptotic

in time) of s at some finite value se (n.b. 0 ≤ se ≤ 1), whereas the active infections fade out

(si asymptotically approaches zero when t→∞, s→ se). More important, the entire spread

of the infection gradually comes to a halt, as the rate of infection ṡ also becomes zero. The
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latter is in fact the quintessential feature of a fade-out of an epidemic, and the influence of

the network structure of the population is crucial in it.

The role of the network structure in the evolution of an epidemic can be described in more

detail as follows. When the number of active infections approaches zero (si → 0), the social

network of a susceptible individual will consist more and more of removed infections and (non-

infected) susceptibles only. Only a decreasingly small and negligible minority of susceptible

individuals is still vulnerable to infection by active infections from within their social network.

The root cause of this phenomenon on a ”microscopic” scale (that is, on the level of individual

nodes) is the removal of infections (pr 6= 0), under the assumption that removed infections

either relate to individuals that have overcome the infection and acquired immunity, or to

individuals that have succumbed to the infection. In both cases, such an individual then

corresponds to an ”inert” node in the network, unable to become infected again and to pass

on the infection to other nodes/individuals. The infection can no longer propagate through

the population via such nodes. In fact, active infections may even become surrounded by

removed infections (immunized nodes) only, thus providing a shield between that particular

infection and the rest of the population (rendering the infection unable to infect other nodes).

With time (and therefore with s), the number of inert nodes increases to such an extent

(relative to the number of active infections si) that at some level the removal rate exceeds the

rate of new infections: after having reached a maximum for s = σ− (see previous section),

the number of active infections begins a steady decrease and the epidemic gradually fades

out, as its propagation is more and more hampered by the mechanism described here. As an

important corollary of such a mechanism, the epidemic generally comes to an end even before

all the members of the population have been infected: the cumulative number of infections

then stabilizes at a value se 6= 1. The way in which the spread of the infection is hampered by

inert nodes in the population lattice via a blockade of infection routes, makes that the spread

of an infection has all the characteristics of a percolation phenomenon. We will discuss this

extensively in chapter 8.

In mathematical terms, the end of an epidemic can be defined as the situation where

si = 0 (which implies also that ṡ = 0 (see for instance (1.42b)). This allows for obtaining an

equation for se. By setting si = 0 in (3.24) (2nd order polynomial approximation of 〈ssi〉), se
can be identified as the solution s of the equation:

s =
ν(pr/pi)

asi2 (s+ − s−)
log

(
(s0 − s−) (s− s+)

(s0 − s+) (s− s−)

)
(5.8)

which we reexpress, with β = ν
asi2 (s− − s+)

, as:

s = β

(
pr
pi

)
log

(
(s0 − s+) (s− s−)

(s0 − s−) (s− s+)

)
= f(s) (5.9)
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As a condition to be met by s = se, (5.9) can be reexpressed even further, via some

algebra, in terms of the inverse of the function f(s) as:

s = s−

(
1 +

(s− − s+) /s−
α exp( s/η)− 1

)
= f−1(s) (5.10)

where η = −β(pr/pi), and the factor α is given by:

α =
(s0 − s+)

(s0 − s−)
(5.11)

Furthermore, it should be noted that when pr 6= 0, the function f(s) actually represents

the number of removed infections at given s < 1, which at the end of the epidemic (s = se)

becomes equal to the cumulative number of infections. It should be kept in mind that this

is not the case for f−1(s) however. The function f(s) differs from its inverse, and f−1(s) has

been introduced solely to reexpress the equilibrium condition for s implied by (5.9) and not

to explicitly reexpress the right-hand part of (5.9) in general (i.e. for all s). As such the

function f−1 represents the number of removed infections only for s = se.

Eqs. (5.8), (5.9) and (5.10) cannot be solved for s via algebraic methods but require

numerical or graphical techniques, the latter being quite instructive however. The function

f−1(s) is easier to handle than f(s) in that respect, mainly because of the divergent behaviour

of f(s) at s = s− and s+. Furthermore, f−1(s) is more appropriate for demonstrating analogies

between certain aspects of the dynamics of an epidemic and concepts in thermodynamics and

statistical mechanics. It is for these reasons that f−1(s) was introduced in the first place to

serve as a substitute for f(s) in (5.9).

As a consequence if asi1 < 0 we have η ≤ 0, which can be verified easily by substitution of

(3.20) for s±:

η =
ν(pr/pi)

asi2 (s+ − s−)
=

ν(pr/pi)

asi1

√
(1− 4ν asi2 /(a

si
1 )2

(5.12)

Also, the following inequalities apply to s±, as can be verified easily on the basis of (3.20) as

well:

asi1 < 0, asi2 < 0 : s− < 0 < s+ (5.13a)

asi1 < 0, asi2 > 0 : 0 < s+ < s− (5.13b)

Focussing on the implications of the requirement expressed by (3.25) in case asi3 = 0, it is

straightforward that when asi2 < 0 (i.e. when (5.13.a) applies) then ṡ = pi(a
si
2 s

2+asi1 s+ν)/ν ≥
0 only for 0 ≤ s ≤ s+. The same is true when asi2 > 0 (that is, when (5.13.b) applies). We

can therefore conclude that the root s+ constitutes an upper bound to se when s+ ≤ 1.
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We will now investigate the characteristics of the function f−1(s) in some more detail. For

that purpose, we introduce the continuation of the function f−1(s) on the interval 0 ≤ s ≤ s+

to the function g(s) on (−∞,∞):

g(s) = s−

(
1 +

(s− − s+) /s−
α exp( s/η)− 1

)
s ∈ R (5.14)

That is, we take the right-hand part of (5.10) as the rule of a function g(s) with domain R
instead of the interval 0 ≤ s ≤ s+.

The 1st derivative of g(s) is readily obtained as:

∂g(s)

∂s
=

α (s+ − s−)

η

(
es/η

(αes/η − 1)
2

)
(5.15a)

and reexpressed via substitution of η = ν(pr/pi)

asi2 (s+ − s−)
and s+s− = ν/asi2 as:

∂g(s)

∂s
=

α (s+ − s−)2

s+s−
· pi
pr

(
es/η

(αes/η − 1)
2

)
≥ 0 (5.15b)

Since η ≤ 0 when asi1 < 0 (see (5.12):

lim
s→∞

∂g(s)

∂s
= 0 (5.16)

so that we can conclude that g(s) approaches a horizontal asymptote as s→∞. Furthermore,

for those cases relevant, a quick examination4 of the 2nd derivative ∂2g(s)/∂s2 shows that the

function g(s) may have an inflection point only for negative s. So, as illustrated in fig. 5.1,

for s ≥ 0 the function g(s) is therefore a monotonously increasing, concave function of s with

a horizontal asymptote:

y = lim
s→∞

s−

(
1 +

(s− − s+) /s−
α exp( s/η)− 1

)
= s+ (5.17)

4The 2nd derivative ∂2g(s)/∂s2 is given by:

∂2g(s)

∂s2
=

α(s− − s+)

η2
· e

s/η(αes/η + 1)

(αes/η − 1)3
≈ α(s− − s+)

η2
· e

s/η(s+e
s/η + s−)

(s+es/η − s−)3

where the approximation on the right applies when s0 << 1 or, more in particular, when s0 << |s+|, |s−|
(which is basically the regime we focus on). Provided that s+ 6= s− , the numerator of the 2nd term of the

approximation on the right is positive or negative definite when s+, s− < 0 or s+, s− > 0. When s+ and s−

have different sign (i.e. when (5.13a) applies), the numerator may change sign only for some s < 0 (since

η ≤ 0), whereas the denominator does not change sign for any s ∈ R. Therefore, if ∂2g(s)/∂s2 changes sign

in the cases of our interest, it can only be when s+ and s− have different sign, and only for some s < 0.
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Furthermore, via straightforward substitution of s = s0 = 0 into (5.14) we get g(0) = 0.

Hence, for s > 0:

0 ≤ g(s) < s+

and consequently, for 0 ≤ s ≤ s+:

0 ≤ f−1(s) < s+ (5.18)

Now, if they exist, the solutions s = se of (5.10) are given by those intersections of the

graph of f−1(s) vs s and the straight line y = s that take place at an s-value in the interval

0 ≤ s < s+ when s+ < 1, or in the interval 0 ≤ s ≤ 1 when s+ ≥ 1 (see fig. 5.1). Besides

s = 0 (which is always a solution) there is only a single intersection possible at most for s > 0

(due to the monotonously increasing concave nature of g(s), the absence of inflection points

for s > 0 and the horizontal asymptote of g(s)). So, if a solution s = se > 0 of (5.10) exists

(and therefore of (5.9), then that is the only solution.

Furthermore, when s+ < 1 then se < 1 as a direct consequence of (5.18). The latter

mathematically demonstrates the possibility that significant parts of the population may

remain uninfected during an epidemic mentioned on page 46. When pr = 0 however, the

entire population actually will become infected in the end (that is se = 1 when pr = 0). For

the model to be consistent with this, the coefficients asi1 and asi2 are subject to a constraint

in that particular case. From (5.12) it follows that η = 0 when pr = 0. For s = 1 to be a

solution of (5.10) then requires:

1 = lim
η ↑ 0

s−

(
1 +

(s− − s+) /s−
α exp( s/η)− 1

)
= s+ (5.19)

Substitution of (3.20) for s+ here yields, after some rearrangements, the following relation

between asi1 and asi2 :

asi2
(
asi2 + asi1 + ν

)
= 0 (5.20a)

which implies:

asi2 = 0 ∨ asi2 = − ( ν + asi1 ) (5.20b)

The case asi2 = 0 thereby corresponds to the standard SIR-model that we seek to replace

by a more general approach in this paper. In contrast, the case asi2 = − ( ν + asi1 ) does

relate to the generalisation of the SIR-model that accounts for the network structure of the

population (albeit in the simplest approximation possible). In fact, the case asi2 = 0, and

therewith the standard SIR-model, can be seen as a special case of asi2 = − ( ν + asi1 ) where
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asi1 = −ν (also see footnote5). It is also worth mentioning that fulfilment of the requirement

asi2 + asi1 + ν = 0 comes down to 〈ssi〉 = 0 for s = si = 1, and is therefore in full agreement

with the requirement that se = 1 for pr = 0: only when s = 1 and the number of susceptible

nodes in the network becomes zero, and therefore the entire population has been infected will

the spread of the infection come to a halt. In fact, demanding that 〈ssi〉 = 0 for s = 1, would

as well have lead us, in a totally valid way, to (5.20b).

It is emphasized that the constraint asi2 = −(asi1 +ν) only applies in this particular form in

case of an approximative approach where terms of order higher than 2 in the series expansion

of 〈ssi〉 have been truncated.

pr/pi=1f  -
1  (

s)

0

0,2

0,4

0,6

0,8

1

s
0 0,2 0,4 0,6 0,8 1

Fig. 5.1: f−1(s) vs s for pr/pi = 0.01, 0.10, 0.25, 0.50, 0.75, 1 (solid curves) and the straight

line y = s (dotted). Values of parameters: ν = 8, a1 = −7.2, s2 = −0.8. Solutions of (5.10)

correspond to the intersections of the relevant graph of f−1(s) vs s and the line y = s. s = 0

is always a solution. For pr/pi < 1 a 2nd solution s > 0 exists. With increasing pr/pi, the

2nd solution gradually moves towards s = 0. For pr/pi = 1, both solutions converge into a

single solution s = 0, the line y = s being the tangent of the corresponding graph of f−1(s).

For pr/pi > 1, only s = 0 remains as a solution

.

In the exact case, the demand that 〈ssi〉 vanishes for s = 1 requires cancellation of all the

expansion coefficients of the series, so that:

5Be aware that when asi1 = −ν and asin = 0 for n > 1, eqs. (1.42a) and (1.42b) respectively reduce to eqs.

(1.6) and (1.7) of the standard SIR-model

50

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.22275842doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.01.22275842
http://creativecommons.org/licenses/by-nc-nd/4.0/


ν = −
∞∑
k=1

asik (5.22)

Based on the full series, and therefore exact, this relation holds in the most general sense.

On every population network, no matter its structure, an epidemic will develop in accordance

with this rule when pr = 0, thus ensuring that 〈ssi〉 = 0 for s = 1 and therefore se = 1.

In general, the coefficients asik not only depend on the structure of the population network,

but also on pr/pi. However, in some cases the dependence on pr/pi is weak, and in cases

where the social network of an individual/node consists of the entire population there is

even no dependence on pr/pi or the network structure at all. In the latter case, the active

infections and the removed infections will be distributed randomly over the population, so

that (irrespective of pr/pi) the standard SIR-model applies, in which asi1 = −ν and aso2 = 0.

The effect of pr/pi 6= 0 in a case where the coefficients asi1 and asi2 are constants independent

of pr/pi is illustrated in fig. 5.1. From (5.15b) it is clear that ∂g(s)/∂s (and therewith

∂f−1(s)/∂s in the s-interval of relevance) decreases with increasing pr/pi for given s+ and s−

(that is, for given asi1 and asi2 ). As a result, the intersection of f−1(s) and the straight line

y = s shifts towards lower s-values when pr/pi increases, as can be seen in fig. 5.1. So se

decreases with pi/pr in those cases. Furthermore, as we will see next, it can even be shown

now that also when asi1 and asi2 do depend on pr and pi, the value of se actually becomes zero

at a certain critical value of pr/pi.

Since f−1(s) is a monotonously increasing, convex function on the s-interval of relevance,

it is in fact obvious that for all values of pr/pi for which:

∂f−1(s)

∂s

∣∣∣∣
s=0

≤ 1 (5.23)

only s = 0 remains as a solution of (5.10), so that in all these cases se = 0.

Now, the derivative ∂f−1(s)/∂s for s = s0 is readily obtained from (5.15b) as:

∂f−1(s)

∂s

∣∣∣∣
s=s0

=
α(s0) (s+ − s−)2

s+s−
· pi
pr

(
es0/η(

α(s0)es0/η − 1
)2

)

with α = α(s0) given by (5.11). Substitution of s0 = 0 and some rearrangements yields:

∂f−1(s)

∂s

∣∣∣∣
s=0

=
(s+ − s−)2

s+s−
· pi
pr

(
α(o)(

α(o)− 1
)2

)
=

pi
pr

That is:

∂f−1(s)

∂s

∣∣∣∣
s=0

=

(
pr
pi

)−1

(5.24)
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Combining (5.23) and (5.24) we see that a threshold pr/pi = 1 exists which marks the bound-

ary between a regime where se > 0 (when pr/pi < 1) and a regime where se = 0 (when

pr/pi ≥ 1). It should be noticed that this threshold does not depend on asi1 and asi2 or on ν,

and is therefore independent of the structure of the population network and thus quite general

in nature (at least in the context of our truncated-series model). Related to this, there is a

range of values of pr/pi where se is always zero, given by pr/pi ≥ 1, irrespective of whether

asi1 and asi2 depend on pi and pr or not (although such a dependence may have an influence

on the value of se itself when se > 0). As a corollary, when pr/pi ≥ 1 a small limited number

of infections cannot trigger (and develop into) an epidemic that involves large parts of the

population. In essence, (5.23) and (5.24) represent the same result as that represented by

(5.1). However, it is obtained here in a completely different way that strongly resembles the

analysis of magnetic ordering in (ferro-) magnetic systems in terms of the Weiss molecular field

theory [1]. As such, this approach anticipates the revelation of a striking analogy between a

transition towards herd-immunity and thermodynamic phase transitions to be presented later

on.

According to our analysis, an important general effect of infection removal seems to be a

decrease of se to values less than 1: infection removal suppresses the propagation of infections

through the population, to the extend that even part of the population will escape infection.

A similar result has been obtained in the past within the context of the standard SIR-model

as well. However, the present analysis not only shows that it also applies in a model where the

structure of the population network is explicitly taken into account, thus making it a more

general result, but also puts it on more solid mathematical foundations.

A legitimate question now, is whether saturation of the cumulative number of infections

at a value s = se corresponds to a state of herd-immunity. The answer to that question

largely depends on how we define herd-immunity. For instance, one might think of a state of

herd-immunity in the broadest sense possible, namely as a situation in which an infection is

unable to further propagate within a population. The answer to the aforementioned question

would be affirmative in that case. Such a definition, however, is too general for practical use,

as it leaves too much room for ambiguity and some quintessential issues unadressed. The

whole point in this respect is that the value of se depends on the circumstances under which

the infection spreads (that is, on both pr and pi, as well as on the structure of the population

network, which translates into the asik ). As a result of this, there are serious pitfalls when it

comes to rolling back measures aimed at preventing the spread of an infection, especially when

the arguments to do so are based on positive expectations concerning the achievement of herd-

immunity, however without an adequate notion/definition of its concept. To demonstrate this,

consider a situation in which a clear tendency towards saturation of s at a particular value

se is observed after an infection has been spreading for a while under a regime of restrictive

social measures. The effect of such measures is twofold thereby: they reduce pi and they

restrict the size of the social networks of individual members of the population, thus affecting

(lowering) the value of 〈ssi〉 at given s. When the epidemic has already reached a stage where
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s makes an approach to its asymptotic value se, the number of active infections si may still

not be zero but is already over its peak, and therefore :

ṡi = si

(
pi
〈ssi〉
ν
− pr

)
< 0 (5.25a)

Rolling back social measures at this stage (for instance on the basis of an (inadequate) judge-

ment regarding the achievement of herd-immunity) means that a new regime is entered how-

ever, which replaces pi by p ′i , 〈ssi〉 by 〈s ′si〉 and ν by ν ′, so that the rate of change of si now

becomes:

ṡi = si

(
p ′i
〈s ′si〉
ν ′
− pr

)
(5.25b)

where it should be noted that ṡ ′i(t) is equal to si(t) at the moment t = t0 when measures are

rolled back (that is: ṡ ′i(t0) = si(t0)). The problem here is that it is not at all certain that ṡ ′i is

negative as well (like ṡi). Depending on p ′i and 〈s ′si〉 it cannot even be excluded a priori that

the term in brackets in (5.25b) is actually positive and consequently ṡ ′i > 0. In that case, the

spread of the infection wile intensify again into a new wave of (active) infections, which will

only attenuate after a new maximum in the number of active infections (s ′i) has been reached.

Such a scenario is illustrated in fig 5.2 , where the results are shown for a simulation where a

less tight regime of ”social measures” follows upon a significantly more restrictive regime. The

spread of the infections starts under a tight regime of social restrictions, in which the contacts

of a particular (central) node are selected from a relatively small 2N + 2× 2N + 1 square of

nodes closest to (i.e. surrounding) the central node with N = 1 (the number of contacts to a

single node thus being equal to ν = 8). The spread of the infection was simulated under this

regime to a point where the epidemic had nearly come to a halt (i.e. s only weakly increasing

with time, and si almost zero). Then (at t = 500) a new, less strict, regime with N = 5

was introduced (so that the number of contacts per node increased to ν = 24), under which

the few active infections left from the 1st regime/wave were given the opportunity to pass on

their infection to the remaining susceptibles, thus restarting the epidemic. Fig. 5.2 clearly

reflects this. After a near fade-out of the active infections after the 1st regime it takes only

a little while after the implementation of the 2nd regime for the epidemic to regain strength,

and very soon both the active and cumulative infection rates are clearly on the rise again.

The result is that we are confronted with 2 subsequent waves of infections: one rather modest

under a regime of tight social measures (N = 1) that seems to fade out after a while, and a

2nd one of a much fiercer intensity after a partial roll-back of the measures (N = 5), by which

almost all members of the population that remained uninfected after the 1st wave become

infected in the end. It is for the possibility of scenarios of this kind alone that some doubts

are justified about strategies for coping with an epidemic based on the (assumed) achievement

of herd-immunity under a regime of (limited) social measures (which, however, is just what
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a country like Sweden openly advocated and put into practice during the initial months of

the Covid-19 pandemic). It is also clear that a better understanding (coupled to a tighter

definition) of the concept of herd-immunity is necessary to make it of (safer) practical use.

N=5N=1n i

0

104

2×104

3×104

4×104

5×104

t (cycles)
0 200 400 600 800 1000

(a)

N=5N=1s 

0

0,2

0,4

0,6

0,8

1

t (cycles)
0 200 400 600 800 1000

(b)

Fig. 5.2: Simulated sequence of infection waves under 2 different regimes of social measures

(see main text). a) Number of active infections ni as a function of time (time measured in

simulation cycles, i.e. the time in which (on average) each member of the population (node)

makes exactly 1 contact). b) cumulative infection rate s as a function of time. Dotted lines

represent the cross-over of social regimes. Parameters: pi = 0.5, pr = 0.325, N0 = 500 ,

population size N = 15012.
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d) Reconsidering the meaning of reproduction numbers

It may be clear that, in view of the results presented in this chapter, the often quoted

condition R0 > 1 for an epidemic to get started requires some reconsideration. Via a similar

line of though as the one followed in section 5a, both the standard SIR-model and the extended

SIR-model presented in this paper lead to the criterion pi/pr > 1 for an epidemic to evolve

from a small number of active infections in an otherwise fully susceptible population. With

R0 given by (2.5), this criterion is equivalent to R0/Q0 > 1 rather than R0 > 1. The

criterion R0 > 1 can only be preserved (as is often done by the way) via the introduction

of a rather crude approximation that puts R0 ≡ pi/pr (and thus implicitly takes Q0 = 1).

The rationale here is that τ = 1/pr is the average lifetime of an active infection in case of

an exponential decay as given by (2.1)6. Taking 〈ssi〉 = constant = ν , the number of new

infections per unit time due to a single active infection can be taken as a constant as well,

which is equal to p = pi so that the total number of new infections due to a single active

infection becomes R ′0 = τp = pi/pr (variations on this simplified scheme exist [2,3] for the

purpose of generalisation, but the basic ideas underlying them are the same). It is clear that

such an approach basically comes down to substitution of 〈ssi〉 = ν into (2.3) and taking

t0 = 0 :

R0 = pi

∞�

0

e−prtdt =
pi
pr

(5.26)

in which case the factor Q0, accounting for the s-dependence of 〈ssi〉, becomes indeed unity

and R ′0 = R0. However, in general R ′0 6= R0 and R ′0 is therefore not a reproduction number,

but rather an effective reproduction number at best (whatever the deeper physical meaning

of such a qualification may be). Similar considerations apply to R and the often mentioned

criterion R > 1 for the number of active infections to be on the rise, as we will see at the

end of the next chapter on herd-immunity. As such, the interpretation of the dynamics of

epidemic outbreaks in terms of reproduction numbers is not entirely unproblematic.
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6. Defining and understanding herd immunity

a) Fundamentals

The aim is now to present a strict mathematical definition of herd immunity, in such a

way that the result is not only rooted in the basic physical and mathematical principles of

epidemic growth, but also makes sense from a practicle point of view.

For this purpose, we consider an epidemic that has been going on for a while under a regime

of social and protective measures, such that at some moment t0 in time, the cumulative number

of infections is s = s0 > 0 and the number of active infections si = si0 > 0. Furthermore:

lim
t ↑ t0

ṡi(t) < 0 (6.1a)

so that the number of active infections is over its peak and declining immediately before

t = t0. The average number of s-nodes linked to an i-node immediately before t0 is given by:

lim
t ↑ t0
〈ssi〉 = (1− ξ0)ν (6.1b)

At t0 a new regime is entered, whether by rolling back of the measures taken, or by

some changes in the properties (for instance the transmissibility) of the pathogen that causes

the infection. The structure of the population network thus may change, so that ν has

to be replaced by ν ′. In addition, possible changes in the protective measures require the

replacement of pi by p ′i . Changes in the the population network also imply the replacement

of 〈ssi〉 by 〈s ′si〉 and of 1− ξ0 by λ ′(1− ξ0). The parameter λ ′ thereby accounts for changes in

the structure and the topology of the population network and matches the value of 1− ξ0 to

the new network: 〈s ′si〉|t=t0 = λ ′(1 − ξ0)ν ′. We finally consider 〈s ′si〉 as an expansion around

s = s0:

〈s ′si〉 = λ ′(1− ξ0)ν ′ +
∞∑
k=1

a ′k (s− s0) k = λ ′(1− ξ0)ν ′ +
∞∑
k=1

a ′k s
′ k (6.2)

where s ′ = s− s0.

Substitution of (6.2) into (5.25b) yields for the new regime (t ≥ t0):

ṡi = p ′i si

λ ′(1− ξ0) +
1

ν ′

∞∑
k=1

a ′ks
′ k

 − prsi

That is:

ṡi = λ ′(1− ξ0) p ′i si

1 +

∞∑
k=1

a ′k s
′ k

λ ′(1− ξ0)ν ′

 − prsi (6.3)
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which is, in effect, identical to the expression for ṡi in the case of an infection with transmission

probability p ′′i = λ ′(1− ξ0) p ′i spreading over a network on which the number of nodes linked

to a central node is ν ′′ = λ ′(1− ξ0)ν ′ (instead of ν ′). Upon truncating terms of order k > 2

in the series expansion in (6.3) we have:

ṡi = λ ′(1− ξ0) p ′i si

[
1 +

a ′1s
′ + a ′2 s

′ 2

λ ′(1− ξ0)ν ′

]
− prsi (6.4)

Now, like s, the variable s ′ is a state variable, so that ṡi = ṡ ′(∂si/∂s
′). Therefore, upon

making the identifications pi ≡ p ′′i , ν ≡ ν ′′ and s ≡ s ′ in (1.42a,b), the differential equation

(6.4) can be dealt with in the same manner in which the differential equation of of identical

form given by (1.42a) was dealt with in section 3c for the case of a 2nd-order polynomial

approximation of 〈ssi〉. We thus obtain, straightforwardly from (3.18):

(
∂si
∂s ′

)
= 1 − ν ′pr/p

′
i

λ ′(1− ξ0)ν ′ + a ′1s
′ + a ′2s

′ 2

By analogy with (3.19), this can be reexpressed as:

(
∂si
∂s ′

)
= 1 − ν ′pr/a

′
2 p
′
i

(s ′ − s ′+)(s ′ − s ′−)
(6.5)

where (see (3.20)):

s ′± =
a ′1
2a ′2

(
−1 ±

√
1 − 4λ ′(1− ξ0) ν ′ a ′2

(a ′ 21 )

)
(6.6)

Via some minor rearrangements of (6.5) we obtain the following ODE (compare to (3.21)):

(
∂si
∂s ′

)
= 1 −

(
ν ′pr/p

′
i

a ′2 ( s ′+ − s ′−)

)[
1

(s ′ − s ′+)
− 1

(s ′ − s ′−)

]
(6.7)

the solutions of which are given by:

si = s ′ −
(
ν ′pr/a

′
2 p
′
i

s ′+ − s ′−

)
log

(
s ′ − s ′+
s ′ − s ′−

)
+ C ′ (6.8)

The constant of integration C ′ follows from the condition si|s=s0 = si|s ′= 0 = si 0 (remember

s′ = s− s0):

C ′ = si 0 +

(
ν ′pr/p

′
i

a ′2 ( s ′+ − s ′−)

)
log

(
s ′+
s ′−

)
(6.9)
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Combining (6.8) and (6.9) we finally obtain:

si = s ′ −
(

ν ′pr/p
′
i

a ′2 ( s ′+ − s ′−)

)
log

(
s ′−
(
s ′ − s ′+

)
s ′+ (s ′ − s ′−)

)
+ si 0 (6.10)

The logarithmic term here on the right-hand side has a clear physical meaning that will prove

key to the definition and understanding of herd-immunity. Calling this term sL we can write

(6.10) as:

si = s ′ − sL + si 0

With s ′ = s− s0 and si 0 = s0 − sr 0 that is:

si = s− (sL + sr 0) (6.11)

where sr 0 = nr 0/n relates to the total number of removed infections at t = t0 (i.e. when

s = s0, s ′ = 0). In general si(t) = s(t)− sr(t), so that (6.11) implies:

sr = sL + sr 0 (6.12)

With the given definition of sr 0 it is thus shown that the term:

sL =

(
ν ′pr/a

′
2 p
′
i

s ′+ − s ′−

)
log

(
s ′−
(
s ′ − s ′+

)
s ′+ (s ′ − s ′−)

)
(6.13)

represents the infections removed under the new regime (that is, after t = t0). In view of

this, an additional quantity of physical relevance becomes evident as well, namely:

∆si = s ′ − sL = s ′ −
(

ν ′pr/p
′
i

a ′2 ( s ′+ − s ′−)

)
log

(
s ′−
(
s ′ − s ′+

)
s ′+ (s ′ − s ′−)

)
(6.14)

representing, for given s ′(t), the nett change in the active-infection number since the new

regime took effect at t = t0.

The condition:

∆si = 0 (6.15)

makes an important physical criterion. As stated earlier, we assume a situation where the

number of active infections was in (sharp) decline under the old regime prior to t = t0. For that

to remain the case under the new regime it is required that ∆si < 0 for all s ′ > 0 (all t > t0).

In contrast, when there is an interval 0 < s ′ < s ′0 of s ′-values for which ∆si > 0, the number
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of active infections will initially rise again (maybe even strongly) after the new regime has

come into effect. It may be obvious that such a situation is at variance with what one would

intuitively think of as a state of herd-immunity. However, a completely different situation

occurs when for all conceivable regimes to come into effect at t = t0 (most importantly the

regime of social normality) ∆si is negative definite for s ′ > 0 (that is, ∆si < 0 for all s ′ > 0).

A necessary and sufficient condition for such a situation to occur is that solving ∆si = 0 for

s ′ yields s ′ = 0 as the only solution for any conceivable regime. Although there will even be

new infections after t = t0 in such a case, the total number of active infections meanwhile can

do nothing then but decrease with t and s ′, and the epidemic is inevitably in state of decline

and fading out.

To substantiate these viewpoints mathematically we define, by analogy with (5.9):

f ′(s ′) =

(
ν ′pr/p

′
i

a ′2 ( s ′+ − s ′−)

)
log

(
s ′+
(
s ′ − s ′−

)
s ′− (s ′ − s ′+)

)
(6.16)

The condition ∆si = 0 can then be recast into the form (see (6.14)):

s ′ = f ′(s ′) (6.17a)

or, equivalently, into:

s ′ = f ′ −1(s ′) (6.17b)

where f ′ −1(s ′) represents the inverse of f ′(s ′) which, being the analogue of f−1(s) in (5.10),

is readily obtained, with α ′ = s ′+/s
′
− taken as the analogue of α (see (5.11)), as:

f ′ −1(s ′) = s ′−

(
1 +

(
s ′− − s ′+

)
s ′+ exp( s ′/η ′)− s ′−

)
(6.18)

where:

η ′ =
ν ′pr/p

′
i

a ′2( s ′+ − s ′−)
(6.19)

Being identical in their mathematical form, the functions f ′ −1(s ′) and f−1(s) behave in

a qualitatively similar way in relation to their respective arguments s ′ and s. Hence, the line

of thought followed in section 3c in connection with f−1(s) applies to f ′ −1(s ′) as well. As

such, we find equations (6.17a) and (6.17b) to have 2 solutions when ∂f ′ −1(s ′)/∂s′ |s′=0 > 1,

one of them being s′ = 0 and the other one given by the intersection of the line y = s′. When

∂f ′ −1(s ′)/∂s′ |s′=0 ≤ 1 however, only the solution s′ = 0 remains and ∆si < 0 for s ′ > 0.

When the latter is the case for any regime of social measures, the epidemic is in a stage of

inevitable fade-out.
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By analogy with (5.15a), the derivative ∂f ′ −1(s ′)/∂s′ is obtained as:

∂f ′ −1(s ′)

∂s ′
=

s ′+s
′
−
(
s ′+ − s ′−

)
η ′

(
es
′/η ′

(s ′+e
s ′/η ′ − s ′−)

2

)
(6.20)

Substitution of (6.19) for η ′ here, while also using s ′+s
′
− = λ ′(1 − ξ0)ν ′/a ′2 (to be obtained

straightforwardly on the basis of (6.6)), then yields:

∂f ′ −1(s ′)

∂s ′
=

λ ′ (1− ξ0)
(
s ′+ − s ′−

)2

pr/p
′
i

(
es
′/η ′

(s ′+e
s ′/η ′ − s ′−)

2

)
(6.21)

For s′ = 0 that is:

∂f ′ −1(s ′)

∂s ′

∣∣∣∣
s ′=0

=
λ ′ (1− ξ0) p ′i

pr
(6.22)

The condition for the epidemic to remain fading out after t = t0 (s ′ > 0), also under the

new regime, becomes therewith:

λ ′ (1− ξ0) p ′i
pr

≤ 1 (6.23)

That is:

λ ′p ′i ≤
pr

(1− ξ0)
(6.24)

In every new regime for which the product λ ′p ′i meets this (in)equality, the number of active

infections will be subject to a monotonous decrease after t = t0. It is noteworthy that requiring

ṡi ≤ 0 for s′ = 0 on the basis of (6.3):

ṡi = si
(
λ ′(1− ξ0) p ′i − pr

)
≤ 0 (6.25)

directly leads us to (6.23) and (6.24) as well. However, this procedure leaves us with no clue

as to whether ∆si is negative definite or not for s′ > 0, and therefore does not exclude the

possibility, as observed in fig. 5.2, that for some s′ the number of active infections will start

to rise again (even under the same regime of measures).

If (6.24) also holds for the regime of social normality then lifting restrictive and protective

measures is safe, in the sense that it will not lead to a new wave of infections: the rate at which

ṡi decreases may be less than in a regime with measures in place, but the epidemic will continue

to fade-out until the last active infections disappear and si becomes zero. One could therefore

say that as soon as (6.17a,b) apply, a form of herd-immunity has been achieved, despite the

fact that new infections will continue to emerge until si = 0, albeit at an increasingly lower
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rate as s′ increases. New infections will cease to emerge as soon as si = 0. That is, when (see

(6.10)):

si = s ′ −
(

ν ′pr/p
′
i

a ′2 ( s ′+ − s ′−)

)
log

(
s ′−
(
s ′ − s ′+

)
s ′+ (s ′ − s ′−)

)
+ si 0 = s ′ − f ′(s′) + si0 = 0

and thus when:

s′ + si0 = f(s′) (6.26a)

which is equivalent to:

s′ = f ′ −1(s′ + si0) (6.26b)

The solution s ′ = s ′e of (6.26a) and (6.26b) relates to se in this via s ′e = se − s0, and

has to be obtained numerically. The value of se = s0 + s ′ represents the final cumulative

infection rate reached when the epidemic comes to an end. Since at the end of an epidemic

all active infections have been removed, it also represents the final rate of removed infections

to be reached, i.e. when s = se = s0 + s ′ then sr = se.

Now that we have captured the criterion for the end of an epidemic in the mathematical

form of (6.26a,b), the relevant question is how ”robust” the resulting epidemic state after

reaching s = se is against an influx of new (active) infections from outside of the population,

for instance via infected travellers (from outside), or infective population members (re)entering

from abroad. In other words: will a new wave of infections start or not, once a (very) small

but not insignificant number of new active infections from outside has been introduced into

the population?

To answer this question, let ν ′(1 − ξe) be the average number of s-nodes linked to an

r-node when the epidemic has come to a halt:

〈s ′sr〉 = ν ′( 1 − ξe) (6.27a)

Using the symmetry relation sx〈s ′yx〉 = sy〈s ′xy〉 we then get for this case (for which s ′ =

se − s0 = s ′e):

〈s ′rs〉 =
se

1− se
ν ′(1− ξe) (6.27b)
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and via (1.17) and (1.18), which reduce to:

〈s ′ss〉 + 〈s ′rs〉 = ν ′ (6.28a)

〈s ′rr〉 + 〈s ′sr〉 = ν ′ (6.28b)

we thus obtain:

〈s ′rr〉 = ν ′ − 〈s ′sr〉 = ν ′ ξe (6.29a)

〈s ′ss〉 = ν ′ − 〈s ′rs〉 = ν ′
(

1 +
se (ξe − 1)

1− se

)
(6.29b)

for this case. To distinguish the average coordinations 〈sxy〉 and 〈s ′xy〉 in the earlier wave(s)

from those in the new wave, we write the latter as 〈σxy〉 and the coefficients of their corre-

sponding series expansions as αk (instead of ak). Similarly, we write the cumulative infection

rate and the rate of active infections in the new wave respectively as σ and σi. We assume

the initial number of new active infections that form the precursor to a possible new wave

of infections to be very low (σ0 = σi0 << 1, or even σ0 = σi0 ≈ 0). Since we also assume

the removed infections to have full immunity, a possible new wave of infections will spread

exclusively among those members of the population (nodes) that remained uninfected (i.e.

susceptible) during the earlier wave(s). Hence, since each newly introduced active infection

is considered to replace a susceptible node at random (so that 〈σsi〉
∣∣
σ=σ0

= 〈s ′si〉
∣∣
s ′=se−s0

) and

because σ0 is considered small enough that to take σ0 ≈ 0:

〈σsi〉 = 〈s ′si〉
∣∣
s ′=se−s0

+

∞∑
k=1

αk (σ − se)k = ν ′
(

1 +
se (ξe − 1)

1− se

)
+

∞∑
k=1

αk (σ − se)k

(6.30)

We consider no changes in social measures taken after the first appearance of the new active

infections, so that the typical rate of transmission remains p ′i , the rate of change of σi in the

new wave therewith becomes:

σ̇i = σi

(
p ′i〈σsi〉
ν ′

− pr

)
= σi

p ′i

(

1 +
se (ξe − 1)

1− se

)
+

∞∑
k=1

αk (σ − se)k
− pr


(6.31)

However, a new wave of infections due to a small (almost negligible) number of initial infections

σ0 << 1 will start only if σ̇i > 0 for s ′ = se (i.e. for σ = σ0 ≈ 0).
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From (6.31) it is easily inferred that a new wave will therefore not emerge when:

p ′i

(
1 +

se (ξe − 1)

1− se

)
− pr ≤ 0

That is, when:

1− se
1 + se (ξe − 2)

· pr
p ′i
≥ 1 (6.32)

which thus provides us with a proper criterion for ”true” herd-immunity that is not only

rooted in the basic mechanisms and mathematics of epidemic growth but also connects with

our intuitive conception of the phenomenon.

An important insight that immediately follows from (6.32) is that apparently the structure

and topology of the population network do have an influence in the process of achieving herd-

immunity, in contrast to what we have seen earlier in connection with the criterion (expressed

by (5.1) and (5.23),(5.24)) for an epidemic to develop from a few initial infections in case

of a fully susceptible population (ss = 1). Key for this observation is the dependence of se

and ξe on the structure of the social networks. Network correlations explicitly make their

way into the process via ξe (whereas they affect the value of se in a more implicite manner).

These correlations are a typical artefact of network structure of the population and also the

percolative nature of the spread of an infection on a population network. Their influence can

be understood as follows. We write, for every s ≤ se:

〈s ′sr(s ′)〉 ≡ ν ′(1 − ξ(s ′)) (6.33a)

In case of a fully random distribution of the susceptible individuals/nodes over the network

〈s ′sr(s ′)〉 = ν ′(1 − s). We may therefore write:

〈s ′sr(s ′)〉 = ν ′(1 − s ′) + ∆ 〈s ′sr(s ′)〉 (6.33b)

where ∆ 〈s ′sr(s ′)〉 accounts for the correlations (i.e. the deviations from the random distribu-

tion). Combining (6.33a) and (6.33b) we have:

ξ(s ′) = s ′ − ∆ 〈s ′sr(s ′)〉
ν ′

(6.34a)

With ∆ ξ(s ′) = − ∆ 〈s ′sr(s ′)〉
ν ′

that is:

ξ(s ′) = s ′ + ∆ ξ(s ′) (6.34b)

so that ξe = ξ(se) = se + ∆ ξe.
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We thus obtain:

1− se
1 + se(ξe − 2)

=
1− se

1 + se
(
(se + ∆ξe)− 2

) =
1

1− se +
se ∆ξe

1− se

Substitution of which into (6.32) yields:

1

1− se + se ∆ξe/(1− se)
· pr
p ′i
≥ 1 (6.35)

We see that the network correlations explicitly enter this (in)equality on the left-hand side

via ∆ξe. The sign of ∆ξe is indicative of whether such correlations support (∆ξe < 0) or

counteract (∆ξe > 0) the achievement of herd-immunity. A qualitative argument for the sign

of ∆ξe in general can be given by considering the influence of correlations on the number of

s-r pairs and 〈s ′sr〉.
In the absence of correlations (fully random distribution of r-nodes) the number of s-r

pairs for s ′ = se− s0 is (see (1.14)): n ′sr = nse〈s ′sr〉 = nν ′se(1− se), so that 〈s ′sr〉 = ν ′(1− se).
However, due to the percolative nature of the spread of the infection, the r-nodes along its

paths are not randomly distributed but form dendritic structures (”trees”). With s ′r = se,

the following inequality then applies to the number of r-r pairs for s ′ = se − s0:

n ′rr ≤
ns2

eν
′

2

where the equal sign relates to a random distribution of removed infections (each removed

infection having seν
′ other removed infections in its social network), and the inequality applies

in case of the (correlated) dendritic structures (the division by 2 corrects for double counting

removed infections). With n ′rr = ns ′r 〈s ′rr〉/2 (see (1.15)) we thus obtain (remember s ′r = se):

〈s ′rr〉 ≤ ν ′se

and with 〈s ′sr〉 = ν ′ − 〈s ′rr〉 (see (6.28b):

〈s ′sr〉 ≥ ν ′(1− se)

Via ∆ ξ(s ′) = − ∆ 〈s ′sr(s ′)〉
ν ′

and (6.33b) this (in)equality can be transformed into:

1− (se + ∆ ξe) > 1− se

in the presence of correlations (i.e. in cases where ∆ ξe 6= 0). That is:

∆ ξe < 0 (6.36)
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We thus find out that network correlations by themselves always contribute to the achievement

of herd-immunity in a positive way: a negative ∆ ξe increases the value of left-hand side of

(6.35) with respect to its value for ∆ ξe = 0 (i.e. for a random distribution without network

correlations). It is emphasized however, that network correlations are a contributing factor,

rather than a necessary requirement for herd-immunity. After all, is clear that even in the

absence of correlations (∆ ξe = 0), the sheer increase in the cumulative-infection number se

alone already leads to an increase in the left-hand side of (6.35). However, indicative of the

role of correlations, (6.35) and (6.36) indirectly emphasize the role of percolation effects as well

in the establishment of herd-immunity, given the close relation between network correlations

and percolation.

b) Different types of herd-immunity: a classification

It is worth noticing that a distinction can be made on the basis of (6.24) and (6.32)

between different types of herd-immunity, all of which having clear, but different, practical

implications. First of all, it is important whether (6.24) and (6.32) only hold in regimes

of strict social measures, or in every conceivable regime of social measures (including the

regime of social normality). In the first case we can speak of ”weak” herd-immunity, as

opposed to ”strong” herd-immunity in the second case. Weak herd-immunity is a contextual

phenomenon, and it occurs only by virtue of the restrictions imposed upon the population by

a regime of sufficiently strict social measures. There is no guarantee that the population is

safe from a restart of the epidemic as soon as social restrictions are (partially) lifted. Only

strong herd-immunity can offer such a guarantee. In fact, weak herd-immunity is not what

we intuitively associate with herd-immunity, only strong herd-immunity does. However, for

the sake of clarity, making a distinction between the 2 forms has its benefits.

Another relevant distinction can be made on the basis of something that we might call

the ”degree” of herd-immunity. As soon as (6.24) is met, the epidemic is in a phase of

inevitable fade-out under the imposed regime of social measures. However, the generation of

new infections has still not come to a halt (which may still put a burden on the health system

for instance). Nevertheless, the risk of the epidemic growing out of control has disappeared.

We might call this situation a state of ”1st degree herd-immunity”. Such a situation may

precede a state of ”2nd degree herd-immunity”, which is entered when the number of active

infections actually becomes zero and the resulting state is one in accordance with (6.32), i.e. a

state where, although (very) small pockets of new infections may (re)appear, the population

at large is ”immune” against the build-up of a new wave of infections, at least under the

imposed regime of restrictive social measures.

It should be clear that states of weak herd-immunity are deceptive, irrespective of their

degree. Although the number of infections may be declining (1st degree) or has come to a

fade-out (2nd degree), the risk of a renewed increase in the active infection rate after lifting

the social measures is real. A state of weak herd-immunity may therefore be the aim of
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temporary measures to lift the burden on the health system, but its achievement should by

no means taken as a motivation to return to normality. Only when the number of active

infections is in decline in a case of strong herd-immunity (of 1st degree) such a return is

safe. By definition, the end of the battle against an epidemic outbreak is then marked by

a state of strong herd-immunity of 2nd degree: not only has the active infection rate faded-

out in such a case, but the population is immune, even under a regime of social normality,

against new waves of infections arising out of small contingents of initial infections. Telling

the difference between states of weak and strong herd-immunity may not be easy in practice

however, especially when the pathogen is (relatively) new and its properties (pi for instance)

insufficiently known.

c) Herd-immunity and reproduction numbers

In the literature, conditions for herd-immunity and the herd-immunity threshold are often

expressed in terms of reproduction numbers. Considering the critical remarks made in chapter

2 and section 5d with respect to the practical use of reproduction numbers, combined with

the confusion about the definition of herd-immunity in the literature, a short regression into

this subject seems more than appropriate.

Very often, a state of herd-immunity is defined as a state where the number of active

infections has reached its peak and is in a state of decline. It may be clear that this is

actually what is called a state of 1st-degree herd-immunity according to the classification in

the previous section, as opposed to a state of 2nd-degree herd-immunity to be reached when

the active infection rate has finally faded-out to zero. The condition for such a state to occur

is (when si 6= 0):

ṡi = pi
〈ssi〉
ν
− pr ≤ 0

That is:

〈ssi〉
ν
· pi
pr
≤ 1 (6.37)

Note that 〈ssi〉 = 〈ssi(t)〉. We define:

R ′ = R ′(t) =
〈ssi(t)〉
ν

· pi
pr

(6.38)

which we reexpress as:

R ′(t) = Q′(t) · pi
pr

(6.39a)

where:

Q ′(t) =
〈ssi(t)〉
ν

(6.39b)
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so that the requirement for 1st-degree herd-immunity (6.37) can be rewritten as:

R ′ = Q ′ · pi
pr
≤ 1 (6.40)

The similarity between (6.39a) and (2.4) is obvious. However, Q ′ 6= Q in general (see (2.3)),

so that R ′ 6= R. Therefore R ′ is not a reproduction number.

Combining (2.3) and (6.39b) we get:

Q(t) = −
∞�

t

〈ssi(t′)〉
ν

de−pr(t′−t) = pr

∞�

t

Q ′(t′ )e−pr(t′−t)dt′ (6.41)

We introduce Qm(t):

Qm(t) = pr

∞�

t

Q ′(t)e−pr(t′−t)dt′

= pr ·Q ′(t)
∞�

t

e−pr(t′−t)dt′ = Q ′(t) (6.42)

Since Q ′(t) ≥ Q ′(t′) for t′ ≥ t (because 〈ssi(t)〉 ≥ 〈ssi(t′)〉 for t′ ≥ t), it is easy to see that

Qm(t) ≥ Q(t). By combining this result and (6.42) we thus obtain:

Q ′(t) ≥ Q(t) (6.43)

Hence (see (2.4) and (6.39a)), for all t > 0 : R ′ ≥ R. So, when the criterion R′ ≤ 1 for

1st-degree herd-immunity is met, the criterion R ≤ 1 is also met. Vice versa however, R ≤ 1

is not a sufficient condition for R′ ≤ 1. Therefore, R ≤ 1 is not a valid criterion for 1st-degree

herd-immunity.
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7. Vaccination

A key lesson from the previous sections is that the pursuit of herd-immunity by allowing the

infection to spread through the population may possibly run into serious difficulties. When

the infection is allowed to spread under a (strict) regime of social measures there is a risk that

the population ends up in a state of apparent herd-immunity that turns out to be false as soon

as social restrictions are lifted and the infection rate starts to rise steeply again. On the other

hand, letting the infection spread under a normal social regime does lead to herd-immunity,

but only at the cost of a very large number of infections, which is unacceptable especially

in those cases where the infection is of a kind that causes serious health issues. Therefore,

the only way to achieve herd-immunity in a manner that is safe under all circumstances is

vaccination.

To describe the effects of large scale vaccination on the susceptibility of a population to

epidemic spreading of an infection, we introduce the effectiveness ε of a vaccine, being the

relative decrease of the transmission probability wi or, equivalently, the relative reduction of

the transmission constant pi = 2wi. The constant of transmission p ′i from an active infection

to a vaccinated individual is thereby related to the transmission constant pi from an active

infection to an unvaccinated (fully susceptible) individual via:

p ′i = (1− ε) pi (7.1)

The lesser the protection offered by a vaccine, the lower the value of ε for that particular

vaccine: by definition 0 ≤ ε ≤ 1, where ε = 1 corresponds to a 100% effective vaccine that

gives full protection (immunity), whereas ε = 0 effectively relates to a case without any

vaccination, or to a totally inactive vaccine.

Now, let 〈σsi〉 and 〈σ ′si〉 respectively be the average number of unvaccinated nodes and the

number of vaccinated nodes linked to an active infection. The rate of change si of the active

infections in case of a (partially) vaccinated population can then be expressed as:

ṡi = si

(
pi〈σsi〉 + p ′i〈σ ′si〉

ν
− pr

)
(7.2)

= si

(
pi
(
〈σsi〉 + (1− ε)〈σ ′si〉

)
ν

− pr

)

The vaccinated population is assumed to be free from active and removed infections (si =

s = 0) prior to t = 0, when a very small number (si � 1) of new active infections, randomly

distributed over the population, appears.
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We write:

〈σsi〉 = ν (1− ξv) +
∞∑
k=1

αk s
k 〈σ ′si〉 = ν ξv +

∞∑
k=1

α ′k s
k (7.3)

Here ξv accounts for the reduction of 〈σsi〉 and 〈σ ′si〉 at t = 0 (s = 0) due to vaccination

(compare to ξ0, ξe and ξ(s) in chapter 6). Mathematically, nodes representing a vaccinated

individual are equivalent to those representing a removed infection. Substitution of (7.3) into

(7.2) yields:

ṡi = si

(
pi

{
(1− ε ξv) +

1

ν

∞∑
k=1

βk(ε) s
k

}
− pr

)
(7.4)

where:

βk(ε) = αk + (1− ε)α ′k (7.5)

The condition ṡi(t)|t=0 > 0 (or equivalently ṡi(s)| s=0 > 0) for an epidemic to develop from a

few initial infections then implicitely leads to (compare to sections 5a and 5b):

1

(1− ε ξv)
· pr
pi
≥ 1 (7.6)

as a criterion for vaccine-acquired herd-immunity. Possible (network) correlations between

vaccinated individuals enter the criterion via ξv. Such correlations may arise (in theory)

when the vaccination is carried out according to a non-random scheme. Such a situation

seems quite unusual however. We therefore assume that the members of the population

are vaccinated at random so that ξv = sv, where sv is the vaccination rate (fraction of the

population vaccinated). In that case (7.6) becomes:

1

(1− εsv)
· pr
pi

> 1 (7.7)

The product εsv ≡ �v can be considered as an effective vaccination rate: vaccinating a fraction

sv of the population with a vaccine having an effectiveness of ε < 1 is equivalent to vaccinating

a population-fraction �v = ε sv with a vaccine having an effectiveness ε = 1. The critical

vaccination rate marking the herd-immunity threshold is now straightforwardly obtained from

(7.7) as:

svc =
pi − pr
ε pi

=
1

ε

(
1− Q0

R0

)
(7.8)

where R0 = Q0 · pi/pr is the basic reproduction number, with Q0 accounting for the s-

dependence of 〈ssi〉 (see chapter 2). In the literature, the herd-immunity threshold is often

given as svc = 1−1/R0 [see [1] for instance]. This is, strictly speaking, incorrect. Expressions
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of that form relate to an incorrect/incomplete expression for R0 or, at best, to an approxima-

tion for R0 (see section 5d), where the s-dependence of 〈ssi〉 is ignored or neglected (leading

to R0 = pi/pr).

The result (7.8) can be reexpressed in terms of the critical effective vaccination rate �vc

as:

�vc =
pi − pr
pi

= 1− Q0

R0

(7.9)

Vaccination-acquired herd-immunity is obtained when the vaccination rate is equal to or larger

than the critical vaccination rate, which is equivalent to the effective vaccination rate �v = εsv

being equal to or larger than the critical effective vaccination rate �vc:

sv ≥
1

ε

(
1− Q0

R0

)
(7.10a)

�v ≥ 1− Q0

R0

(7.10b)

Since 0 ≤ ε ≤ 1 and 0 ≤ sv ≤ 1 it is easy to see that 0 ≤ �v ≤ 1. The critical effective

vaccination rate �vc = 1−Q0/R0 is the lowest value of �v for which herd-immunity is obtained

for given pi/pr = R0/Q0. However, from (7.10a) it is evident that its value also equals the

lowest value of ε for which (by vaccinating the entire population so that sv = 1) herd-immunity

can be obtained at given pi/pr (lower values of ε do not allow for herd-immunity to be obtained

for the value of pi/pr involved, since they would require sv > 1). We can therefore combine

2 ”phase diagrams” into a single figure. Fig. 7.1a. shows the relevant combinations of pi/pr

and �v, as well as the combinations of pi/pr and ε, for which vaccine-acquired herd-immunity

is or (respectively) can be obtained (and for which not). The combinations of pi/pr and �v are

represented as points (pi/pr, �v) in the pi/pr−�v plane (horizontal axis and right vertical axis),

whereas the combinations of pi/pr and ε are represented as points (pi/pr , ε) in the pi/pr − ε
plane (horizontal axis and left vertical axis). Vaccine-acquired herd-immunity is possible only

for points (pi/pr , �v) and (pi/pr , ε) in the grey-shaded area of the combined pi/pr − �v and

pi/pr − ε plane. This area is enclosed by the curves ε, �v = 1, pi/pr = 1 and the graph of the

function f : pi/pr → 1 − pi/pr. Points (pi/pr , �v) in this grey-shaded area correspond to a

state of (vaccine-induced) herd-immunity by definition. In contrast, for points (pi/pr , ε) in

the grey-shaded area, herd-immunity is obtained only when an appropriate vaccination rate

0 ≤ sv ≤ 1 consistent with (7.10a) is chosen. It should be noted that the region for pi/pr < 1

is in fact irrelevant in the context of vaccination, since herd-immunity is, so to speak, trivial

and inherent to the situation here (an epidemic cannot develop at all when pi < pr, as outlined

previously).

In addition, fig. 7.1b shows a contour map of the minimum vaccination rates neces-

sary to obtain herd-immunity (calculated on the basis of (7.10a)) as a function of pi/pr
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and ε. Adjacent contours correspond to a difference ∆sv = 0.0625. The contours for

sv = 0, 0.25, 0.5, 0.75, 1 have been specially highlighted in black to serve as visual anchors.

The progress of the contour lines clearly illustrates how ever higher vaccination rates become

necessary to obtain herd-immunity when pi/pr is increased while ε remains constant. Where

the line y = ε = constant intersects the curve y = 1−pi/pr (which relates to sv = 1) a critical

value rc = rc(ε) of pi/pr is reached: for values of pi/pr > rc(ε) a vaccine with efficiency ε is

unable to provide herd-immunity. Conversely, fig. 7.1b also shows how ever lower values of

ε necessitate ever higher values of sv to obtain herd-immunity when R0 is kept fixed, until a

critical value εc = εc(pi/pr) = 1− pi/pr is reached below which no herd-immunity is possible

even for sv = 1. Points (pi/pr, ε) in the segment of the pi/pr − ε plane enclosed by the curve

ε = 1−pi/pr and the horizontal axis (ε = 0) therefore relate to a situation where the pathogen

involved becomes ”endemic”. What is meant by this is that for such combinations of pi/pr

and ε the spread of the infection cannot be stopped, despite vaccination. When additionally

the individuals that have recovered from an infection only obtain a low (partial) immunity

and/or loose most of their immunity after longer periods of time, the pathogen will remain

circulating among the members of the population. The only way out of this situation is to

develop a vaccine with an effectiveness high enough to ensure herd-immunity for a vaccination

rate sv ≤ 1. As long as such a vaccine is not available, the pathogen has to be considered as

”endemic”.

It may also happen that a vaccination campaign is undertaken using different vaccines of

different effectiveness (as in the case of, for instance, many 2021 vaccination campaigns against

Covid-19). In such a situation, (7.2) should be replaced by the more general expression:

ṡi = si

(
pi
ν

{
〈σsi〉 +

∑
m

(1− εm)〈σ ′si,m〉

}
− pr

)
(7.11)

where the summation runs over the different vaccines, which are labelled by the integer m.

We replace the equation on the right in (7.3) by:

〈σ ′si,m〉 = ν ξm +
∞∑
k=1

α ′k,m s
k

Correspondingly, the equation on the left in (7.3) is replaced by:

〈σsi,m〉 = ν
(

1−
∑
m

ξm

)
+

∞∑
k=1

αk,m s
k

We can now write the generalisation of (7.4) as:

ṡi = si

(
pi

{(
1−

∑
m

εm ξm

)
+

1

ν

∞∑
k=1

βk (ε1..εm) sk

}
− pr

)
(7.12)
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In case of at-random vaccinations that is:

ṡi = si

(
pi

{(
1−

∑
m

εm sm

)
+

1

ν

∞∑
k=1

βk (ε1..εm) sk

}
− pr

)
(7.13)

where sm is the (partial) rate of vaccination with vaccine m (that is, the fraction of the

population vaccinated with vaccine m). In analogy with (7.7), the criterion for herd-immunity

now becomes:

1

(1−
∑
m

εm sm)
· pr
pi
≥ 1 (7.14)

Let the vaccine-averaged efficiency be defined as:

ε =

∑
m

εm sm∑
m

sm
(7.15)

where
∑
m

sm = sv can be identified as the total (cumulative) vaccination rate (i.e. the sum of

all the partial vaccination rates).

The criterion (7.14) can then be reexpressed as:

1

(1− εm sv)
· pr
pi
≥ 1 (7.16)

from which the critical vaccination rate follows as:

svc =
pi − pr
ε pi

(7.17)

This result is of the same form as (7.8), except that the (single-vaccine) effectiveness ε has

been replaced by the vaccine-averaged effectiveness ε . An effective vaccination rate �v can be

defined in the same way as previously, giving �v = εsv, the critical effective vaccination rate

�vc being given by (7.9).

It should be noted that the obtained critical vaccination rates do not depend on the

structure of the social network: as long as the vaccinations are carried out at random, crit-

ical vaccination rates are the same for all populations irrespective of their social (network)

structure.

However, when a vaccination campaign is undertaken during an ongoing epidemic the

situation is different, and the structure of the population network does have an influence on

the threshold for vaccine-acquired herd-immunity, even in case of at-random vaccination.
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Fig. 7.1: (a) Combined pi/pr − ε and pi/pr − � ”phase-diagrams”. Points (pi/pr, �) (right

vertical axis) in the grey-shaded area correspond to vaccine-acquired herd-immunity, points

(pi/pr, ε) (left vertical axis) to the possibility of vaccine-acquired herd-immunity (via a suffi-

ciently high vaccination rate, the minimum value of which can be read from the diagram in

fig 7.1b below). b) Contour lines of the vaccination rates necessary for vaccine-acquired herd

immunity as a function of pi/pr and ε.
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Suppose that the infection has been spreading from t = 0 onwards until at t = t0 a vaccination

campaign is started, and that only one type of vaccine is used in this campaign. As a result

of the vaccinations, the susceptible part of the population is divided into a vaccinated and an

unvaccinated part from t = t0 onwards, where the ”bare” transmission constant pi applies to

the unvaccinated part and the reduced transmission constant p ′i = (1− ε) pi to the vaccinated

part. With time, the epidemic comes to a halt under the combined influence of infection-

removal and the vaccine-related reduction of pi. This situation differs from the case without

a vaccination campaign during the epidemic, since in that case the epidemic comes to a halt

due to infection removal only (and it’s effects on infection percolation).

In general, especially when vaccinations are randomly distributed across the population,

the vaccination rates among the susceptibles and the removed infections differ after the end of

the epidemic. These rates are represented respectively by ssv and srv. Due to the lower trans-

mission probability that vaccinated susceptibles are subject to compared with non-vaccinated

ones (p ′i < pi), eventually (with time) the inequality ssv ≥ srv will apply. Vaccinated sus-

ceptibles will get infected (if at all) in lower numbers than the non-vaccinated ones so that

they will become overrepresented among the non-infected individuals and underrepresented

among the infected (the opposite being the case for the non-vaccinated susceptibles). The

partial vaccination rates srv and ssv are related to the total vaccination rate sv for the entire

population via:

ss s
s
v + sr s

r
v = sv (7.18)

Hence, the inequality ssv ≥ srv implies that ssv ≥ sv: the total vaccination rate sv is in fact a

lower bound for the partial vaccination rate ssv of the non-infected (s) part of the population

after a (1st) wave of infections has passed.

since infection removal is considered to leave an individual with full immunity, a potential

next wave (due to new pockets of active infections after the fade-out of the preceding wave)

will spread exclusively among the members of the non-infected (and therefore still susceptible)

part of the population. To describe the dynamics of this next (2nd) wave we introduce, in

addition to ssv , the fraction sns of non-vaccinated (n) individuals among the susceptible part

of the population after the 1st wave (nb: ssv + ssn = 1). We also introduce ssxy , representing

the average number of nodes of type x linked to a node of type y on the network formed by

the nodes still uninfected (susceptible) after the 1st wave (i.e. before the 2nd wave starts

due to newly introduced active infections). After the emergence of new active infections,

the node-types can be: vaccinated (v), non-vaccinated (n), active infection (i) and removed

infection (r).
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Now, let se be the final value of s and 〈ssr〉 = ν(1− ξe) when the 1st wave has come to a

halt and just before the start of the 2nd wave (compare to (6.27a)). As shown in the previous

chapter, the value of 〈sss〉 is then given by (compare to (6.29b)):

〈sss〉 = ν − 〈srs〉 = ν

(
1 +

se (ξe − 1)

1− se

)
(7.19)

We also have (see Appendix 1):

ssv〈ssvv〉 + ssn〈ssvn〉 = ν ′ssv (7.20a)

ssv〈ssnv〉 + ssn〈ssnn〉 = ν ′ssn (7.20b)

where ν ′ = 〈sss〉, and as such directly follows from (7.19) as:

ν ′ = ν

(
1 +

se (ξe − 1)

1− se

)
(7.21)

The left-hand parts of (7.20a,b) can be interpreted, respectively, as the average number of

v-nodes linked to an s-node (7.20a) and the average number of n-nodes linked to an s-

node (7.20b). Since we assume that the small number of new active infections is distributed

randomly among the members of the susceptible part of the population, these new active

infections will therefore be linked, on average, to ν ′ssv vaccinated susceptibles and to ν ′ssn
non-vaccinated susceptibles. Hence:

〈ssvi〉 = νssv

(
1 +

se (ξe − 1)

1− se

)
+

∞∑
k=1

αvk(s− se)k (7.22a)

〈ssni〉 = νssn

(
1 +

se (ξe − 1)

1− se

)
+

∞∑
k=1

αnk(s− se)k (7.22b)

with s representing the cumulative infection rate over both the 1st and 2nd wave combined.

The rate of change of the active infections is given by:

ṡi = si

(
pi
ν

{
〈ssni〉 + (1− ε)〈ssvi〉

}
− pr

)
(7.23)

Substitution of (7.22a), (7.22b) and ssn = 1− ssv into (7.23) yields, after some rearrangements:

ṡi = si

(
pi

{
(1− εssv)

(
1 +

se (ξe − 1)

1− se

)
+

1

ν

∞∑
k=1

βsk(ε) (s− se)k
}
− pr

)
(7.24)

where βsk(ε) = αnk + (1− ε)αvk.
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Demanding ṡi < 0 for s = se , the criterion for herd-immunity is straightforwardly obtained

from (7.24) as: {
(1− εssv)(1 + se(ξe − 2))

1− se

}
· pi
pr

< 1 (7.25)

That is, we will have herd-immunity when:

ssv >
1

ε

({
1− se

1 + se(ξe − 2)

}
· pr
pi
− 1

)
(7.26)

A generalisation of this result to the case of multiple vaccines with different ε is rather straight-

forward. Since ssv > sv , the right-hand part of this inequality can be considered as a critical

value of the global vaccination rate sv beyond which herd-immunity is assured.

The network structure manifests itself in this case through the values of se and ξe , and is

therewith a decisive factor in the achievement of herd-immunity, with a direct influence on the

herd-immunity threshold. As a consequence, problems may thus arise similar to those outlined

in the previous chapter in connection with the achievement of spontaneous herd-immunity.

A fade-out of the number of active infections under a regime of restrictive measures, even

when combined with a vaccination campaign, is not a guarantee that herd-immunity is being

achieved. Lifting the restrictive measures to regain a regime of social normality may be

accompanied by a new rise in the active-infection numbers to such an extent that even a new

wave of infections cannot be ruled out in advance. Everything will depend on the values of ξ ′e
and p ′i that replace ξe and pi in the new regime entered after lifting the restrictions. If (7.26)

is not met for ξ ′e and p ′i then a new wave of infections is inevitable upon lifting restrictions,

despite the vaccinations administered so far (which will simply be too low in number for

the establishment of herd-immunity in such a case). This has important consequences for

efforts to prevent epidemic outbreaks by means of vaccination. A prophylactic vaccination

campaign will provide the herd-immunity it is aiming at only when the resulting vaccination

rate exceeds the herd-immunity threshold for a situation of social normality. If the latter

is not the case, a transition from a regime of social restrictions to social normality (or a

milder regime) may be followed by (significant) increases in the infection numbers, despite

the vaccination campaign and an apparent fade-out of the infection rates prior to the moment

of rolling back the restrictions.

Reference

[1] H. E. Randolph, L. B. Barreiro, Herd Immunity: Understanding COVID-19,

Immunity 52, 737-741 (May 19, 2020)
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8. Percolation

a) The percolation transition and its relevance in the context of vaccination

So far, herd-immunity has been presented purely as a consequence (or, merely, a side-

effect) of infection removal, even when network effects are involved. However, an additional

independent mechanism for herd-immunity is brought about in the form of percolation by the

network structure and topology typical of populations. Percolation on a lattice or network can

be understood as the formation of paths along nodes of a particular type, or as the formation

of (isolated) clusters of nodes of a certain type (either enclosed by nodes of a different type,

or cut-off from the rest of the network). The formation of paths or clusters can be the result

either of (random) removal/replacement of nodes or the (random) removal of links/bonds. The

first case is referred to as site-percolation whereas the second case is called bond-percolation

(see [1] for a basic but detailed outline of concepts and theory). Percolation phenomena

play a role in many branches of the natural sciences and technology, ranging from solid-state

physics (magnetic dilution) and chemistry (polymerisation) to electrical engineering (random

electrical networks). It is by the very nature of the problem that the relevance of percolation

appears almost self-evident in the context of epidemic infection-growth as well. Surprising

it is therefore that the subject has been given fairly little attention in the epidemiological

literature, despite the fact that it has been demonstrated that the percolation paradigm

has its (potential) merit for the field (for example through the analysis by Davis et. al [2]

of the spread of yersinia pestis (plague) among populations of great gerbils). However, a

conceptually simple phenomenon at first glance, percolation is a notoriously difficult subject

for mathematical analysis. Despite the fact that seminal results have been achieved during

the 1950s and onwards (see [3] for an in-depth review), specific problems often defy solution

by analytical means and can only be dealt with through the use of computational methods

(in particular (statistical) simulations). Therefore, the emphasis of this chapter will, out of

necessity, for a significant part be on computational results.

Percolation seems a particularly relevant concept in relation to (random) vaccination,

especially when, as from now on, an ”ideal” vaccine is considered with 100% efficiency (that

is, ε = 1 (see previous chapter)). Nodes in the population network are randomly immunized

and are no longer susceptible to infection. They can no longer become infected and, equally

important, they can no longer pass on the infection to other (susceptible) nodes. They are, so

to say, ”inert” nodes in the network, in contrast to the ”active” nodes which are either already

infected or still susceptible to infection. It is easy to see that this situations corresponds, in

fact, to nothing less than a genuine case of site-percolation.

An essential phenomenon to be considered now is the so-called percolation transition. A

general feature of both bond- and site-percolation on a lattice or network, the percolation

transition marks a sharp change, upon increasing the number of inert nodes, between a
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regime where a majority of the active nodes forms a ”macroscopic” cluster of proportions

comparable to those of the entire network, to a regime where the active nodes are split up in

clusters of much smaller dimensions (of, for instance, no more than a few nodes). The critical

value xc of the fraction of inert nodes in the network at which the transition takes place is

commonly referred to a the percolation threshold. A phase-transition in the true physical and

thermodynamic sense, the percolation transition comes with all the typical characteristics

of a thermodynamic phase transition, such as universality and scaling invariance (see [1]

chapter 7). Its relevance to the problem of epidemic infection growth and herd-immunity

is evident. Below the percolation threshold the infection is easily passed on throughout the

entire population network. Even when the initial number of active infections is low, a vast

number of nodes may eventually be reached by the infection. However, for values of xc above

the percolation threshold, the infection chains sooner or later run into an inert node that

blocks any further propagation of the infection along that particular chain. Especially when

the number of initial infections is very low, only a (very) minor fraction of the nodes will be

reached by the infection and the number of accumulative infections will remain low.

The role of percolation in an epidemiological setting and its relation to herd-immunity

can be demonstrated quite well via carefully thought out simulations of the evolution of an

epidemic on a simplified network. A convenient choice for such a network is the 2D square

lattice already introduced in chapter 4, with the nodes representing the individual members

of the network. Links between nodes, representing the possibility of contact and, inherently,

a route of infection transmission, can be chosen in any arbitrary way in order to simulate the

effects of differences in the size and structure of the social networks of the individual members

of the population. A particular benefit of such simulations is that different mechanisms can

be ”turned on and of” at will by an appropriate choice of their corresponding parameters,

thus enabling a targeted investigation of their particular role and influence (or those of other

mechanisms).

To separate the influence of infection-removal from that of percolation phenomena, the

evolution of 4 epidemics was simulated for different values of the rate of (random) vaccination

xv on a 2D square lattice of 2001x2001 nodes while putting pr = 0 (i.e. no infection removal).

Periodic boundary conditions were again applied. The initial states of the population t = 0

at the start of each epidemic was constructed by randomly labelling nodes as vaccinated until

the desired vaccination rate was reached, followed by a random selection of non-vaccinated

nodes to be labelled as active infections, thus providing the ”seeds” for the epidemic.

Figs. 8.1a/d show the end-status of the nodes in the population after each epidemic has

come to a halt. In these simulations, nodes were considered to be linked only to their direct

nearest neighbours, a situation resembling the conditions under a (very) strict lock-down.

Nodes are labelled red when infected, black when vaccinated and white when still uninfected.

In cases like these, where there is no infection removal, the infection spreads through the

entire cluster of susceptible nodes surrounding each initial (seed) infection until the boundary

of the cluster (formed by vaccinated nodes) is reached (that is, when there actually is such a
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boundary instead of a continuous cluster). The fragmentation of the bulk cluster of infected

(red) nodes into clusters of ever smaller size upon increasing xv is clearly visible. The results

shown are consistent with the value of the site-percolation threshold of a 2D square lattice of

xc ≈ 0.41 as reported in the literature for the case of random blocking of sites [4].

(a) xv = 0.35 (b) xv = 0.40

(c) xv = 0.425 (d) xv = 0.45

Fig. 8.1: End-status (after fade-out of the epidemic) of the nodes in a model-population

consisting of a 2D square lattice with nearest-neighbour contacts for different rates (xv) of

random vaccination. The different nodes types are distinguished by the colour of the square

unit cell that surrounds them (red: infected nodes, black: vaccinated nodes, white: susceptible

nodes)

To allow for a more detailed impression of the effect of vaccination at the level of the

individual nodes, enlarged smaller sections of the respective network end-states shown in figs.

8.1a/d are represented in figs. 8.2a/d. It is clearly recognisable how, with increasing xv, more

and more paths along susceptible nodes become interrupted by vaccinated nodes, even to the

level that susceptible nodes and actually entire clusters of susceptible nodes become fenced-
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in by a closed ”ring” or even a cluster of vaccinated nodes, thus shielding the susceptible

nodes involved from active infections outside the cluster. Only infections from inside such

enclosed clusters of susceptibles may lead to a spread of the infection to other members of the

cluster. When pr = 0, eventually all the nodes in a susceptible cluster will become infected

in the end. But, whereas below the percolation threshold xc this implies that a majority if

the non-vaccinated part of the population (if not the entire part) will become infected, only

a small (possibly negligible) minority of the non-vaccinated individuals will become infected

when xv > xc, provided that the number of initial infections is (sufficiently) low.

(a) xv = 0.35 (b) xv = 0.40

(c) xv = 0.425 (d) xv = 0.45

Fig. 8.2: Close-up of the model-populations shown in figs. 8.1a/d (red: infected nodes, black:

vaccinated nodes, white: susceptible nodes)
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In a partially vaccinated population, each initial infection will ”land” in one of the remaining

clusters of (non-vaccinated) susceptibles. There it will start transmitting the infection via

its social contacts, thus initiating the spread of infection through the cluster. However, once

an entire cluster of susceptibles has become infected, further propagation of the infection

will stop at the cluster boundaries formed by the closed ring of vaccinated nodes. Below

the percolation threshold (xv < xc) cluster sizes (from here onwards defined as the number

of nodes in each cluster) are quite large (of the same order of magnitude as the size of the

population) so that the final (cumulative) number of infections will be large too. Beyond the

percolation threshold however (xv > xc), cluster sizes are modest or even very small. Since

the infection will be limited only to those clusters embracing one or more initial infections,

the final number of infections will remain low when the number of initial infections is low.

In view of these considerations, we expect the cumulative number of infections at the end

of an epidemic to scale with a properly weighted average 〈Sc〉 of the size Sc of the clusters of

susceptibles directly after vaccination (before the start of the epidemic). An appropriate and

meaningful choice for such an average is obtained by taking the average over the fractions of

the susceptible part of the population accounted for by the individual clusters:

〈Sc〉 =
∑
c

Sc
ns
· Sc =

1

ns

ns∑
Sc=1

m(Sc) · S 2
c (8.1a)

where the first summation runs over all susceptible clusters (c), with ns representing the total

number of susceptible nodes in the population, whereas the second summation runs over all

cluster sizes, with m(Sc) ∈ N representing the actual number of clusters of size Sc present in

the population network (so that m(Sc) · Sc is the total number of nodes belonging to clusters

of size Sc). A quantity of even more significance is obtained when the cluster sizes Sc and

their average 〈Sc〉 are themselves considered relative to the total number ns = n(1 − xv) of

susceptible nodes at a given xv. That is, when we introduce the relative cluster size Sc/ns and

its average 〈Sc〉/ns. Being equal to 1 in case of only one single macroscopic cluster of a size

comparable to the size of the population, but approaching zero in cases where there are only

very small clusters of a few nodes embedded in a very large population, the relative clusters

size Sc/ns can be seen as an order parameter (rp) for percolation on a lattice or network.

From (8.1a) we immediately get:

rp =
〈Sc〉
ns

=
∑
c

(
Sc
ns

)2

(8.1b)

Fig. 8.3a shows 〈Sc〉/ns as a function of xv for a 2D square lattice with nearest-neighbour

contacts. Numerical data were obtained by generating a randomly vaccinated population

for a series of xv throughout the entire interval 0 < xv < 1 and subsequent application of

a computational algorithm for cluster-identification to each population, thus providing the

necessary input for calculating 〈Sc〉 and 〈Sc〉/ns. The result is typical of a system showing
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a percolation transition. Below xv = xc ≈ 0.41 the average relative cluster size is close to

unity. When xv approaches xv = 0.41 a gradual decrease in 〈Sc〉/ns sets in that culminates

in a sharp drop at xv = xc ≈ 0.41 marking a transition to a regime marked by small clusters

(of even negligible relative size) at higher values of xv.

(a) 〈Sc〉/ns vs xv (b) 〈 (Sc − 〈Sc〉) 2 〉/ns vs xv

Fig. 8.3: Average relative cluster size (a) and its standard deviation (b) vs xv for a 2D square

lattice with nearest-neighbour contacts

Furthermore, the fact that percolation transitions (including the one shown in fig. 8.3a)

are true phase transitions in a statistical physical sense is reflected in fig. 8.3b, showing the

standard deviation
√
〈 (Sc − 〈Sc〉) 2 〉/ns of the relative cluster size as a function of xv. With√

〈 (Sc − 〈Sc〉) 2 〉/ns being a measure for the (average) size of the ”fluctuations” in Sc/ns, its

behaviour as a function of xv is typical of physical systems undergoing a phase transition of

so-called second order, as reflected in the distinctive lambda-shape of the curve in fig. 8.3b,

with a clear peak at xv = xc that also marks a discontinuity in the derivative.

b) The correlation length

In the (modern) theory of phase transitions, the size of the fluctuations is intimately related

to the correlation length [5], as such that the increase and divergence of the fluctuations

(and other quantities) upon approaching the percolation transition is directly connected to a

divergence of the correlation length.
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For percolation phenomena, the correlation length ξ is defined (see [1] p. 64) as an appropriate

average of a typical measure of length Rc of the isolated finite clusters (the large infinite ”bulk-

cluster” being excluded from the average):

ξ2 =
∑
c′

Sc′

n′s
·R 2

c′ (8.2a)

where the index c′ runs over the finite clusters and n′s represents the total number of susceptible

nodes contained in the finite clusters. Assuming only one single bulk cluster and representing

its size by S0, we can write n′s = ns − S0. With Rc′ ∼
√
Sc′ we can thus rewrite (8.2a) as:

ξ2 ∼
∑
c′

Sc′

ns − S0

· Sc′ (8.2b)

Calculation of the correlation length from computer simulations of lattices (or networks)

randomly filled with susceptible and vaccinated nodes comes with a conceptual problem how-

ever. The culprit in this is the bulk cluster. In an infinite lattice, the bulk cluster is infinitely

large too. In contrast, lattices simulated on a computer can never be infinite. The amount of

available memory imposes an (absolute) upper bound upon their size, and even for sizes sig-

nificantly lower than the largest size allowed for by the available memory computation times

may become impractically long. Hence, computationally simulated lattices and networks are

of finite and considerably limited size, and so are the clusters on them to be identified as

simulated bulk clusters. The actual core of the problem here resides in the identification of

these bulk clusters. Simply taking the largest cluster size for the size of the bulk cluster will

not work, since there is always a largest cluster size below as well as above the percolation

threshold. A constraint that the largest cluster must be ”very large” in order to qualify

as bulk clusters will simply replace one problem for another, since ”very large” is a highly

arbitrary qualification and therewith a complication in itself. Calculation of the average of

the (squared) fluctuation size does not come with such difficulties however, as it involves a

summation over all clusters, including the bulk cluster (hence the index c instead of c′):

〈 (Sc − 〈Sc〉) 2 〉 =
∑
c

Sc
ns
· (Sc − 〈Sc〉) 2 (8.3)

It would therefore be highly significant if we could indeed (and generally) relate every peak

in
√
〈 (Sc − 〈Sc〉) 2 〉 to a sharp increase (or divergence) in the correlation length, no matter

the context or case in which such a peak emerges. Using somewhat pragmatic arguments it

can be shown that this is actually the case.
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First of all, note that 〈 (Sc − 〈Sc〉) 2 〉 = 〈S 2
c 〉 − 〈Sc〉 2. Via its definition, 〈S 2

c 〉 can be

expressed as:

〈S2
c 〉 =

∑
c

Sc
ns
· S 2

c =
1

ns

∑
c

S 3
c (8.4)

whereas 〈Sc〉 follows directly from (8.1a). We fairly assume that there is only one single bulk

cluster. We can then reexpress (8.1a) and (8.4) as:

〈Sc〉 =
S 2

0

ns
+

1

ns

∑
c′

S 2
c′ (8.5a)

〈S 2
c 〉 =

S 3
0

ns
+

1

ns

∑
c′

S 3
c′ (8.5b)

with c′ running over all non-bulk clusters. Based on considerations similar to those that led us

to a scaling relation between 〈Sc′〉 and ξ (as expressed by (8.2b)) we expect that 〈S 2
c′〉 ∼ ξ4.

After all Sc (Sc′) can be considered as the square of a characteristic length of a cluster c (c′),

and ξ by definition as the average of such a length. Hence, the following scaling relationship

applies to the sum in (8.5b):

1

ns

∑
c′

S 3
c′ =

ns − S0

ns

∑
c′

Sc′

ns − S0

· S 2
c′ =

ns − S0

ns
· 〈S 2

c′〉 ∼ ξ4 (8.6)

Note that 0 ≤ (ns − S0)/ns ≤ 1. Restating the scaling relationships (8.2b) and (8.6) as:

1

ns

∑
c′

S 2
c′ = a ξ2 1

ns

∑
c′

S 3
c′ = b ξ4 (8.7)

(with a and b in the order of unity) we can eventually rewrite (8.5a) and (8.5b) as:

〈Sc〉 =
S 2

0

ns
+ a ξ2 (8.8a)

〈S 2
c 〉 =

S 3
0

ns
+ b ξ4 (8.8b)

from which we obtain, via direct substitution and some minor rearrangements:

〈S 2
c 〉 − 〈Sc〉 2 = n 2

s

(
S0

ns

)3 [
1− S0

ns

]
− 2aS 2

0 ξ
2

ns
+ (b− a2) ξ4 (8.9)

84

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.22275842doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.01.22275842
http://creativecommons.org/licenses/by-nc-nd/4.0/


The ratio r = S0/ns in (8.9) is generally referred to as the percolation order parameter in

the literature (see [1] p. 151). It equals 1 for complete percolation (S0 = ns) and vanishes

when the bulk cluster collapses at the percolation transition. It is closely related to the

order parameter rp defined via (8.1b)). The 1st term on the right-hand side of (8.9) can be

expressed as n2
sf(r), with f(r) a function of r given by f(r) = r3(1− r). This function has 2

roots, respectively at r = 0 and r = 1, and a local maximum at r = 3/4. Upon approaching

the percolation transition, S0 decreases more and more towards zero, and with it also r and

f(r). As a result, the 1st term on the right-hand side of (8.9) decreases towards zero upon

approaching the percolation transition (instead of increasing or even diverging). That the

same applies to the 2nd term as well is nearly self-evident (since the correlation length ξ

diverges at the percolation transition). Sufficiently close to the percolation transition we can

therefore write:

〈S 2
c 〉 − 〈Sc〉 2 ≈ (b− a2) ξ4

thus obtaining:

1/ns
√
〈 (Sc − 〈Sc〉) 2 〉 ∼ ξ2 (8.10)

for the average size of the fluctuations represented by the standard deviation of the cluster

size. Hence, a sharp increase or divergence in
√
〈 (Sc − 〈Sc〉) 2 〉/ns upon approaching the

percolation threshold indeed relates to an increase or divergence in the correlation length ξ

(and vice versa). A divergence in the correlation length is considered to be the quintessential

feature of the critical phenomena that go with 2nd-order phase transitions. Therefore the

lambda-shaped peak in fig. 8.3b can be considered as a direct manifestation of the very

nature of the percolation transition, which is that of a 2nd order phase transition. It is

emphasized however that (8.10) is quite a general result and therefore its use is not limited

to phenomena entirely driven by percolation (as we will see in the next section).

c) The vaccination-induced herd-immunity threshold as the critical point of

a 2nd-order phase transition

As mentioned earlier, the benefit of numerical simulations is that mechanisms can be

switched on and off, so that their role and influence can be investigated separately. By taking

pr = 0 in the simulations, the influence of vaccination and the role of vaccination-related

percolation phenomena in the evolution of an epidemic can be isolated and illustrated (as

shown by figs 8.1a-d and 8.2a-d in the previous section).

Now, let ne represent the final number of cumulative infections after an epidemic has come

to a halt and ns = np(1−xv) the number of susceptible nodes left after vaccination. Fig. 8.4a

shows, for pr = 0, the relative rate ne/ns = se/(1 − xv) of cumulative infections at the end

of an epidemic as a function of the rate of random vaccination xv for the 2D square lattice
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with nearest neighbour interactions under consideration 7. Data were obtained by (again)

generating a randomly vaccinated population for given xv followed by a random labelling of a

fixed number of sites as active infections to serve as seeds for the epidemic, and then letting the

epidemic spread until it has faded out and come to a halt. We thereby assume that vaccinated

nodes are fully immune to infection. The propagation of the infection itself is simulated in the

same way as in the simulations presented in chapter 4, namely by repetitive random selection

of nodes, checking whether a selected node is infected, randomly selecting one of its nearest

neighbours, check its status (s, i or v) and turn it into an active infection as well when it is

found to be susceptible and a generator of pseudo random numbers outputs a number lower

than the given transmission probability wi. The number used in the simulations of the initial

infections (seeds) was taken to be n0 = 103. Fig. 8.4b shows the data on se/(1 − xv) vs

xv shown in fig. 8.4a together with the relative size 〈Sc〉/ns of the susceptible clusters after

vaccination and prior to the epidemic. The obvious similarity between the curves in fig. 8.4b

in both a qualitative and quantitative sense cannot be overlooked and is in agreement with the

conjecture that ne/ns scales with 〈Sc〉/ns. This conjecture can also be made plausible through

simple though somewhat crude arguments. Consider the population of susceptible nodes to

be split-up into Nc clusters of different sizes (Si) according to a cluster-size distribution of

some kind (i.e. prior to the introduction of the initial infections). The number of initial

infections n0 is small but large enough for the initial infections to ”sample” the cluster-size

distribution when they are randomly distributed over the susceptible nodes. The total size S

of all clusters together is equal number of susceptible nodes ns:

S = ns =
Nc∑
i=1

Si (8.11a)

where the summation runs over all clusters (and Nc represents the total number of clusters).

The total number of initial infections is equal to the sum of all the occupation numbers8 n0,i

of the individual clusters at t = 0 (note that, by definition, 0 ≤ n0,i ≤ Si):

n0 =
Nc∑
i=1

n0,i (8.11b)

We introduce {n0,i} = {n0,1, n0,2, n0,3...n0,N} as the set of occupation numbers of the clusters.

For a given set of occupation numbers (i.e. for a given distribution of initial infections) the

cumulative number of infections at the end of an epidemic ne ≡ n{n0,i} can be written as

(remember that all clusters containing one or more initial infections will become infected):

n{n0,i} =
Nc∑
i=1

ne,i =
Nc∑
i=1

(1− δ0, n0,i
)Si (8.12)

7Note that ne/ns relates to the final cumulative infection-rate se = ne/n and the vaccination rate xv via

ne/ns = se/ss = se/(1− xv)
8(i.e. the number of initial infections in a cluster)
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(a) ne/Ns vs xv

(b) 〈Sc〉/Ns and ne/Ns vs xv

Fig. 8.4: (a) Relative rate of cumulative infections ne/ns = se/(1− x) vs xv and (b) relative

rate of cumulative infections ne/ns = se/(1 − x) vs xv (black triangles/solid line) compared

to the relative average cluster size 〈Sc/ns〉 vs xv (open circles/dashed line)
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Here the ne,i represent the number of cumulative infections in the ith cluster at the end of

the epidemic, and δ0, n0,i
the Kronecker-delta:

δ0, n0,i
=

1 n0,i = 0

0 n0,i 6= 0
(8.13)

We now introduce 〈Si〉{n0,i} as the average, for given {n0,i}, of the size of the cumulatively

infected clusters over the number of cumulatively infected nodes at the end of the epidemic:

〈Si〉{n0,i} =

Nc∑
i=1

(1− δ0, n0,i
)Si

n{n0,i}
· Si (8.14a)

which can be reexpressed, by substitution of (8.12) for n{n0,i}, as:

〈Si〉{n0,i} =

Nc∑
i=1

(1− δ0, n0,i
)S 2

i

Nc∑
i=1

(1− δ0, n0,i
)Si

(8.14b)

Since the initial infections sample the cluster-size distribution (when sufficiently large in num-

ber), the average 〈Si〉{n0,i} can be considered as a fair approximation of the previously intro-

duced average 〈Sc〉 of the size of the susceptible clusters after vaccination and prior to the

epidemic. Hence, an approximation for the ratio se/(n
−1
s 〈Sc〉) of the normalised infection

rate se = ne/ns = n{n0,i} /ns and the normalised average cluster size 〈Sc〉/ns easily follows.

Combining (8.12) and (8.14b) yields:

se

n−1
s 〈Sc〉

=
n{n0,i}

〈Si〉{n0,i}

=

(
Nc∑
i=1

(1− δ0, n0,i
)Si

)2

Nc∑
i=1

(1− δ0, n0,i
)S 2

i

so that, via some algebraic rearrangements, we get:

se

n−1
s 〈Sc〉

≈ 1 +

Nc∑
i=1

Nc∑
j=1
j 6=i

(1− δ0, n0,i
)(1− δ0, n0,j

)SiSj

Nc∑
i=1

(1− δ0, n0,i
)S 2

i

(8.15)
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At low vaccination rates, a (vast) majority of the susceptible nodes forms a large (bulk)

cluster of a size comparable to the size of the population network. With increasing vaccination

rates, more and more clusters separate from the bulk cluster and become isolated. However,

the size of these ”secondary” clusters is much smaller (up to orders of magnitude even) than

that of the bulk cluster. Note that the bulk cluster does not contribute to the numerator

of (8.15) but does contribute to the nominator of (8.15). As such, the products SiSj in the

terms these smaller clusters contribute to the numerator in (8.15) will lose against the S2
i term

contributed by the bulk cluster to the nominator in (8.15). In addition, due to their small size

only a (small) minority of the the separated clusters will include an initial infection, especially

when xv approaches the critical region near the percolation transition where the number (but

not the typical size) of the separated clusters increases significantly. Moreover, the probability

that 2 specific secondary clusters (to be identified by their indices i, j) both include an initial

infection is (very) low. Hence, many of the product terms (1 − δ0, n0,i)(1 − δ0, n0,j) in the

numerator of (8.15) will be zero over the entire range of xv-values up to the critical region

and beyond. Altogether, it strongly looks as though (8.15) can be reduced to se/〈Sc〉 ≈ 1

and that se scales indeed with the average cluster size 〈Sc〉.
The divergence, as a function of xv, in the average of the fluctuation in the size 〈Sc〉 of the

susceptible clusters shown in fig. 8.3b is also reflected in the average fluctuation size for the

infected clusters present in vaccinated populations after an epidemic has faded out. Fig. 8.5

shows
√
〈(Sc − 〈S〉)2〉/ns for these infected clusters vs xv. The divergence clearly stands out,

and the behaviour of
√
〈(Sc − 〈S〉)2〉/Ns as a function of xv is typical therewith of a phase

transition. The dotted lines in fig. 8.5 further substantiate this viewpoint. They mainly serve

as guides to the eye, but have been calculated by adjusting the parameters c′, c′′, ν and xc of

the function:

f(xv) =

c′ |xv − xc|−ν xv < xc

c′′ |xv − xc|−ν xv > xc
(8.16)

to the datapoints. The function f(xv) represents a scaling law of the type typically associated

with the critical phenomena complementing a 2nd-order phase transition, with ν representing

a (so-called) critical exponent. The dotted lines fit the datapoints quite well, and
√
〈(Sc −

〈S〉)2〉/ns shows therewith the appropriate scaling behaviour expected in connection with a

2nd-order phase transition. As such, the onset of vaccination-induced herd immunity can be

perceived in itself as a phase transition of 2nd order (especially since we previously saw that

the divergence in
√
〈(Sc − 〈S〉)2〉/ns) relates to a divergence in the correlation length). Fig.

8.5 provides insufficient data though to obtain an accurate estimate for xp and ν.
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Fig. 8.5: Average of the fluctuations in the size of the clusters of cumulative infections after

fade-out of the epidemic vs vaccination rate xv. Dotted curves are guides to the eye.

(d) Vaccination-induced percolation transitions in the framework of the SIR

model

The effects of percolation in vaccinated populations can also be dealt with in the context

of the SIR model, provided we modify the standard SIR model a little further beyond the

modifications already presented in chapter 1.

Percolation phenomena directly affect the (average) number of susceptible contacts 〈ssi〉
of an active infection, and they can be counted for as such via the coefficients of the expansion

of 〈ssi〉 in s. Close to the percolation threshold (i.e. to the critical vaccination rate), 〈ssi〉
decreases sharply with any further increase in s when s→ se, since the active infections will

then approach the cluster boundaries formed by the vaccinated nodes. When s = se, the

active infections will actually reach the cluster boundaries so that 〈ssi〉 vanishes. For the SIR

model to be consistent with this, constraints must be imposed upon the coefficients of the

truncated series expansions of 〈ssi〉 to be used, such that the following condition applies:

〈ssi〉 =
∞∑
n=1

ansne = 0 (8.17)

However, to properly deal with percolation phenomena and describe them correctly in

terms of a modified SIR model, some further adjustments of the model seem to be inevitable.
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The reason is that we have to deal with 2 qualitatively different regimes, respectively below

the percolation transition (xv < xp) and above the percolation transition (xv > xp). Below the

percolation transition the bulk cluster dominates, whereas, in the absence of a bulk cluster,

the secondary clusters take over in the regime above the transition. It seems appropriate

therefore, to split the clusters into a subset consisting of the cluster(s) of (equal) maximum

size (which consists of a single bulk cluster for sufficiently low xv), and a subset comprised of

all other (secondary) clusters. The contributions to s (and se) from both respective subsets

are then treated separately. For purpose of the latter we introduce:

〈ssi〉b =
∞∑
n=0

a
(b)
n snb (8.18a)

〈ssi〉c′ =
∞∑
n=0

a
(c′)
n snc′ (8.18b)

where 〈ssi〉b, 〈ssi〉c′ represent the average number of s nodes in contact with an i node on

respectively the bulk (maximum-sized) cluster(s) (labelled b), and the secondary clusters

(labelled c′). The variables sb and sc′ represent, the respective occupation rates, relative to

ns, of the susceptible nodes in the bulk (maximum-sized) cluster(s), and those in the secondary

clusters. Note that, by definition, a node in one cluster/subset has no contact with nodes in

the other clusters/subsets, so that we can expand 〈ssi〉b, 〈ssi〉c′ in a single variable only (sb

and sc′ respectively).

Now, let Sb represent the combined sizes of the clusters of maximum size (that is, the size

of the single bulk cluster when existent, or the sum of the nodes contained in the multiple of

maximum-sized clusters) and 〈Sc′〉 the average size of the secondary clusters:

〈Sc′〉 =
∑
c′

Sc′

ns,c′
· Sc′ (8.19)

where c′ runs over the secondary clusters, and ns,c′ represents the total number of susceptible

nodes in the secondary clusters before the infection spreads. Note that 〈Sc′〉 is therewith

an average over the susceptible nodes in the secondary clusters only. Both Sb and 〈Sc′〉 are

functions of xv. The number of nodes in the bulk (maximum-sized) cluster(s) is of course

equal to Sb. Following section 8a, we also introduce the relative cluster sizes:

Sb =
Sb
ns

〈Sc′〉 =
〈Sc′〉
ns

(8.20)

The total number of susceptible nodes in the network is given by:

ns = ns,b + ns,c′ (8.21)
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where ns,b represents the number of susceptibles in the bulk cluster(s) prior to the start of the

epidemic (note that ns,b = Sb actually). We can rewrite this relation in terms of the relative

total sizes nb = ns,b/ns = Sb and nc′ = ns,c′/ns of respectively the bulk (maximum-sized)

cluster(s) and the secondary clusters as:

nb + nc′ = 1 (8.22)

It is easy to see that in each separate regime (below or above the percolation threshold) the

values nb, Sb and 〈Sc′〉 will be unique for each value of xv. Stated differently: nb, Sb and 〈Sc′〉
are bijective functions of xv on the intervals 0 ≤ xv ≤ xp and xp < xv ≤ 1. They can therefore

be considered as state variables for the subsets of clusters to which they relate. As a corollary,

the coefficients a
(b)
n in the series for 〈ssi〉b in (8.18a) can be expanded themselves in either nb

or Sb, just like the coefficients a
(c′)
n in the series for 〈ssi〉c′ in (8.18b) can be expanded in 〈Sc′〉.

The variable nc′ does it qualify as a proper state variable however, since the secondary clusters

prevail above the percolation threshold (xv > xp) and contain all susceptible nodes, making

nc′/ns = 1 for all xv in the interval xp < xv ≤ xp. Furthermore, it should be kept in mind

that, since we deal with 2 qualitatively different xv-regimes, each regime may require its own

series expansion of the a
(b)
n and a

(c′)
n . Expansions of a

(b)
n and a

(c′)
n in terms of, respectively, nb

and 〈Sc′〉 seem to be the most elegant and convenient path to follow.

It is at this point where constraints of a kind similar to (8.17) come into play. First of all,

we note that in case of vaccination at random:

a
(b)
0 = a

(c′)
0 = ν(1− xv) (8.23)

The series expansion for 〈ssi〉b can then be written as:

〈ssi〉b = ν(1− xv) +
∞∑
n=1

a
(b)
n s

n
b (8.24)

When the bulk cluster is entirely infected sb = ns,b/ns = nb (compare with (8.17)):

〈ssi〉b = ν(1− xv) +
∞∑
n=1

a
(b)
n nnb = 0 (8.25)

which, by introducing a function an = an(nb), such that:

a
(b)
n = an · ν (1− xv) (8.26)

can be reexpressed as:

〈ssi〉b = ν(1− xv)

{
1 +

∞∑
n=1

annnb

}
= 0 (8.27)
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For this condition to be met, a power-series expansion of the function an(nb) in nb cannot

have the form of a Taylor series, since 〈ssi〉b should vanish when nnb = 0 (which will be the

case upon reaching the percolation threshold xv = xc). A Laurent series is to be used instead:

an(nb) =
∞∑

m=−∞

αm,nn
m
b =

∞∑
m=1

α−m,n
nmb

+
∞∑
m=0

αm,nn
m
b (8.28)

which also includes negative powers of nb. Substitution of (8.28) into (8.27) then yields for

xv 6= 1, and with i = n and j = n+m:

1 +
∞∑
n=1

∞∑
m=−∞

αm,nn
n+m
b = 1 +

∞∑
i=1

∞∑
j=−∞

αj−i,in
j
b = 0 (8.29)

Collecting terms with equal powers of nb we get, for j = n+m = 0:

1 +
∞∑
i=1

α−i,i = 0 (8.30a)

and for j = n+m 6= 0:

∞∑
i=1

αj−i,i = 0 (8.30b)

Following the approach in section 3c, by assuming that we can neglect terms of 3rd and

higher order in the series expansion of 〈ssi〉b , only a1(nb) and a2(nb) will be relevant. For

n = 1 and n = 2 (8.28) then yields, respectively:

a1 =
α−1,1

nb
+

∞∑
m=0

αm,1n
m
b (8.31a)

a2 =
α−1,2

nb
+

α−2,2

n2
b

+
∞∑
m=0

αm,2n
m
b (8.31b)

Note that αm,n = 0 for m < −1 when n = 1, and αm,n = 0 for m < −2 when n = 2 since

otherwise 〈ssi〉b would diverge for nb → 0. For the 2nd-order polynomial approximations of

〈ssi〉b considered here, the following constraint must apply when sb = nb (see (8.25)):

〈ssi〉b ≈ a
(b)
0 + a

(b)
1 nb + a

(b)
2 n2

b ≡ 0 (8.32)

so that in combination with (8.26) we get:

1 + a1nb + a2n2
b ≡ 0 (8.33a)
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That is:

a2 = − 1 + a1nb

n2
b

(8.33b)

Substitution of (8.31a) then yields:

a2 = −
1 + α−1,1 + nb

∞∑
j=0

αj,1n
j
b

n2
b

= −
(1 + α−1,1)

n2
b

−
α0,1

nb
−

∞∑
j=0

αj+1,1 n
j
b (8.34)

from which, by comparison with (8.31b), α−1,2 and α−2,2 can be identified as:

α−1,2 = −α0,1 α−2,2 = −(1 + α−1,1) (8.35a)

a result in agreement with (8.30a,b). Also by comparison of 8.34 and 8.31b, the αj,2 for j ≥ 0

follow as:

αj,2 = −αj+1,1 (8.35b)

By combining (8.26), (8.31a,b) and (8.34), the Laurent series in nb for a
(b)
1 and a

(b)
1 can thus

be written as:

a
(b)
1 = ν(1− xv)

[
α−1,1

nb
+

∞∑
j=0

αj,1n
j
b

]
(8.36a)

a
(b)
2 = ν(xv − 1)

[
α0,1

nb
+

(1 + α−1,1)

n2
b

+
∞∑
j=0

αj+1,1n
j
b

]
(8.36b)

Series expansions for the ac
′
n in (8.18b) follow along similar lines. There is an issue to be

considered however. To obtain the counterpart of (8.25) for the secondary clusters, we must

be able to specify the total number of nodes in the subset of secondary clusters that will

become infected in the absence of infection removal. We will therefore deal with this issue

first.

Consider a fairly large number n0 >> 1 of initial infections randomly distributed among

the unvaccinated nodes. The most likely distribution of these infections over the unvaccinated
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clusters that follows is one in which a (sufficiently large) cluster of size Sc will, on average,

contain a number of n0,c = n0 · (Sc/ns) initial infections. When there is a bulk cluster of

unvaccinated nodes present (xv < xp) it will therefore almost certainly contain more than

a single initial infection, since Sb is of the same order of magnitude as ns (or even (almost)

equal ns), and n0 >> 1. Without infection removal, a contribution of a total of ns,b = Sb

cumulative infections due to infection of the entire bulk cluster is certain therewith.

Estimating the contribution to the cumulative infection rate from secondary clusters is

a different matter however. Since secondary clusters can be very small, the equation n0,c =

n0 · (Sc/ns) for the most likely number of initial infections in a cluster does not necessarily

apply to them. For instance, although n0 · (Sc/ns) 6= 0, it is highly conceivable that a

significant part of the smaller secondary clusters will in fact remain without any (initial)

infections (especially when n0 << ns). And although, provided the distribution of cluster

sizes is known, the combinatorics of the problem is tractable,9 it does not provide us with

concise algebraic results.

A useful alternative can be based though on the fact that 〈Sc′〉 is a state variable: the

cluster distribution is unique for each xv, and so is the average (relative) cluster size. The

importance of this is that the average cluster size directly affects the expectation value Sc′ of

the relative total size of the secondary clusters that contain at least 1 single initial infection.

The value of Sc′ is crucial, since it represents the number, relative against ns, of all the

nodes that will get infected upon the spread of the infection (when pr = 0). That is, it

represents the end-value sc′,e of the cumulative relative infection rate sc′ of the secondary

clusters after the epidemic has come to a halt (0 ≤ sc′ ≤ sc′,e with sc′,e = Sc′). In addition,

Sc′ is also determined by n0,c′ , the number of initial infections distributed among the nodes

of the secondary clusters. We can therefore consider Sc′ to be a function of both 〈Sc′〉 and

s0,c′ = n0,c′/ns. That is: Sc′ = Sc′ (s0,c′ , 〈Sc′〉). As such, we will express the coefficients ac
′
n of

the series expansion of 〈ssi〉c′ in (8.18b) as series in terms of Sc′ , and therewith in terms of

both 〈Sc′〉 and s0,c′ . For purpose of the latter we will first express Sc′ in terms of 〈Sc′〉 and

s0,c′ .

We reasonably assume Sc′ (s0,c′ , 〈Sc′〉) to be a continuous function on the relevant part

0 ≤ s0,c′ ≤ ns,c′ ∧ 0 ≤ 〈Sc′〉 ≤ 1 of its domain, and that the Taylor series of Sc′ (s0,c′ , 〈Sc′〉)
in 〈Sc′〉 and s0,c′ exists on this domain part, so that:

Sc′ (n0,c′ , 〈Sc′〉) =
∞∑
n=0

n∑
m=0

cn,ms
n−m
0,c′ 〈Sc′〉

m (8.37)

Since Sc′ = 0 for s0,c′ = 0:

∞∑
n=0

cn,n 〈Sc′〉
n = 0 (8.38a)

9systematic numerical evaluation is possible
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Furthermore, since Sc′ (s0,c′ , 〈Sc′〉) is a continuous function on the relevant part of its domain,

and since Sc′ = 0 for 〈Sc′〉 = 0, it is not difficult to see that for all s0,c′ :

lim
〈Sc′ 〉→0

Sc′ (s0,c′ , 〈Sc′〉) = 0

Hence:

∞∑
n=0

cn,0s
n
0,c′ = 0 (8.38b)

Based on (8.38a) and (8.38b), the series expansion in (8.37) can be reduced to:

Sc′ (n0,c′ , 〈Sc′〉) =
∞∑
n=2

n−1∑
m=1

cn,ms
n−m
0,c′ 〈Sc′〉

m (8.39)

leaving (with i = n−m and j = m) a summation over terms ci+j,j s
i
0,c′〈Sc′〉j with i, j > 0 (as

required by (8.38a) and (8.38b)). We assume that a sufficient part of the secondary clusters,

and also the number of initial infections n0,c′ = nss0,c′ are small enough to neglect all terms

with i > 1 and j > 2. We can therefore put:

Sc′ ≡ c2,1 s0,c′ 〈Sc′〉 + c3,2 s0,c′ 〈S
2
c′〉 = c2,1 s0,c′ 〈Sc′〉

(
1 + (c3,2/c2,1)〈S2

c′〉
)

(8.40)

The derivation of the coefficients ac
′
n as a function of Sc′ is somewhat tedious but similar

in line to the derivation of the coefficients abn as a function of nb. It basically comes down to

replacing abn by ac
′
n , nb by Sc′ and the coefficients αn by the coefficients α

′
n related to the series

expansion of the ac
′
n in Sc′ . A detailed outline is presented in the Appendix 2. The result for

ac
′

1 and ac
′

2 reads:

a
(c′)
1 = ν(1− xv)

[
α
′
−1,1

Sc′
+

∞∑
j=0

α
′

j,1S
j
c′

]
(8.41a)

a
(c′)
2 = ν(xv − 1)

[
α
′
0,1

Sc′
+

(1 + α
′
−1,1)

S 2
c′

+
∞∑
j=0

α
′

j+1,1S
j
c′

]
(8.41b)

With c = (1 + (c3,2/c2,1)〈S2
c′〉), substitution of (8.40) here for Sc′ finally yields a

(c′)
1 and a

(c′)
2

in terms of s0,c′ and 〈Sc′〉:

a
(c′)
1 = ν(1− xv)

 c−1α
′
−1,1

s0,c′ 〈Sc′〉
+

∞∑
j=0

cjα
′

j,1 · (s0,c′ 〈Sc′〉)
j

 (8.42a)
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and:

a
(c′)
2 = ν(xv − 1)

 c−1α
′
0,1

s0,c′ 〈Sc′〉
+
c−2(1 + α

′
−1,1)

(s0,c′ 〈Sc′〉) 2
+

∞∑
j=0

cjα
′

j+1,1 · (s0,c′ 〈Sc′〉)
j

 (8.42b)

When we neglect terms in the summations over j with j > 1 (which implies that we assume

Sc′ ≈ cs0,c′ 〈Sc′〉 ), eqs. (8.42a) and (8.42b) reduce to:

a
(c′)
1 = ν(1− xv)

 c−1α
′
−1,1

s0,c′ 〈Sc′〉
+ α

′

0,1 + cα
′

1,1 · s0,c′ 〈Sc′〉

 (8.43a)

a
(c′)
2 = ν(xv − 1)

 c−1α
′
0,1

s0,c′ 〈Sc′〉
+
c−2(1 + α

′
−1,1)

(s0,c′ 〈Sc′〉) 2
+ α

′

1,1 + cα
′

2,1 · s0,c′ 〈Sc′〉

 (8.43b)

Furthermore we can also neglect/drop the terms linear in s0,c′ 〈Sc′〉 here, since sc′ is positive,

and sc′ ≤Sc′ ≈ cs0,c′ 〈Sc′〉 . As a result of that (8.43a) and (8.43b) then reduce to:

a
(c′)
1 = ν(1− xv)

 c−1α
′
−1,1

s0,c′ 〈Sc′〉
+ α

′

0,1

 (8.44a)

a
(c′)
2 = ν(xv − 1)

 c−1α
′
0,1

s0,c′ 〈Sc′〉
+
c−2(1 + α

′
−1,1)

(s0,c′ 〈Sc′〉) 2
+ α

′

1,1

 (8.44b)

The approximative/truncated series expansions for 〈ssi〉b and 〈ssi〉c′ can now readily be

obtained. Combining (8.25) and (8.36a,b) we get:

〈ssi〉b = ν(1− xv)

[
1 +

(
α−1,1

nb
+

∞∑
j=0

αj,1n
j
b

)
· sb −

(
α0,1

nb
+

(1 + α−1,1)

n2
b

+
∞∑
j=0

αj+1,1n
j
b

)
· s2

b

]

(8.45)

And, consistent with the condition (see Appendix 2) that for sc′ = Sc′ ≡ cs0,c′ 〈Sc′〉:

〈ssi〉c′ = ν(1− xv) +
∞∑
n=1

a
(c′)
n S

n
c′ = 0 (8.46)
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combining (8.18b) and (8.44a,b) yields for 〈ssi〉c′ , up to 2nd-order in sc′ :

〈ssi〉c′ = ν(1− xv)

1 +

 c−1α
′
−1,1

s0,c′ 〈Sc′〉
+ α

′

0,1

 · sc′ −
 c−1α

′
0,1

s0,c′ 〈Sc′〉
+
c−2(1 + α

′
−1,1)

(s0,c′ 〈Sc′〉) 2
+ α

′

1,1

 · s2
c′



(8.47)

With 〈ssi〉b and 〈ssi〉c′ given by (8.45) and (8.47) respectively, the sets of differential

equations describing the temporal evolution of the respective infection rates of the bulk cluster

(sb) and the secondary clusters (sc′) can be written as:

ṡi,b = pi si,b ·
〈ssi〉b
ν

− prsi,b (8.48a)

ṡb = pi si,b ·
〈ssi〉b
ν

(8.48b)

where si,b represents the contribution to the active infection rate composed of active infections

in the bulk cluster, and:

ṡi,c′ = pi si,c′ ·
〈ssi〉c′
ν

− prsi,c′ (8.49a)

ṡc′ = pi si,c′ ·
〈ssi〉c′
ν

(8.49b)

with si,c′ representing the contribution to the active infection rate composed of active infec-

tions in the secondary clusters. The solutions if these differential equations are controlled by

the total number of initial infections s0 , and by the ratio according to which these infections

are (randomly) distributed among the sites of the bulk and the secondary clusters. Consider

s0 being split-up into a part s0,b, accounting for the initial infections that ”land” in the bulk

cluster, and a part s0,c′ that accounts for those initial infections in the secondary clusters:

s0 = s0,b + s0,c′ . Since the bulk cluster is (very) large relative to s0, we can write:

s0,b = s0 · nb (8.50a)

which immediately leads us also to:

s0,c′ = 1− s0,b = s0 · (1− nb) (8.50b)

98

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.22275842doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.01.22275842
http://creativecommons.org/licenses/by-nc-nd/4.0/


For any choice of parameters, and with (8.50a,b) serving as initial conditions, the pairs

of differential equations (8.48a,b) and (8.49a,b) can be solved independently for respectively

sb, si,b and sc′ , si,c′ via a numerical procedure, provided that nb and nc′ = 〈Sc′〉 = ns〈Sc′〉
are known as a function of xv. The latter requirement can be fulfilled by determining the

bulk-cluster size for a very large number of xv-values between 0 and 1, thus resulting in a

dataset to be used as input from which, for any value of xv, proper estimates for nb and 〈ssi〉c′
can be obtained via interpolation (note that nc′ = ns − nb).

Figs 8.6a,b respectively show, as a function of xv, the absolute size of the bulk cluster

nb and the absolute size of the combined secondary clusters nc′ as obtained from simulations

for a population network consisting of 2D square lattice of 751 × 751 nodes with nearest-

neighbour contacts (in which case the percolation threshold is approximately xc = 0.41). The

variation of nb and nc′ with xv clearly reflects the existence of a percolation threshold. The

size of the bulk cluster decreases linearly with xv at low vaccination rates. Upon approaching

the percolation threshold xv = xc ≈ 0.41, the decrease of nb with xv becomes increasingly

nonlinear until, as a typical feature of a percolation transition, the size of the bulk cluster

vanishes completely at xv = xc. The variation of nc′ with xv is complemetary to this. At low

values of xv the combined size of the secondary clusters is almost zero. Upon approaching

the percolation threshold, nc′ starts to increase, and at xv = xc there is a steep jump as a

corrolary of the percolation threshold, which is then followed by a transition towards a regime

of linear decrease at higher values that persists up to xv = 1. Figs 8.6c,d respectively show

the relative variations nb = nb/ns and nc′ = nc′/ns of the bulk and the combined secondary

cluster sizes. The figures are quite illustrative, since they show that below the percolation

threshold the vast majority of the susceptibles is in the bulk cluster, whereas for xv > xc the

susceptibles are predominantly (if not entirely) in the secondary clusters. The simulations

not only provide us with the required relation between nb and xv necessary as input for

solving the differential equations (8.48a,b) and (8.49a,b), but also with the relation between

〈Sc′〉 = nc′/ns and xv required in that respect (since nc′ = ns − nb). The dashed curve in fig.

8.7a shows the end-value se of the cumulative infection rate s = sb+sc′ as a function of xv for

the case pr = 0, as obtained from (numerical) solutions of (8.48b) and (8.49b) (remember that

si = s when pr = 0, so that solving (8.48a) and (8.49a) for si,b and si,c′ is not necessary in this

case). The relevant parameters αn,m , α′n,m and c were adjusted such that the solutions of the

ODE’s fit well to the se values directly obtained from the simulations (indicated by markers):

it is obvious that the agreement is very acceptable indeed. To illustrate the influence of the

bulk cluster size and the total size of the secondary clusters on se, figs 8.7b shows the dashed

curve in fig. 8.7a (obtained from the ODEs) compared to the nb vs xv curve in fig 8.6c.

Similarly, fig. 8.7c shows the comparison of the dashed curve in fig. 8.7a to the average size

of the secondary clusters obtained from the simulations. It is obvious that for lower values

of xv up to the percolation threshold, se follows the size of the bulk cluster (fig. 8.7b). At

the percolation threshold the secondary clusters take over and se very accurately follows the

average size of the secondary clusters (fig. 8.7c). This is perfectly in accordance with our
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expectations. As such, the results presented in figs. 8.6a-d and figs. 8.7a-c clearly illustrate

that with the extension presented in the present section, the theoretical framework outlined

in chapter 1 is also able to account for percolation phenomena in general, and even allows for

decribing the effects of percolation transitions.
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Fig. 8.6: Variation of nb (a) and nc′ (b) with xv as obtained from simulations for a 751× 751

square lattice with nearest neighbour interactions. Dotted lines represent the total number of

susceptibles. Figs c) and d): resulting variations of nb (c) and nc′ (d) with xv obtained from

the data represented in a) and b) respectively.

100

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.22275842doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.01.22275842
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 8.7: (a) End-value se of cumulative infection rate obtained from ODE vs xv (solid curve)

compared to data from simulations (markers) for pr = 0 and n0 = 125. (b) End-value se

represented by solid curve in (a) (left vertical axis) compared to nb from simulations (dotted

curve with markers, right vertical axis). (c) End-value se represented by solid curve in (a)

(left vertical axis) compared to nc′ from simulations (dotted curve with markers, right vertical

axis) 101
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e) Percolation phenomena in unvaccinated populations

The occurrence of percolation phenomena is not restricted to (partially) vaccinated popu-

lations. Depending on the circumstances, manifestations of percolation are possible in unvac-

cinated populations as well. Especially in cases were the the social bubble of the individuals

is (strongly) reduced (reduced number of links per node if the network), percolation phenom-

ena may play a crucial role for the patterns in which the infection spreads throughout the

population, as well as for the extend to which the infection spreads. The role of percolation

is expected to increase when the number of links per node decreases. As such we have on

one end of the spectrum the Ising-like networks with nearest-neighbour contacts only, where

the effects of percolation are the strongest, whereas on the other end we have the extreme

limit where the social bubble of an individual (node) consists of the entire population. The

latter case is in fact ”percolation free” (showing no typical percolation effects that is), since

an infected node can reach any susceptible node and transmit its infection to it, no matter

where this susceptible node is located within the population. One might even say that there

is actually no population network in that case, and that therewith the necessary physical pre-

requisite for percolation phenomena (a network with only a limited number of links/contacts

per node) is in fact missing. That this represents a special case indeed is reflected in the fact

that, for instance, when pr = 0 the entire population will get infected in the end in such a

case.

Due to the tendency to become more important when the number of the contact-links of

the nodes decreases, it may be obvious that percolation is particularly an issue in connection

with lock-downs. The stronger the lock-down conditions become, and therewith the limitation

of the social bubbles of individuals, the stronger the influence of percolation phenomena on

the spread of the infection will be. For policy makers it is important to be aware of this,

since we will see that percolation effects may cause the infection rates to behave in ways that

can be quite confusing, thereby posing a risk of misinterpretation in connection with critical

issues like, for instance, herd-immunity.

An important manifestation of percolation effects consists of an additional reduction, with

increasing cumulative infection rate s, of the (average) number 〈ssi〉 of susceptible nodes that

can be contacted by an active infection in the earliest stages of the epidemic (i.e. for (very)

low s values). Typical examples of this phenomenon obtained from simulations are shown

in figs. 8.8a-d, where 〈ssi〉 is shown as a function of s for 4 social bubbles different in size.

The social bubbles of a node thereby consist of all the other nodes in a (2N + 1)× (2N + 1)

square surrounding the node (the node itself being at the center of the square). The dashed

lines represent 〈ssi〉 in the percolation free case (N = ∞) for which the standard SIR-model

is exact. Figs 8.8a-d respectively correspond to N = 12, N = 8, N = 4 and N = 2. The

parameters pi and pr gave been chosen such that pr/pi = 0.75.
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(a) N = 12 (b) N = 8

(c) N = 4 (d) N = 2

Fig. 8.8: 〈ssi〉 for different social-bubble sizes ((2N + 1) × (2N + 1) square), dashed lines

represent the percolation free case N =∞ which is covered by the standard SIR model.

The effects of N on 〈ssi〉 in fig. 8.8a-d are obvious, especially in the low-s regime: with

decreasing N the reduction of 〈ssi〉 in the lower s-regime becomes increasingly stronger. This

behaviour can be understood as follows.

Let s0 be the initial infection rate at t = 0 so that for t > 0 we can write s = s0 + s′

(s0, s′ � 1). We consider both s0, t (and consequently s′) to be so small that we can neglect

the probability that more than 1 infection can be found within the social bubble of each node.

We implicitly assume as well therewith that N is small enough to rule out any overlap between

the social bubbles of the initial infections. At t = 0 each initial infection has ν susceptible

nodes in its social bubble. Upon infecting one of its contacts that number reduces by 1 to
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ν − 1. It is easy to see that the newly infected node has a similar number of susceptibles

in its own social network (the node via which the infection was transmitted being the only

non-susceptible one in that network). Writing the number of initial infections that has not

passed on its infection at given s′ as n′0 = n(s0−s′) (with n0 = ns0 being the number of intial

(active) infections), so that the number of initial infections that has actually infected another

node can then be written as n0 − n′0 = ns′, the change in 〈ssi〉 upon a the change s′ in s can

be written as:

∆〈ssi〉 =
n′0ν + 2(n0 − n′0)(ν − 1)

n(s0 + s′)
− ν =

(s0 − s′)ν + 2s′(ν − 1)

(s0 + s′)
− ν =

−2s′

s0 + s′

(8.51)

Hence:

(
∂〈ssi〉
∂s

)
s=s0

= lim
s′→0

∆〈ssi〉
s′

= − 2

s0
(8.52a)

(
∂2〈ssi〉
∂s2

)
s=s0

= lim
s′→0

∂

∂s′

(
∆〈ssi〉
s′

)
=

2

s2
0

(8.52b)

so that:

〈sis〉 ≈ 1− 2s′

s0
+
s′ 2

s 2
0

(8.53)

This is quite a remarkable result, which shows that the s-dependence (s′-dependence) of 〈sis〉
for sufficiently small s0 and s′ directly depends on the number of initial infections s0, the

derivative of 〈sis〉 with respect to s′ for s′ = 0 being given by ∂〈sis〉/∂s′ = −2/s0. Even more

striking is the fact that according to (8.53) 〈sis〉 should not depend on N (that is, not on the

size of the social bubble). To verify the correctness of (8.53) in general, fig. 8.9 shows the

variation of 〈sis〉 with s′ in the low-s′ regime for N = 2 at 8 different values of s0, varying

between s0 = 10−4 and 8·10−4. The curves show a qualitative behaviour consistent with (8.53).

Moreover, the inset shows the estimated values of −∂〈sis〉/∂s′ obtained from the slope (at

very low s′) of the curves in the main figure (triangles), and the variation of −∂〈sis〉/∂s′ |s′=s0
with s0 to be expected on the basis of (8.53) (− ∂〈sis〉/∂s′ |s=s0 = −2/s0), as represented by

the solid curve. It is obvious that the agreement is excellent, so that we conclude that (8.53)

is indeed a correct representation of 〈sis〉 at low s′. Hence, −∂〈sis〉/∂s′ |s′=s0 is the same for

all N. However, ν depends on N (ν = 4N(N + 1) ), so that the relative differential variation

of 〈sis〉 with s′ near s′ = 0 varies significantly with N :

1

ν

(
∂〈ssi〉
∂s

)
s′=0

= − 1

2s0N(N + 1)
(8.54)
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Fig. 8.9: 〈ssi〉 as a function of s′ for different s0 (main figure) and the corresponding values

of −∂〈sis〉/∂s′ vs s0 (inset)

This variation becomes increasingly stronger with decreasing N . Hence the observed trend in

the reduction of 〈ssi〉 with N in the lower s-regimes in figs. 8.8a-d.

The steep drops for sufficiently low N in 〈ssi〉 in the low-s′ regime of the kind shown in

figs 8.8a-d (and explained on the basis of (8.53)) may have important consequences for the

evolution of an epidemic. In cases of small social bubbles, and in the very early stage of an

epidemic, the rate of change (ṡi) of the active infections can be expressed as (see chapter 1):

ṡi = pi si
〈ssi〉
ν
− pr si = pi si

[
1 +

1

ν

(
s′ 2

s 2
0

− 2s′

s0

)]
− pr si (8.55)

An extremum in si will occur when ṡi = 0. That is, when:

pi

νs 2
0

s′ 2 − 2pi

νs0

s′ + (pi − pr) = 0 (8.56)

Solving for s′ is nearly trivial and yields:

s′± = s0

(
1±

√
1 +

ν(pr − pi)
pi

)
(8.57)

which relates to real solutions for s′ when:

pr

pi
≥ ν − 1

ν
(8.58)
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However, s′+ is an improper solution since s′+ > s0, and any s′ > s0 is in conflict with

the requirement that there is not more that 1 active infection per social bubble for (8.53) to

apply (bear in mind here that s′ = s0 corresponds to a situation where each initial infection

has infected exactly 1 contact in its bubble). We are thus left with s′− as the only solution

that may apply, which requires not only (8.58) to be met, but also that 0 ≤ s′− ≤ s0. It is

easy to show that the latter is the case when pr/pi ≤ 1. So s′− corresponds to an extremum

in si when10:

ν − 1

ν
≤ pr

pi
≤ 1 (8.59)

It is rather straightforward to show that this extremum is actually a maximum. We have:

s̈i = ṡi

(
pi
〈ssi〉
ν
− pr

)
+ si

∂

∂t

(
pi
〈ssi〉
ν
− pr

)
= si

∂

∂t

(
pi
〈ssi〉
ν
− pr

)

Note that both ṡi and the term in brackets here must be zero for an extremum in si (see

(8.55)). We thus obtain:

s̈i = si · ṡ
∂

∂s

(
pi
〈ssi〉
ν
− pr

)

Substitution of (8.53) for 〈ssi〉 then yields:

s̈i =
2pisi ṡ

νs0

(
s′

s0
− 1

)
(8.60)

which is negative since s′− < s0 (be aware that ṡ > 0). As such the extremum in si can be

identified indeed as a maximum. This is a crucial observation indeed, since it implies that

the number of active infections will reach its maximum shortly after the onset of the spread

of the infection, when s′ = s′− the increase s′ in the cumulative number of infections is even

less than the number of the initial infections therewith (since s′− ≤ s0). After reaching that

maximum, si will then drop (sharply) again, so that the total number of cumulative infections

will eventually come to a halt at a value of s = s0 + s′ which will be of the order of a few

times s0 but not more. One could therefore say that under those circumstances the epidemic

comes to an early stop by percolation effects alone, which smother the epidemic well before

it gained any noticeable strength. However, a scenario like this is possible only for values of

pr/pi within the range given by (8.59), and is therefore limited to cases of very small social

bubbles (i.e low values of ν). As such, the scenario may only apply to (very) tight lock-

down conditions. For instance, on a square lattice with 4 nearest-neighbour contacts only

(8.59) becomes 3/4 ≤ pr/pi ≤ 1, representing a fairly narrow window of pr/pi-values. For

10Note that s′− < 0 for pr/pi > 1, consistent with the results in chapter 5 demonstrating the impossibility

of an epidemic when pr/pi > 1.
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ν > 4, that window is even smaller and its lower bound even closer to 1. Hence, an active

implementation of the scenario, in order to prevent an outbreak from developing into a full-

blown epidemic, may not only require a strong reduction of the social-bubble size (a necessary

requirement) but, depending on the infecting pathogen and its typical pr-value involved, also

necessitate bringing pr/pi within the appropriate range (closer to 1) by additional protective

measures specifically aimed at reducing pi (note that pr, as an intrinsic property of the involved

pathogen, cannot be ”engineered”).

Even in those cases where percolation phenomena do not prevent an epidemic from passing

the initial start-up hurdles, their presence may have a (significant) moderating influence on

the evolution of the epidemic. The reason for this is (again) the steep decrease, as shown in

fig. 8.8a-d, in the variation of 〈ssi〉 with s that occurs for lower values of N . The effect of

such a decrease is a significant reduction, at low s-values already, of the rate at which the

infection is transmitted for given pi. As a result, the maximum for given pi and pr in the

active-infection rate si is pushed towards lower values of s so that the epidemic will fade-out

earlier and at a lower number of accumulative infections. This can be demonstrated as follows.

With:

ṡi = pisi
〈ssi〉
ν
− prsi (8.61)

the condition ṡi = 0 for a local extremum in si can be expressed straightforwardly as:

〈ssi〉
ν

=
pr

pi
(8.62)

(note that ṡi also vanishes when si = 0 but that case relates to t→∞, i.e. to the fade-out of

the epidemic (see section 5b)). It is easily shown that the local extrema are in fact maxima

by using:

s̈i = ṡi

(
pi
〈ssi〉
ν
− pr

)
− pisi

ν

∂〈ssi〉
∂t

=
pisi

ν

(
ṡ
∂〈ssi〉
∂s

)

Since ṡ > 0 for all t , and ∂〈ssi〉/∂s < 0 for all s , we get s̈i < 0 for all t. The condition

(8.62) therefore relates to a maximum, and the active infection rate si will grow as long as

〈ssi〉/ν > pr/pi. However, as soon as (8.62) is met and si reaches its maximum therewith, the

epidemic will go into remission and gradually fades out. The steeper the decrease of 〈ssi〉 with

s, the lower the value of s at which (8.62) is met for given pi and pr will be. Consequently, it

is easy to see that reducing the social-bubble size (i.e. reducing N or, generally, ν) will lead

to a suppression of the epidemic itself. The root cause of this phenomenon is, at a deeper

level, a percolation-related suppression of the average number of susceptible contacts 〈ssi〉.
It may be obvious from (8.61) and (8.62) that also in the cases under consideration here,

where the evolution of an epidemic is dominated by percolation phenomena, the ratio rp =
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pr/pi plays a crucial role in that evolution. All the cases that relate to the same value of

rp but to different magnitudes of pr and pi = pr/rp are in fact equivalent. For given rp, the

only effect of variations in the magnitudes of pr and pi consists of a rescaling of the time-axis.

For different rp-values however, both qualitative and quantitative differences in the evolution

of the epidemic are to be expected. To illustrate this, fig. 8.10 shows the variation of the

end-value se of the accumulative rate of infections as a function of rp = pr/pi, as well as the

average cluster size 〈Sc〉 normalised to the number of nodes in the population n. The data

were obtained from simulations based on a population represented by a rectangular 2D square

lattice of 1501× 1501 nodes with nearest-neighbour contacts only (Ising-like case).

Fig. 8.10: End-value se of the accumulative infection rate (open circles/right axis) and

normalised average cluster size 〈Sc〉/n (dashed curve/left axis) versus pr/pi

.

Not entirely unexpected, both the value of se and the average cluster size show a continuous

decrease with increasing pr/pi. An interesting feature thereby is that the average cluster size

steeply declines at relatively low values of pr/pi already, and then collapses at the (relatively

low) value rp = pr/pi ≈ 0.235. The value of se follows this tendency and bends down sharply

with 〈Sc〉 , until it reaches a point of inflection at basically the same value of rp that marks

the collapse of 〈Sc〉. It then begins a gradual fade-out towards zero, which is almost complete

at rp = 0.5. The low value of rp at which se reaches the inflection point and 〈Sc〉 collapses

is particularly noteworthy. In the percolation-free case without vaccination (ν,N = ∞ and

xv = 0), the critical point at which se becomes zero (so that an epidemic spread of the

infection is no longer possible) is given by rp = 1 (see sections 5a, 5c). Furthermore, in case of
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vaccination, the percolation-free case requires a vaccination rate of xv ≈ 0.75 for the critical

value of rp to drop to rp,c ≈ 0.235 (the required vaccination rate follows from pr/pi = 1− xv
(see chapter 7)). In the Ising-like case however, such a reduction of the critical value of rp

is observed without any vaccinations whatsoever. Hence, in cases of small social bubbles,

percolation and infection removal apparently team-up and combine their moderating effects

on the spread of an infection.

It may be obvious that the inflection point in the se vs rp curve and the collapse of 〈Sc〉 at

the same value of rp are related and, in fact, symptoms of the same underlying phenomenon.

This is further corroborated by the rp dependence of the standard deviation of the cluster

size. Fig. 8.11 shows the rp-dependence of
√
〈(Sc − 〈Sc〉)2〉 corresponding to the data in

fig. 8.10. A divergence emerges precisely at the critical value of rp marking the collapse of

〈Sc〉 and the point of inflection in the se vs rp curve. The drawn curves in fig. 8.11 thereby

represent a scaling law of the type (8.16) and serve as a guide to the eye. Such observations

unambiguously point towards a (2nd-order) phase transition taking place at rp ≈ 0.235, since

we have seen in section 8b that a divergence in the standard deviation of the cluster size (i.e.

a divergence in the fluctuation size) directly relates to a divergence in the correlation length

(the quintessential feature of a 2nd-order phase transition). Both the collapse of 〈Sc〉 and the

inflection point in the se vs rp curve are essential features of this phase transition as well.

n
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 〈 
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〉)

2 〉
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Fig. 8.11: Main figure: normalised standard deviation
√
〈(Sc − 〈Sc〉)2〉/n of the cluster size

as a function of pr/pi. Inset: close-up of the critical region.

As to the very nature of the phase transition at rp ≈ 0.235, and the mechanism driving

it, it turns out that we are dealing in fact with a percolation transition in its own right.

An indication for this is obtained by plotting 〈Sc〉/n
se

against se for a range of different rp-

values. The advantage of the division of 〈Sc〉/n by se is that the cluster size is related to the

internal spatial arrangement of the contingent of cumulative infections (for instance, when
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〈Sc〉/n
se

= 1 the cumulative infections form a single bulk cluster) and that more subtle details

of the rp-dependence of 〈Sc〉 are enhanced. Fig. 8.12 shows the result of such a plot for the

data represented in fig. 8.10. We see that 〈Sc〉/n
se

remains almost zero for low values of se

and then increases quite steeply over a narrow range of se-values towards a value 〈Sc〉/n
se

= 1 ,

at which it then remains when se increases further. The curve seems to have an inflection

point at approximately se = 0.4 (dotted line), which corresponds more or less to the middle

of the narrow window of se-values in which 〈Sc〉/n
se

increases from almost zero to 1. The value

se ≈ 0.4 that marks the inflection point is not without meaning. First of all it agrees with

the value of se at the inflection point of the se vs rp = pr/pi curve in fig. 8.10. It also

agrees (within a very narrow margin) with the site-percolation threshold xc for a 2D square

lattice with only nearest-neighbour contacts, in the case where we begin with a completely

filled lattice and then randomly remove/block a fraction of sites x (for x > xc the remaining

or unblocked sites no longer percolate in that case). As a logical consequence of the latter,

if what we are dealing with here is truly a percolation transition, it has to be a transition

in the subpopulation complementary to the subpopulation of cumulative infections, i.e. a

percolation transition in the subpopulation of susceptibles. This may seem awkward at first,

since at lower values of se the cumulative infections will come in dense isolated clusters of

neighbouring nodes surrounding the (single) initial infection (the one that provided the seed

of the cluster), whereas the majority of susceptible nodes still forms a large bulk cluster.

However, it can be shown that the phase transition indeed consists of a collapse of this very

same bulk cluster of susceptibles.

Fig. 8.12: Plot of 〈Sc〉/n
se

vs se (dotted line marks the inflection point)
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For the ease of visualisation, we represent the 2D square lattice of nodes by a 2D lattice

of square tiles (the size of a tile being that of a lattice/unit cell of the node lattice) in such a

way that each node corresponds to the center of a single tile (see fig. 8.13a).

(a) (b)

(c)

Fig. 8.13: Construction of block-tiles and renormalisation of the 2D square population lattice:

(a) actual clusters (cumulative infections) on the original (2D square) lattice, (b) block-tiles

effectively replacing the clusters on the original lattice, (c) block-tiles on the renormalised

(2D square) lattice

Now, as soon as the spread of the infection starts at t = 0, clusters of isolated (cumulative)

infections begin to grow around each of the initial infections (see fig. 8.13a for a pictorial

impression). The number of clusters thereby equals the number of initial infections ns0. It is

also important to be aware of the fact that the distribution of initial infections is assumed to

be random, and that consequently also the distribution of the clusters over the (population)

lattice will be random.
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A suitable definition of the lattice position of an isolated cluster is thereby given by the

cluster’s ”center of mass” ~rc:

~rc =
1

nc

∑
i

~ri (8.63)

since it not only matches our intuitive notion of the concept of cluster position closely, but also

makes sense from a more mathematical standpoint. The ~ri thereby represent the positions of

the individual nodes (or tile centres) in a cluster, and nc the number of nodes/tiles in a cluster

(i.e. the size of a cluster). The index i runs over the individual nodes in the cluster. Note

that the center of mass of a cluster is independent of the representation of the population

lattice: a lattice of nodes will give the same ~rc as the corresponding lattice of tiles, since the

position of the nodes is coincident with the centres of the corresponding tiles. In practice, ~rc

for a particular cluster of larger size is expected not to differ too much from the position ~r0,c

of the initial infection from which the cluster has grown (since the differences ~r0,c − ~ri will

tend to cancel out for larger cluster sizes). Once the clusters of cumulative infections have

grown somewhat larger, we expect their individual sizes to differ only marginally (since all

clusters grow under the same stochastic conditions), and the statistical spread in the cluster

sizes low enough to consider all clusters to be of the same size as the average cluster size.

Now let us imagine that each isolated cluster of cumulative infections is being replaced

by a square block of tiles (see fig. 8.13b), the number of tiles in a block being (within as

close a margin as possible) equal to the average number of tiles in a cluster. The center of

each square block is taken in accordance with the center of mass ~rc of the cluster it replaces.

Next, we consider a new 2D square lattice, made-up of tiles the size of the aforementioned

(cluster-replacing) square blocks. We will refer to these tiles as ”block tiles” (by analogy

with a conceptually similar construct called ”block spins”, introduced by L. Kadanoff in his

approach to order-disorder transitions in Ising spin systems [5]). A block tile is considered to

be corresponding to a single node type only (susceptible or (cumulative) infection).

The purpose of the lattice of block tiles is to obtain a simplified representation of the

original (i.e. the real) population lattice of nodes/tiles while maintaining the essential features

of the actual lattice, but with less tiles (i.e. with less degrees of freedom). The positions of the

block tiles related to the cumulative infections are therefore taken to be as closely as possible

to the position of the square blocks of tiles introduced to replace the clusters of cumulative

infections in the original lattice. The result is a 2D square lattice of block tiles with a random

distribution of tiles representing clusters of cumulative infections in the original lattice (see

fig. 8.13c).
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By definition, the size of a block tile is given by the average cluster size 〈Sc〉. The number

n′ of block tiles in the new lattice and the number n of nodes/tiles in the original lattice are

related via n′ 〈Sc〉 = n, so that the ration between n′ and n is given by:

n′

n
=

1

〈Sc〉
(8.64a)

The number
√
n′/n = 1/

√
〈Sc〉 can be considered thereby as a scaling factor relating the

typical length scales of both lattices (length of a tile edge, resp. block tile edge). Therefore,

the block-tile concept de facto corresponds to a renormalisation transformation of the original

2D square lattice.

Furthermore, it is obvious that the fraction s′ = s0n/n′ of block tiles representing a cluster

of cumulative infections in the renormalised lattice is (and must be) equal to the cumulative

infection rate s of the population: s′ = s. An explicit expression for s′ obtained by using

(8.64a) reflects this:

s′ =
s0n

n′
= s0〈Sc〉 (8.64b)

since s = s0〈Sc〉 in the case of isolated infected clusters.

Together, (8.64a) and (8.64b) are the mathematical expression of a pivotal insight. With

increasing cluster size (i.e increasing s) the total number n′ of (block) tiles in the renormalised

lattice decreases (as expressed by 8.64a)). The number of infected tiles remains the same

however, since the number of the clusters they represent is independent of s and equal to

the number of initial infections s0n. The decrease of the total number of tiles is therewith

entirely due to a decrease of the number of susceptible tiles. Hence, the fraction s′ of infected

(block) tiles in the renormalised lattice increases with increasing cluster size and s, whereas

the fraction of susceptible tiles decreases. This is expressed by (8.64b), showing that the

fraction of infected (block) tiles in the renormalised lattice is in fact equal to the fraction s

of infected nodes (tiles) in the real population lattice, the fraction of susceptible tiles being

1− s.
A legitimate question now is: will block tiles of a certain type percolate at some critical

value of s? Since the block tiles are randomly distributed over the renormalised lattice, the

answer is yes. Starting as a single bulk cluster, consisting of the entire population (except

for the initial infections) when s = s0, the susceptible tiles (randomly distributed like their

infected counterparts) reach their percolation threshold xc,s ≈ 0.5927 on the original 2D

square lattice with nearest neighbour contacts when the fraction of infected tiles reaches the

critical value xc,i = 1− xc,s ≈ 0.4073. The result is a percolation transition of the susceptible

tiles: for s < 1 − xc,s = xc,i , a large bulk cluster of susceptible tiles exists (which collapses

when s = xc,i), whereas for s > 1−xc,s = xc,i the contingent of susceptible tiles is split-up into

clusters of smaller size (i.e. significantly smaller than the size of the lattice). However, the

crossing of the aforementioned percolation threshold by the susceptible tiles also has important
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implications for the infected tiles, since the renormalised lattice is a bit odd. Its size is not

constant when expressed in the lattice’s very own ”natural” units of area and length (given

by a single block tile and the length of the edge of a block tile respectively) but varies with

s. This is (of course) closely intertwined with the fact that the total number n/〈Sc〉 of block

tiles in the renormalised lattice decreases a function of s. As a result, the lattice shrinks with

increasing s when measured in its natural units of size. Since the number of infected tiles is

constant, their average separation (measured in natural length units) must therefore decrease

with increasing s. Therefore, when a s reaches a critical value when s = xc,i, a majority of the

infected block tiles comes in touch with other infected block tiles, thus forming (percolating)

paths of infected block tiles. This is in fact how the percolation of the susceptible tiles is

broken. We see therewith that the critical value s = xc,i = 1 − xc,s ≈ 0.4073 marks in

fact 2 percolation transitions, one in the sublattice of (cumulative) infections and one (in

the opposite direction) in the sublattice of susceptibles. This can be clearly seen when we

consider what happens at cluster level in the original lattice when s reaches xc,i = 1 − xc,s.
It is not difficult to recognise that percolation of block tiles corresponds to percolation of

clusters in the original lattice. We thus can say that block-tile renormalisation transforms

cluster percolation in the original lattice into tile percolation in the renormalised lattice. At

s = xc,i ≈ 0.4073 the majority of infected clusters merges into a single cluster, splitting-up

the remaining susceptibles into smaller clusters enclosed by cumulative infections.

← →
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Fig. 8.14: Plots of 〈Scs〉/n
1−se (left axis (see arrow)) and 〈Scr〉/n

se
(right axis (see arrow)) vs se

(bottom axis) and 1− se (top axis)
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This can be illustrated when we compare the average size of the cluster(s) of cumulative

(removed) infections 〈Scr〉 to that of the cluster(s) of susceptibles 〈Scs〉 as a function of se

(the end-value of s) and 1 − se. Fig. 8.14 shows 〈Scr〉 and 〈Scs〉 as a function of se and

1 − se, normalised respectively against 1 − se and se (compare to fig. 8.12). The data

were obtained from similar simulations (same parameters) as the data represented in figs.

8.10, 8.11 and 8.12. Fig. 8.14 clearly shows the symmetry involved: when se approaches

xc,i ≈ 0.4073 (lower horizontal scale) then 〈Scr〉/se (right scale) starts to undergo a rather

steep transition, from 〈Scr〉/se ≈ 0 in the low se regime, to an almost ”saturated” value

〈Scr〉/se = 1 for higher values of se (see also fig. 8.12). Parallel to this, 〈Scs〉/(1 − se)

undergoes a similar steep transition in the opposite direction: when se crosses the threshold

xc,i ≈ 0.4073, its complement 1− se (upper horizontal scale) crosses the percolation threshold

xc,s = 1 − xc,i ≈ 0.5927 of the susceptible nodes and 〈Scs〉/(1 − se) (left scale) changes from

〈Scs〉/(1− se) = 1 to 〈Scs〉/(1− se) ≈ 0.

Furthermore, in a series of pictures, fig. 8.15 shows the actual process of coalescence of

the cumulative infections into a large bulk cluster (accompanied by a split-up of the bulk

cluster of susceptibles into isolated smaller clusters) as it happens in reality (i.e. on the real,

non-renormalised, population lattice). We see that for pr/pi = 0.4, (fig. 8.15a) the epidemic

is largely suppressed by the decay of active infections, and se does not exceed any further

than a value of se = 0.0184. As a result, the clusters of cumulative infections remain very

small and isolated. With decreasing rp = pr/pi, the influence of infection removal diminishes,

the value of se increases and the average size of the clusters of cumulative infections grows.

Nevertheless, when pr/pi decreases from pr/pi = 0.4 to pr/pi = 0.3 the corresponding increases

in the infected-cluster size and se are still modest (a difference of ∆rp = −0.1 in rp results in

an increase of only ∆se = 0.053 in se). There is also still a bulk cluster of susceptibles in this

case. However, when pr/pi is further reduced, the effects of increased percolation take over.

The size of the infected clusters and se increase more and more over ever smaller intervals

of pr/pi. Ever more infected clusters merge into larger clusters, while the bulk cluster of

susceptibles is gradually split-up into smaller clusters, until at pr/pi ≈ 0.235 (fig. 8.15f) the

percolation threshold has been reached and the cumulative infections form a large bulk cluster,

whereas the susceptible nodes are confined to smaller (secondary) clusters. The differences

between fig. 8.15e and fig. 8.15f are particularly noteworthy in this respect, since they

illustrate the sharpness of the actual transition: a very minor difference in rp = pr/pi of only

∆rp = −0.025 makes the difference between predominantly isolated clusters of cumulative

infections, accompanied by a bulk cluster of susceptibles, and the opposite situation.
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(a) pr/pi = 0.40, se = 0.0184 (b) pr/pi = 0.35, se = 0.0304

(c) pr/pi = 0.30, se = 0.0714 (d) pr/pi = 0.275, se = 0.1197

(e) pr/pi = 0.25, se = 0.2566 (f) pr/pi = 0.235, se = 0.4267

Fig. 8.15: Status of the population after fade-out of the epidemic for the rp = pr/pi values

and the corresponding se values indicated. Black: (cumulative) infections, white: suscepti-

bles. The gradual confluence of the clusters of infections with decreasing rp (increasing se) is

obvious. Case (f) represents the crossing of the percolation threshold(s).

116

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.22275842doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.01.22275842
http://creativecommons.org/licenses/by-nc-nd/4.0/


The remaining question now is how, also at intermediate values of s, percolation phe-

nomena can have such a significant effect on the production of new infections that they can

compete with (and even compensate) infection removal. The answer here is in the effect of

percolation on 〈ssi〉 or, equivalently, on 〈sis〉. This is illustrated best by considering 〈sis〉 as

a function of s. Fig. 8.16 shows 〈sis〉 vs s for pr = 0 (so that rp = 0) as its main figure. We

clearly see that 〈sis〉 has a point of inflection of such a kind that ∂〈sis /∂s increases with s for

higher values of s. Below the point of inflection ∂〈sis /∂s decreases with s. Numerical eval-

uation of ∂〈sis /∂s (inset in fig. 8.16) shows that the inflection point occurs at s ≈ 0.4, and

corresponds therewith to the percolation transition described at the foregoing pages. Appar-

ently, the formation of secondary clusters of susceptible nodes, and their enclosure by closed

”fronts” of active infections from the bulk cluster of cumulative infections, has a positive effect

on 〈sis . This seems quite logical, since the infection now closes in on the susceptible nodes

from all directions so to say. The resulting boost in 〈sis directly relates to a boost in the

growth rate of the rate of infections given by ṡ = pi(1 − s)〈sis (see chapter 1). When pr

is large enough to keep s below xp,i , the epidemic will be unable to take advantage of this

mechanism. However, as soon as s breaks through the percolation threshold (s ≥ xc,i) the

number of (cumulative) infections will get the aforementioned boost, and so will the value of

se in the end.
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Fig. 8.16: 〈sis〉 vs. s for pr = 0 (main figure) and ∂〈sis〉/∂s vs. s (inset). Dot and dashed

line mark the point of inflection.

The Ising case with only nearest-neighbour contacts represents a rather extreme example

of contact limitation, as applied in only the strictest of lock-downs. Percolation shapes the
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evolution of the epidemic on par with infection removal in this case. However, the effects of

percolation seem to be important under less strict lock-down conditions too, although their

magnitude decreases significantly when the number of close contacts (ν) of the population

members increases (especially in the lower range of ν-values). Some essential characteristics

of the results for the Ising case seem to remain however, irrespective of the value of ν.

To give an mathematical description for what (approximately) happens in non-Ising cases

we introduce the area Ac of a cluster, i.e. the area within the 2D population lattice that can

be attributed in a meaningful way to a particular cluster. Although a concept that is easily

to grasp on an intuitive basis, a precise definition of Ac is subject to quite some arbitrariness.

A possible definition that also resonates with intuition could be that Ac stands for the largest

area that can be fenced-in by a closed circuit of straight lines connecting nodes of a certain

type in the cluster, thereby enclosing all other nodes of that type in the cluster (see fig. 8.17).

It is obvious that a cluster area defined in this way generally contains nodes of both types

(cumulative infections and susceptibles). We therefore introduce the filling factor φc of a

cluster, which is the fraction of the nodes/tiles contained by Ac that relate to the node-type

of interest. As such, the cluster size Sc is related to the cluster area via Sc = φcAc.

Ac

Fig. 8.17: Definition of cluster area Ac as the largest area that can be fenced-in by straight

lines (dotted) connecting elements of the cluster

We express the area Ac in the number of tiles in the original population lattice covered by

it. Let 〈Ac〉 be the average of Ac defined as (compare with (8.1a)):

〈Ac〉 =
∑
c

Sc

nt
· Ac =

1

nt

∑
c

S 2
c

φc
(8.65a)

which represents an average over the size Sc of the clusters normalised against the total

number nt of nodes of the type of interest in the network, with c running over all clusters of

the node-type of interest.
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The average cluster size is given by:

〈Sc〉 =
∑
c

Sc

nt
· Sc (8.65b)

Assuming that φc is a constant (written simply as φ) for all clusters, combining (8.65a) and

(8.65b) yields a relation between the average cluster area and the average cluster size:

〈Ac〉 =
〈Sc〉
φ

(8.66)

The nodes of our interest here are those related to the cumulative infections. An issue to be

dealt with in this context is the distribution of the cumulative infections over the clusters that

they concentrate in at low values of s. Those clusters start at an initial infection and then grow

outwards. With time (moderate s) there will be a fairly high density of (cumulative) infections

close to the center of mass ~rc of the cluster, forming a dense nucleus of infections around ~rc.

Moving further away, the density decreases however, and near the cluster boundaries only

a few (cumulative) infections are present per unit of area. This is clearly shown in fig.

8.18, which pictures the simulated node-status in a population section of 700× 700 nodes at

s ≈ 0.24 in the absence of infection removal (i.e. pr = 0) for a case where the contact bubble

of a particular node consists of the nodes in a 11×11 square centred around that node. Black

tiles/dots represent the infections, the white areas the susceptibles. The individual clusters

are easily recognisable, as well as their tendency to merge.

However, the problem is how to define and identify the confluence of 2 clusters. That is,

when can we say that 2 clusters have merged? As with the definition of the cluster area,

there is a degree of arbitrariness also in this matter. We cope with the issue in a somewhat

pragmatic way by introducing an effective area Ae:

Ae = θ〈Ac〉 (8.67)

where θ represents a parameter between 0 and 1 (0 ≤ θ ≤ 1). The purpose/effect of θ is

to lower the area that actually represents a cluster. Its value is such that 2 clusters become

indistinguishable roughly when the distance between their respective centres of mass ~rc,1 and

~rc,2 relates to Ae = θ〈Ac〉 as:

|~rc,2 − ~rc,1| = O(
√
Ae)

where
√
Ae should be considered as a typical measure of the (effective) length/diameter of a

cluster. Combining (8.66) and (8.67) we thus obtain for Ae:

Ae =

(
θ

φ

)
· 〈Sc〉 (8.68)
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Fig. 8.18: Status of nodes in a 700×700 section of a population (black: cumulative infections,

white: susceptibles)

It is this effective cluster area that defines the block tiles in a newly constructed 2D square

lattice: a block tile consists of a square arrangement of a number of original lattice tiles as

close as possible to Ae. The number n of tiles in the original lattice and the number n′ of

block tiles in the lattice after renormalisation are related via n′Ae = (θ/φ)n′〈Sc〉 = n, so

that we obtain:

n′

n
=

(
φ

θ

)
· 1

〈Sc〉
(8.69a)

as a generalisation of (8.64a). A generalisation of (8.64b) is also obtained straightforwardly:

s′ =
s0n

n′
=

(
φ

θ

)
· s0〈Sc〉 (8.69b)
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so that (with s = s0〈Sc〉):

s′ = s · θ
φ

(8.70)

The block tiles related to the clusters of cumulative infections break the percolation of

the susceptible block tiles when 1 − s′ = xc,s ≈ 0.5927 (s′ = xc,i ≈ 0.4073), which (as seen

previously) corresponds to a collapse of the bulk cluster of susceptibles and the formation

of a bulk cluster of cumulative infections. Note that by the very definition of a cluster, the

existence of a bulk cluster also implies that its members are in a state of percolation.

To illustrate the influence of the size of the social bubble (value of ν), fig. 8.19 shows both

the normalised average cluster size 〈Sc〉/n and se as a function of pr/pi for the case where

the contact environment (social bubble) of a node consists of its nearest and next-nearest

neighbours (i.e. the nodes in the (2N + 1) × (2N + 1) square with N = 1 surrounding the

node, which itself is at the center of the square). We see that 〈Sc〉/n and se behave as a

function of the critical value of pr/pi = rp in a similar way as in the Ising case (see fig. 8.10).

However, compared to the Ising case, the critical value pr/pi ≈ 0.32 that marks both the

collapse of the bulk cluster of cumulative infections and the inflection point in the se vs. pr/pi

curve is higher than in the Ising case. Apparently, the effects of percolation phenomena have

become less strong as a result of the changes in lattice topology and coordination number

(the number of contacts per node ν is 8 in this case vs. 4 in the Ising case).

The qualitative behaviour of the curves in fig. 8.19 suggests that there may be a second-

order phase transition involved in this case as well. This is confirmed by fig. 8.20, which

shows 〈(Sc − 〈Sc〉)2〉 vs. pr/pi. The critical value of pr/pi ≈ 0.32 observed in the data in fig.

8.20 appears to be related to a divergence of 〈(Sc − 〈Sc〉)2〉/n, which indeed provides us with

conclusive evidence for a second-order phase transition taking place at pr/pi ≈ 0.32.

Furthermore, it looks like the inflection point in the se vs. pr/pi curve in fig. 8.19 is due

to the same mechanism as the one responsible for the inflection point of a similar kind in fig.

8.10. To demonstrate this, fig. 8.21 shows 〈sis〉 vs s for this case. The resemblance to fig. 8.16

is obvious: like the curve in fig. 8.16, the curve in the main figure of fig. 8.21 also has a point

of inflection (at approximately s = 0.37), and behaves similarly to the curve in fig. 8.16, both

below and above s = 0.37. The inflection point is again to be considered as a result of the

type of percolation transition that we described in the above via block-tile renormalisation

of the population lattice: at s ≈ 0.37 the cumulative infections reach percolation while the

percolation of the susceptibles is broken. As a consequence, like in the Ising case, percolation-

induced boosting of the infection rate will also occur here for s > 0.37. Hence the inflection

point in the se vs. pr/pi curve in fig. 8.19. It is worth mentioning that apparently θ/φ ≈ 1 for

this case, since the value s ≈ 0.37 differs only marginally from the critical value s′ ≈ 0.4073

that marks the percolation threshold of the block tiles representing the clusters of cumulative

infections (see (8.70)).

121

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.22275842doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.01.22275842
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 8.19: End-value se of the accumulative infection rate (open circles/right axis) and

normalised average cluster size 〈Sc〉/n (dashed curve/left axis) versus pr/pi for a case with

nearest- and next-nearest neighbour contacts.

Fig. 8.20: Main figure: normalised standard deviation
√
〈(Sc − 〈Sc〉)2〉/n of the cluster size

as a function of pr/pi for a case with nearest- and next-nearest neighbour contacts.
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Fig. 8.21: 〈sis〉 vs. s for pr = 0 (main figure) and ∂〈sis〉/∂s vs. s (inset) for the case

with nearest- and next-nearest neighbour contacts. Dot and dashed line mark the point of

inflection.

By comparison of the data in fig. 8.10 and fig. 8.19, it is obvious (and not entirely

unexpected) that the influence of percolation effects becomes smaller when the social bubbles

of the members of the population increase: an increase of ν from 4 to 8 leads to a significant

increase in the critical value of rp = pr/pi from rp ≈ 0.235 to rp ≈ 0.32. It is easy to see

that when the social bubbles are increased ever further, this trend will remain and take the

form of an asymptotic approach of the percolation-free case (ν,N = ∞) for which rp = 1

(see section 5). In this connection it is also obvious that for all social bubbles of finite size

the critical values of rp will relate to a phase transition of 2nd order involving (and partially

driven by) a collapse/formation (depending on whether rp is resp. increased or decreased) of

a bulk cluster of cumulative infections.

Being the limit for ν,N → ∞, the percolation-free case stands out against the latter.

The cluster-concept has no relevance in this case, since all cumulative infections are part

of one single (bulk) cluster by definition (irrespective of Sc). Consequently, there is neither

a percolation threshold in this case, nor a divergence of a correlation length (which can be

considered as infinite for all s in fact). A parallel to thermodynamic systems with cooperative

long-range interactions presents itself here. Mean-field methods give an exact description

of the thermodynamic behaviour (including phase transitions) of these systems when the

interaction range becomes infinite. The individual entities that make-up the system (like

spins, molecules etc.) thereby interact with an effective interaction (mean field), which is

described in terms of the average state of each entity in the system. As such, there is no
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meaningful notion of a correlation length (except that it is infinite), and fluctuations on finite

length scales are averaged out without any loss of relevant information. Mean-field methods

can be exact in situations with long- or infinite-range interactions between the entities in a

thermodynamic system are infinite [6].

It is not difficult to see that the percolation-free case shows a strong resemblance to this

picture, and that the standard SIR model represents the equivalent of an exact mean-field

approach in this. The standard SIR model sets 〈ssi〉 and 〈ssi〉 equal to, respectively, the

probability p = 1 − s that a node is still in a susceptible state and the probability p′ = s

that a node has already been infected: 〈ssi〉 = (1− s), 〈ssi〉 = s. It is easy to recognise that

these substitutions are the conceptual analogue of the introduction of a mean-field. Like the

mean-field methods, in most cases the standard SIR model is an approximation. However,

when the social bubbles of the nodes extend to the entire population (so that the ”range of

social interactions” becomes infinite) these identities become exact and the SIR model gives

an exact description of the evolution of the epidemic, thus accentuating the analogy between

the model and mean-field methods for systems with cooperative interactions. It is evident

that the similarities in concept and role between the standard SIR model and the mean-

field methods for phase transitions in physical systems with cooperative interactions are in

accordance with the viewpoint that the onset/disappearance of herd immunity corresponds

to a (2nd order) phase transition.

f) The SIR model and percolation in unvaccinated populations

On the basis of the previous section, the standard SIR model seems (and actually is, as we

will see in this section) inadequate for describing percolation phenomena of the kind that we

encountered in the previous section. However, the more general SIR model outlined in chapter

1 is in fact able to account for the effects of percolation in both vaccinated (see section 8d))

and unvaccinated populations. The latter can be illustrated best by using an approximation

of 〈sis〉 in the form of the truncated series expansion:

〈sis〉 ≡ ais1 s + ais2 s
2 + ais3 s

3 (8.71)

where the coefficients are fitted to the 〈sis〉 vs. s data represented in fig. 8.21, yielding ais3 =

2.365, ais2 = −3.02, ais1 = 1.77. With these values taken for ais1 , a
is
2 , a

is
3 , the approximation

(8.71) reproduces the data in fig. 8.21 fairly well (see fig. 8.22a). The reason why an approach

based on an expansion of 〈sis〉 (instead of 〈ssi〉) is suited best here is twofold. First of all

we have seen in the previous section that the behaviour of 〈sis〉 as a function of s provides

a very clear indicator for the influence of percolation in both a qualitative and quantitative

sense (inflection point). Secondly, the variation of 〈sis〉 with s can be approximated/described

well in terms of a truncated series expansion with far less terms than the variation of 〈ssi〉
with s. The fit of the data presented in fig. 8.21 already demonstrated that a 3rd-order
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polynomial in s provides a good approximation for 〈sis〉 in this respect. This allows for the

(semi) algebraic solution of the differential equations involved, as outlined in section 3b. In

principle, the parameters t′ and s′ as they occur in eq. (3.16) can thereby be chosen in

an arbitrary way. However, making this choice can be somewhat tricky. As we see from

fig. 8.22a, the relative difference between the actual value of 〈sis〉 obtained from simulation

and the best fitting approximation based on (8.71) is quite substantial at very low values of

s (near s = 0). Calculations based on (3.16) have shown that these fairly large (relative)

variations in 〈sis〉 considerably compromise the calculated s-t relation and its agreement with

the simulated data. We must therefore choose the point (t′, s′) at not too low a value of t′

(that is, well within the regime where the fitted 3rd-order polynomial (8.71) does provide a

good approximation (with only minor relative differences) for 〈sis〉).

a) b)

Fig. 8.22: a) Result of a fit of the coefficients a1, a2, a3 in (8.71) to the simulated data for 〈sis〉
vs. s represented in fig. 8.21. Solid curve: simulated data. Dashed curve: approximation

on the basis of (8.71) with best fitting a1, a2, a3 (values indicated). b) s vs t. Open circles:

simulation, Solid curve: modified SIR model (based on eq. 3.16 under substitution of the

results for a1, a2, a3 from the fit presented under a)), Dashed curve: standard SIR model

Fig. 8.22b shows simulated data for s vs. t along with a solution of the differential

equations (3.9a,b), given by (3.16) under substitution of the values for a1, a2, a3 obtained

from the fit to the 〈sis〉 vs. s data presented in fig. 8.22a. Time is measured in ”cycle

units”, each of which corresponds to a full ”cycle” of n simulated contacts11, so that in one

single cycle unit each member of the population makes, on the average, one single contact.

The value of t′ chosen is t′ = 7.5 (in cycle units). The agreement between the solution of

the modified SIR model (with fitted parameters) and the simulated data is splendid. This

example emphasises therewith not only the ability of the modified SIR model to account for

11n being the total number of nodes/individuals in the population lattice
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percolation effects rooted in lattice correlations, but also its necessity as a replacement for the

standard SIR model in those cases where a strong influence of percolation phenomena is to

be expected. The inadequacy of the standard SIR model is illustrated thereby by the dashed

curve in fig. 8.22b, which shows s vs. t calculated on the basis of the standard SIR model

for the same pi as used in the simulation. The discrepancy with the simulated data and the

modified SIR model cannot be missed and reveals, in fact, a complete failure of the standard

SIR model for this case.

g) Combined effects of vaccination and social-network restrictions

We now focus on situations where vaccination and percolation effects due to limitations

of the social-bubble size combine, so that their effects may add-up or even strengthen one

another. Fig. 8.23 shows the values of se for various vaccination rates xv as a function of

pr/pi for a simulated epidemic on a 2D square lattice with nearest and next-nearest neighbour

contacts (N = 1) and vaccine efficiency ε = 1 (full immunity when vaccinated). All curves

show a continuous transition as a function of pr/pi, from a regime of high se values to a

regime of low and even negligible se values. The transitions are quite sharp (especially for low

values of xv) and as such they display the phase-transition behaviour that we have seen in

the previous sections. The data for xv = 0 have already been presented in fig. 8.19, together

with the variation of the average size of the clusters of cumulative infections indicative of a

percolation transition. The transition points rc (that is, the critical rp = pr/pi) are identified

as the inflection points of the curves. Note that also the maximum values of se (at pr/pi = 0)

show an expected decrease with xv (which appears to be (almost) linear).

Although way below the critical value pr/pi = 1 for removal-related herd-immunity already

for xv = 0 (see chapters 5 and 6), the values of rc become even significantly lower than that

with increasing xv, and even approach zero when xv approaches xv = 0.593 ≡ xp, which

corresponds to the percolation threshold xc,s = 1−xp = 0.407 for the susceptible nodes at the

onset of the epidemic in case of nearest and next-nearest neighbour contacts [4]. We clearly

see vaccination and the effects of size reduction of the social bubbles team-up in bringing rc

down and suppressing the spread of an infection. This ”bundling of forces” can be understood

as follows. Vaccination acts in a twofold manner by reducing the number of new infections

possible per unit of time, and by blocking/reducing paths along which the infection can

propagate through the population. The latter mechanism is a true percolation effect and, as

such, enhanced by reductions of the social-network size.

Fig. 8.24 shows the variation of rc as a function of xv as obtained from the data in fig.

8.23. The variation appears to be (almost) perfectly linear and with r0 representing the value

of rc for xv = 0 it can be described by the empirical relation:

rc = r0

(
xp − xv
xp

)
= r0

(
1− xv

xp

)
(8.72)
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Fig. 8.23: Variation of se for xv = 0 (◦), xv = 0.0625 (.), xv = 0.125 (♦), xv = 0.1875 (4),

xv = 0.25 (O), xv = 0.3125 (/), xv = 0.375 (�), xv = 0.4375 (+) xv = 0.5 (×)
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Fig. 8.24: Variation of rc with xv
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This result implies the following criterion for (vaccine-acquired) herd-immunity:

rp

1− xv/xp
=

1

1− xv/xp
· pr
pi
≥ r0 (8.73)

At least from a phenomenological point of view, we may consider this relation as a gen-

eralisation (for percolation effects) of the results on herd-immunity presented in chapters 5,

6 and 7 (see formula (5.1), (6.24) and, with ε = 1, (7.7)). It seems that a herd-immunity

threshold generally exists, and takes the mathematical form of a critical value rc of the ratio

between pr and pi, if we think of herd-immunity as a situation where a bulk cluster of cumu-

lative infections is no longer possible and only a minor part of the population will get infected

(both in case of strong herd-immunity under a regime of social normality and in case of weak

herd-immunity under a regime of social measures (see chapter 6)). When pr/pi > rc there can

be no large scale propagation of infections throughout the population. The herd-immunity

threshold for xv = 0 is given by (written as) r0. In general 0 ≤ r0 ≤ 1. The exact value of

r0 results from the specific percolation phenomena involved, and is therefore typical of the

specific (finite) size and structure of the social bubbles of the population members. As a result

of vaccination, the herd-immunity threshold decreases in accordance with (8.72). Comparison

of (7.7) and (8.73) suggests that the ratio xv = xv/xp thereby acts as an effective vaccination

rate (conceptually comparable to �v = εxv in (7.7)) and may therefore be considered as just

that. As such (at least when ε = 1) the result (7.7) may be regarded as merely a special case

for r0 = 1 and xp = 1 (so that xv = xv) of a more general result given by (8.73).

Instead of a rigorous mathematical treatment of the observed (linear) functional relation-

ship between rc and xv, a simple qualitative analysis that makes the specific form of (8.72) at

least plausible can be given as follows. The curves in fig. 8.8 show that, even when xv = 0,

a reduction of the size of the social bubbles the nodes may lead to a very strong decrease

of 〈ssi〉 with s at (very) low s-values. Upon increasing s for (very) low N and starting form

s ≈ 0, a kind of plateau in the 〈ssi〉 vs s curves is reached already at s-values only marginally

higher than s = 0. Let s′ be a typical value for s in this respect. For s > s′ the change in the

active-infection rate per unit of time can be written as:

ṡi = pi si〈ssi 〉 − prṡi = pisi ·
∞∑
n=0

a′n(s− s′)n − prṡi

For xv = 0, the coefficient a′0 is identified as the parameter r0, so that for s = s′ and xv = 0:

ṡi/si = pi r0 − pr

In general, a′0 will depend on xv, and we write:

a′0(xv) = r0

(
1− E(xv) · xv

)
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The terms E(xv) ·xv represents an effective vaccination rate (compare with �v = εsv in chapter

7), where the function E(xv) accounts for an additional decrease (due to percolation effects) of

the average number of susceptibles (linked to a single active infection) that may become part

of a bulk cluster of cumulative infections. In the absence of percolation effects E(xv) = 1 so

that the effective vaccination rate is equal to the actual vaccination rate xv, whereas in cases

where percolation effects are present E(xv) > 1, and the effective vaccination rate will be larger

than the actual vaccination rate in those cases. Obtaining the exact mathematical form of

the function E(xv) is a difficult problem. However, xv = xp marks the threshold beyond which

there will no longer be a bulk cluster of cumulative infections. Hence
(
1 − E(xp) · xp

)
= 0,

so that we obtain E(xp) = 1/xp. Consequently, when we consider E(xv) to be a differentiable

function of xv for 0 < xv < xp , we can express E(xv) as a series expansion in xv − xp of the

form:

E(xv) =
1

xp
+

∞∑
n=1

En · (xv − xp)n

in order to account for xv-dependence of E(xv) explicitly. However, fig. 8.24 suggests that,

apparently, the contribution to E(xv) due to terms of the order n ≥ 1 is very modest and even

negligible for all xv , and that only the 0th-order term 1/xp of the series expansion prevails.

This then leads us straight to the empirical relation (8.72).

h) Herd-immunity and percolation

It may be clear from the previous sections in this chapter that percolation phenomena are

a contributing factor to the achievement of herd-immunity. Even in unvaccinated populations

the critical value of rp = pr/pi (beyond which the cumulative infection rate will stick at a

very low value) is significantly lowered when the social bubble size is reduced. This is clearly

illustrated by the data presented in fig. 8.10 and fig 8.19 in section 8e. These show, for the

both cases ν = 4 and ν = 8, a critical value of rp much lower than the value rp = 1 expected

in the percolation free case (ν →∞), even when xv = 0. It is emphasised that this reduction

is caused by percolation effects alone, that is, by the increased reduction of the number of

susceptibles in the social bubble of an active infection for given s arising from the reduction

of the size of the social bubbles ν and the increased influence of lattice correlations that goes

with such a reduction, as well as by cluster-percolation effects discussed in section 8e.

Furthermore, the reduction of the critical rp-value becomes even (much) stronger in vac-

cinated populations, as shown by the data presented in fig. 8.23 and 8.24, and percolation

effects are responsible for this observation. The increased influence of percolation effects in

these cases may be inferred from section 8c, where it is shown that an epidemic becomes ac-

tually impossible when the percolation threshold of population lattice is passed, even without

infection removal. When pr 6= 0, the effects of infection removal and percolation apparently
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team-up to reduce the critical value of rp significantly more than the reduction resulting from

each of these mechanisms separately (that is, when only one of these mechanisms would apply

while the other does not, like in the case of infection removal in a percolation-free case with

ν →∞ or the case of percolation effects in the absence of infection removal (pr = 0).

Finally, it seems that the onset of herd-immunity is in fact related to a 2nd-order phase

transition, in which the average cluster-size drops to (almost) zero, whereas the fluctuation

size, reflected by
√
〈(Sc−〈Sc〉)2〉, and the correlation length ξ diverge. It seems therefore that

the herd-immunity transition is accompanied by a genuine percolation transition, and that

percolation effects are therewith an integral part of the road towards herd-immunity. They

are at least a ”side-effect”, but in many cases, especially when the social bubbles are small,

also a contributing cause. The entwining of the herd-immunity transition with a percolation

transition to the extend that one may even argue that the herd-immunity transition is in

fact a percolation transition epitomises the essential role played by percolation phenomena in

the achievement of herd-immunity, even in those cases where the primary mechanism driving

the transition is infection removal. It may be clear that percolation effects contribute to

the achievement of all types of herd-immunity that can be identified on the basis of the

classification scheme presented in section 6b.
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9. Epilogue

Summary, conclusions and suggestions for further research

The foregoing chapters not only confirm previously known results and phenomena while

putting them on more solid mathematical grounds (like the criterion for epidemic spread of

an infection), but they also present a number entirely new results and viewpoints.

First of all, the inadequacy of the standard SIR-model, especially under certain conditions

(strict lock-downs and the strong limitations of social contacts inherent to them), is revealed.

Under very strict lock-down conditions, the failure of the standard SIR model becomes quite

dramatic, as demonstrated by the results of simulations presented in chapter 4 and their

comparison to predictions by the standard SIR-model for the same sets of parameters as

those used in the statistical simulations. As such, the need becomes clear for a new paradigm

that allows for either an extension or a correction of the standard SIR-model to address these

issues. In Chapter 1 such a change of approach is actually presented by considering the

population as a network, and through a particular focus on the parameters 〈ssi〉 and 〈sis〉 and

their expression as series expansions in the cumulative infection rate s (which itself acts as

the analogue of a state parameter in thermodynamic systems). In contrast to the standard

SIR-model, this new approach enables an appropriate reproduction of the data obtained from

simulations in both a qualitative and quantitative way, even when strict social measures are

in place that significantly reduce the number of contacts of each member of the population.

However, modelling the spread of infectious diseases through a set of appropriately constructed

differential equations is still surrounded by fundamental difficulties. The problem in this

respect mainly lies with the influence of the network details on the actual spread of the

infection. The complexity of network phenomena is notoriously difficult to describe in terms

of an exact algebraic approach. The approach presented in this paper bypasses this issue by

the use of series expansions. However, the coefficients in these series expansions cannot be

calculated via an ab-initio scheme but their values have to be derived from already existing

data (either from simulations or field-data) in such a way that they provide a proper agreement

between the solutions of the differential equations and the (actual) data already available from

other sources (see chapter 4). Nevertheless, even the insight that the standard SIR-model has

serious shortcomings caused by the network structures of populations, and the awareness of

the serious fundamental issues that these network structures bring about in relation to the

modelling of infection spread in general, has its owns merits. It comes therefore as a bit of a

surprise that it can be shown (as in chapter 5) that the criterion for an epidemic to develop

from a limited number of initial active infections is actually independent of the structure of

the population network (which, at first glance, seems to defy intuition).

Understanding the vital role of the network structure on the quantitative aspects of the

spread of an infection also leads us to valuable insights regarding the unexpected and undesired

effects of changing (scaling down) the regime of social restrictions, even when (or, better
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stated: especially when) the number of cumulative infections seems to stabilise or saturate

(see section 5c). The fade-out of an epidemic is contextual, in the sense that the social-network

structure has a direct influence on the total number of cumulative infections reached during

a wave of infections that takes place under a specific regime of social restrictions. A change

towards a regime of less social restrictions (larger social bubbles) when the cumulative number

of infections seems to stabilise while there are still some residual active infections present, may

in some cases directly lead to a restart of the epidemic, and to a renewed increase of the number

of active and cumulative infections (of potentially dramatic proportions). The relevance of

these insights to policy makers is evident. Viewpoints as these are therefore among the key

results presented in this paper, as they also provide an illustration of the epistemic difficulties

that exist in relation to the concept of herd-immunity and its understanding, and of how an

inappropriate conception of herd-immunity may lead to the wrong social policies under the

circumstances given.

One of the most urgent scientific issues with regard to herd-immunity is its definition:

herd-immunity is still somewhat ill defined. To meet the need for a definition that is not only

of practical use but also rooted in the fundamental mechanisms that govern the spread of

infections, a classification (based on the results in chapters 4 and 5) is presented in section

6b. A distinction is made between weak and strong herd-immunity of either 1st or 2nd degree.

Weak herd-immunity corresponds to a situation as described in the above, where there is a

saturation of the cumulative infection rate under a regime of social restrictions, but with the

prospect of a new wave of infections once the restrictions are (partially) lifted. In contrast,

strong herd-immunity relates to a stable situation where even a return to a situation of social

normality will not lead to a new spark in the number of active infections and a new wave

of infections. The distinction between 1st and 2nd degree applies to both weak and strong

herd-immunity. In a case of 1st degree herd-immunity (weak or strong) the number of active

infections is over its peak and in decline: the epidemic is (under the circumstances given) in

an inevitable state of fading-out. The complementary case where an epidemic (again under

the circumstances given) has actually reached its end (so that the number of active infections

is (close to) zero and the cumulative infection rate has reached saturation) is referred to a

state of 2nd-degree herd-immunity. It may be clear that the best (i.e. safest) policy, at

least from an epidemiological point of view, should aim at achieving strong herd-immunity of

(preferably) 2nd degree.

The herd-immunity classification scheme was primarily conceived with a picture in mind

of waves of infections that gradually come to a halt (mainly due to infection removal), thus re-

sulting in a state of weak or strong herd-immunity. A less troublesome way to obtain a state of

herd-immunity is vaccination. By vaccinating a sufficiently large proportion of the population

with a vaccine of sufficiently high effectiveness ε, states of weak or even strong herd-immunity

can be obtained. In a vaccine-induced state of weak herd-immunity, the vaccination campaign

has to be complemented with social measures to prevent further spreading of an infection.

In vaccine-induced cases of strong herd-immunity, the population is safe against an epidemic
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even without any social measures in place. It is evident that a vaccination campaign should

aim at the latter. Chapter 7 deals extensively with the effects of vaccination. A criterion

was obtained for a critical vaccination rate that represents the minimal vaccination rate for

which immunity for the population at large (without social measures) against the outbreak of

an epidemic is guaranteed (and therewith a state of strong herd-immunity is obtained). The

line of thought to obtain such a criterion was similar to the one followed in section 5a and,

as a consequence, the critical vaccination rate thus obtained is independent of the structure

of the social network. The effectiveness of the vaccine is an important parameter here and

it explicitly enters the expression derived for the critical vaccination rate. In relation to this

it appeared useful to introduce an effective vaccination rate �vc = εsv. A crucial observation

(see fig. 7.1) is that for each pi/pr a minimum effectiveness and a minimum effective vaccina-

tion rate exist below which a state of strong herd-immunity cannot be obtained, so that the

pathogen involved has to be considered as endemic: unless vaccines of higher efficiency can

be developed, vaccination is unable to provide (strong) herd-immunity and the pathogen will

spread through the entire population unless appropriate social measures aimed at reducing

pi/pr are taken. The possibility of such a scenario may also become of relevance when new

variants of a pathogen emerge: a vaccine that provides (strong) herd-immunity against one

variant may not do so against a newer variant, the result being a new wave of infections.

A link exists between the criterion for an epidemic to evolve from a modest number of

initial infections (and correspondingly also the criteria for herd-immunity) and the value

of the (basic) reproduction number R (R0). However, the relation between the two is less

straightforward than often assumed (see chapter 2 and sections 5d and 6c). Starting from its

definition, the reproduction number R can be expressed as R = Q · pi/pr, where Q accounts

for the depletion of the reservoir of susceptibles (the basic reproduction number follows as

R0 = Q0 · pi/pr, where Q0 is the value of Q at the beginning of an outbreak (t0 = 0)).

The criterion pi/pr > 1 for an epidemic to evolve is therefore not equivalent to R > 1 or

R0 > 0 (which as often assumed however). Only when Q = 1 (Q0 = 1) both criteria are

equivalent. The issue can only be resolved by changing the definition of the reproduction

number (by simply putting R,R0 ≡ pi/pr), or by relating the criterion pi/pr > 1 to the

reproduction number by writing it as R/Q > 1 (R0/Q0 > 1). The often cited criterion

R,R0 > 1 is therefore to be considered only as a crude approximation obtained under neglect

of the depletion of the reservoir of susceptibles during the course of an outbreak (see section

5d).

The role of the network structure is already a central theme in chapters 1 to 7. After

all, since the population is considered as a lattice or network, and since it is not difficult to

imagine that the structure of such a population network will have at least some influence on

the evolution of an epidemic, the effects of the details of the network have to be explicitly

considered and accounted for, in order to obtain a realistic analysis. The results in the afore-

mentioned chapters clearly demonstrate this. However, there is barely another phenomenon

where network effects manifest themselves in such an all-important way as in the percolation
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transition, the relevance of which to vaccination scenarios is almost self-evident by its very

nature. Chapter 8 deals extensively with the phenomenon therefore. Via cluster-identification

algorithms applied to data from simulations, a clear link is shown between vaccination-induced

percolation transitions and the propagation of an infection through a population. It is shown

that the fluctuations in the size of the final clusters of cumulative infections diverges when the

percolation threshold is reached. It is also shown that such a divergence in the size-fluctuation

can be related in general to a divergence in the correlation length (see section 8b). A diver-

gence in the correlation length is a defining signature of a second-order phase transition in

physical/thermodynamic systems. As such, the vaccine-induced herd-immunity threshold can

be identified as the critical point of such a 2nd-order phase transition. This represents an

entirely new fundamental viewpoint on herd-immunity as a phenomenon. With some ex-

tensions, the framework outlined in chapter 1 is able to cope with the observed percolation

phenomena, including the percolation transition itself. That is, the variation as a function

of the vaccination rate of the end-value of the number of cumulative infections, as well as its

collapse at the percolation threshold can be adequately described. However, the variation in

(average) cluster size and the divergence of the correlation length are beyond the scope of the

presented framework. It should be realised however that these are difficult topics that cannot

be caught easily (if at all) in a tractable set of formulas and require a numerical approach al-

most by nature. In section 8e it is shown that the occurrence of percolation phenomena is not

restricted to vaccinated populations alone. Including even percolation transitions, they also

occur in unvaccinated populations, where they manifest themselves through a collapse of the

end-value of the cumulative infection rate at a critical value of rc = pr/pi accompanied by a

divergence in the size fluctuation of the clusters of cumulative infections, which is indicative of

a 2nd-order phase transition also in these cases. Cluster percolation plays a decisive role here

(see figs. 8.12 and 8.14 and the related discussion in section 8e). As such we arrive at a new

fundamental viewpoint on herd-immunity in general: the herd-immunity threshold marks a

2nd-order phase transition related to an underlying percolation transition, no matter whether

vaccinations are involved or not. Also in case of the unvaccinated populations, the modified

SIR-model of chapter 1 gives an adequate description of the evolution of an epidemic, even

when there is a percolation/herd-immunity transition.

The results in this paper were predominantly obtained under the assumption that both

infection removal and vaccination provide full immunity. Only in chapter 7 on vaccination, the

possibility of vaccines with an effectiveness ε less than 1 (i.e. less then 100%) was considered

and also part of the analysis. In practice, both infection removal and vaccination may not

result in full immunity of each population member involved however, especially when new

variants of a pathogen with (slightly) different properties emerge to which the immune system

does not have a fully effective response (like in the case of Covid-19 for instance). It is therefore

a legitimate question whether the results and conclusions presented in this paper would be

different when infection removal and/or vaccination would only result in ”partial” immunity,

that is when the population members that were vaccinated or the ones that have overcome
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an infection are not fully immune but may instead be susceptible to re-infection, albeit with

a lesser transmission probability than the one that applies to the unvaccinated and also still

uninfected (thus fully susceptible) population members. The analyses in the previous chapters

offer enough insights to allow for some expectations to be mentioned regarding this issue. For

this purpose it is important to notice that although the transmission probability that applies

in relation to vaccinated population members and removed infections may be nonzero, a

certain ”stopping power” is provided by a reduction of the transmission probability: a route

of infection along members of the the population may still pass a particular vaccinated node

or removed infection, but with much greater difficulty (i.e. much less a probability) than

when the node in question was still fully susceptible. Percolation effects are therefore still a

very real possibility, and the growth-rate of the number of active infections is (substantially)

reduced when the vaccination rate and/or the fraction of removed infections are/is high. The

effects of partial immunity are therefore expected to be quantitative rather than qualitative.

To corroborate these expectations, an extension of the framework presented in this paper to

account also for cases of partial immunity would make an excellent suggestion for further

research therewith. The lines along which such an extension may be conceived seem clear

and could take the form of the introduction of a second transmission parameter p′i next to

pi (such that p′i < pi) which specifically applies to contacts between an active infection and

a vaccinated population member or a removed infection. The spirit of such an approach was

actually advanced already in chapter 7 when we dealt with cases where ε < 1 (eq. (7.2)

ff). It is rather straightforward to take this approach one step further and to apply it to

cases of partial immunity in general. It should be mentioned however, that those results

presented in this paper that were obtained on the basis of the assumption of full vaccine-

or removal-acquired immunity represent fair and meaningful approximations for those cases

where a substantial (near full) immunity can be obtained.

All together we may conclude that the results in this paper provide quite some new insights

in the spread of infectious diseases and the evolution of an epidemic. As stated earlier, it is

at these insights that this paper aims particularly, thus leading to new methods to forecast

the evolution of ongoing epidemics. In fact, the paper more than once points out that the

goal of making such forecasts is quite ambitious and is met with serious fundamental issues.

However, the author believes that the incorporation of the methods and viewpoints outlined

in the previous chapters could lead to valuable improvements of the models and methods

presently in use for modelling the spread of infectious diseases. The subject of the paper

is also quite timeless indeed. At the very moment that this text is written, the Covid-19

pandemic seems to be in remission, but it is too early to tell what the near future will bring.

In addition, it would be dangerously naive to assume that Covid-19 will be the last of the

great pandemics, and that the SARS-CoV-2 family of viruses will be the last pathogens with

the potential of causing pandemic outbreaks. Finally, it should also be realised that the

viewpoints in this paper equally apply to outbreaks of plant diseases in, for instance, densely

packed mono-cultures and may therefore be of relevance in an agricultural context as well.
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Appendix 1

An eigenvalue equation relating the sx and the syx

We suppose 3 types of nodes a, b, c. Using (1.14) and (1.15):

nxy = nsx syx = nsy syx

nxx =
1

2
nsx sxx

we can rewrite the relation between the numbers of aa, ab and ac pairs, respectively repre-

sented by naa, nab and nac:

2naa + nab + nac = νsa

as follows:

sa〈saa + sb sab + sc sac = νsa (A1.1)

Upon systematic permutation of a, b, c in (A1.1) we also obtain:

sa sba + sb sbb〉 + sc sbc = νsb (A1.2)

sa sca + sb scb + sc scc = νsc (A1.3)

We can write (A1.1), (A1.2) and (A1.3) in matrix form as:

 saa sab sac

sba sbb sbc

sca scb scc


sasb
sc

 = ν

sasb
sc

 (A1.4)

which is essentially an eigenvalue equation with the number of links per node ν as the eigen-

value. When the number of nodes of a certain type, say c, is zero (i.e. sc = 0 so that

〈sxc〉 = 〈scx〉 = 0 for x = a, b, c) we get the simplified eigenvalue equation:(
saa sab

sba sbb

)(
sa

sb

)
= ν

(
sa

sb

)
(A1.5)
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Appendix 2

Derivation of the coefficients ac
′
n

Analogous to (8.24) we write 〈ssi〉c′ as:

〈ssi〉c′ = ν(1− xv) +
∞∑
n=1

a
(c′)
n snc′ (A2.1)

When sc′ = Sc′ = cs0,c′ 〈Sc′〉 the following condition must then be met:

〈ssi〉c′ = ν(1− xv) +
∞∑
n=1

a
(c′)
n S

n
c′ = 0 (A2.2)

Introducing the function a ′n = a ′n(Sc′) as the analogue of the previously introduced function

an = an(nb):

a
(c′)
n = a ′n · (1− xv) (A2.3)

we reexpress (A2.2) as:

〈ssi〉c′ = ν(1− xv)

{
1 +

∞∑
n=1

a ′nS nc′
}

= 0 (A2.4)

The Laurent series of a ′n in Sc′ is written as:

a ′n(Sc′) =
∞∑

m=−∞

α
′

m,nS
m
c′ (A2.5)

Substitution of (A2.5) into (A2.4) then yields, with i = n and j = n+m:

1 +
∞∑
n=1

∞∑
m=−∞

α
′

m,nS
n+m
c′ = 1 +

∞∑
i=1

∞∑
j=−∞

α
′

j−i,iS
j
c′ = 0 (A2.6)

Collecting terms with equal powers of Sc′ we get, for j = n+m = 0:

1 +
∞∑
i=1

α
′

−i,i = 0 (A2.7a)
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and for j = n+m 6= 0:

∞∑
i=0

α
′

j−i,i = 0 (A2.7b)

Neglecting terms of 3rd and higher order in Sc′ in the series expansion of 〈ssi〉c′ , only

a ′1(Sc′) and a ′2(Sc′) remain relevant. For n = 1 and n = 2 we get from (A2.5):

a ′1 =
α
′
−1,1

Sc′
+

∞∑
j=0

α
′
j,1 S

j
c′ (A2.8a)

a ′2 =
α
′
−1,2

Sc′
+

α
′
−2,2

S 2
c′

+
∞∑
j=0

α
′
j,2 S

j
c′ (A2.8b)

Analogous to (8.32), for the 2nd-order polynomial approximations of 〈ssi〉c′ , the following

constraint must apply with sc′ = S (see (A2.2)):

〈ssi〉c′ ≈ a
(c′)
0 + a

(c′)
1 Sc′ + a

(c′)
2 S

2
c′ ≡ 0 (A2.9)

so that in combination with (A2.3) we get, for xv 6= 1:

1 + a ′1Sc′ + a ′2S
2
c′ ≡ 0 (A2.10a)

That is:

a ′2 = − 1 + a ′1Sc′
S 2
c′

(A2.10b)

Substitution of (A2.8a) then yields:

a ′2 = −
1 + α

′
−1,1 + Sc′ ·

∞∑
j=0

α
′

j,1S
j
c′

S 2
c′

= −
(1 + α

′
−1,1)

S 2
c′

−
α
′
0,1

Sc′
−

∞∑
j=0

α
′

j+1,1S
j
c′ (A2.11)
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from which α
′
−1,2 and α

′
−2,2 can be identified as:

α
′
−2,2 = −(1 + α

′
−1,1) α

′
−1,2 = −α′0,1 (A2.12a)

respectively in agreement with (A2.7a) and (A2.7b). For the α
′
m,2 when m ≥ 0 we get from

comparison of (A2.11) and (A2.8b):

α
′
m,2 = −α′m+1,1 (A2.12b)

By combining (A2.4), (A2.8a) and (A2.11), the Laurent series in Sc′ for a
(c′)
1 and a

(c′)
2 can

thus be written as:

a
(c′)
1 = ν(1− xv)

[
α
′
−1,1

Sc′
+

∞∑
j=0

α
′

j,1S
j
c′

]
(A2.13a)

a
(c′)
2 = ν(xv − 1)

[
α
′
0,1

Sc′
+

(1 + α
′
−1,1)

S 2
c′

+
∞∑
j=0

α
′

j+1,1S
j
c′

]
(A2.13b)
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