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Abstract

When a Susceptible-Infective-Recovered (SIR) model with a constant contact

rate is used to describe the dynamics of directly transmitted infections, oscillations,

which decay exponentially with time, are obtained. Due to damped oscillations,

intermittent vaccination schemes can be designed in order to reduce or even elimi-

nate the infection. A simple intermittent vaccination can be described by a series

of pulses, i.e., a proportion of susceptible individuals is vaccinated intermittently at

every fixed period of time. Analysis of the model is done by numerical simulations

in order to determine the trajectories in the phase space. It is observed that as the

proportion of vaccinated individuals increases, closed orbits with multiple cycles ap-

pear, even irregular trajectories arise occasionally. These results can be understood

by comparing with bifurcations occurring in a discrete logistic model describing a

single population. Further, bifurcations occurring in epidemiological models that
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use periodic functions to mimic seasonal variations in the disease transmission are

discussed.

Keywords : discrete and continuous modelings - bifurcation – numerical simulation –

rubella infection – periodic transmission rate

1 INTRODUCTION

Directly transmitted infections are mathematically modelled by assuming a homogeneous

mixing among them, that is, individuals interact randomly at a certain rate. The classi-

cal SIR (Susceptible–Infective–Recovered) type of model considering a constant contact

rate yields oscillations which decay exponentially, i.e., damped oscillations [2]. In [23],

by introducing a pulse perturbation in an SIR model, the natural-epidemics (time lag

between two consecutive peaks of the natural epidemic) and the inter-epidemics (time

lag between two consecutive peaks of the perturbed disease transmission system) peri-

ods were estimated. However, when time-dependent model parameters are considered,

the natural-epidemics period disappears, and annual cycle epidemics arises (see [25] for a

dengue modelling).

The oscillating patterns in the dynamics of directly transmitted infections allow the use

of an intermittent vaccination strategy, together with or instead of a routine scheme. The

reason behind it is the application of successive mass vaccinations always just before the

triggering of the epidemics. Mass vaccinations in a short period of time can be roughly

described by a series of pulses vaccination, that is, a strategy where a pre-determined

proportion of susceptible individuals is vaccinated intermittently at a fixed time intervals.

The time between successive pulses could be determined by the natural-epidemics period.

For instance, according to data published by the Centers for Disease Control, the basic

pattern of the rubella epidemics is a 3-year cycle. However, the epidemics cycles from 6-

to 9-year intervals present a higher incidence as a result of a buildup and fall in incidence

over the basic cycle [9].

In developed countries the routine approach is applied with very good results [8] due to

well organized health systems. This is not true, however, for developing countries where

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.30.22275782doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.30.22275782
http://creativecommons.org/licenses/by-nc-nd/4.0/


an alternative compounded strategy is applied, i.e., routine vaccination associated with

complementary mass vaccination campaigns. The reasons for applying this compounded

strategy are derived from the lack of organization and continuous resources for the health

system, conjugated with the lower population compliance to routine programmes. The

experience in Brazil with this approach has been very encouraging for poliomyelitis [22],

measles [17] and more recently with rubella [12].

Can regularly applied pulses vaccination arise complex dynamics? In order to address

this question, numerical analysis of SIR model encompassing pulses vaccination strategy is

done. As the proportion of susceptible individuals is increased, closed orbits with multiple

cycles arise, with irregular trajectories appearing occasionally. A discrete logistic model

[13] shed some light to interpret these results. Even more complex behavior appearing in

SIR model with periodic (sinusoidal) function [20] can be understood. Another question

addressed here is the assessment of the minimum proportion of susceptible individuals

under vaccination such that the disease can be considered eradicated.

The paper is divided as follows. In section 2, a vaccination strategy comprised in a

series of pulses is proposed based on the SIR model. In section 3, scenarios for different

proportion of vaccinations are shown, and discussion is given in section 4. Conclusion is

given in section 5.

2 SIR MODEL

Periodicity of some infectious diseases, especially childhood infections like measles and

rubella, has attracted attention of many researchers. Although not fully understood, it is

very important to take it into account when designing an immunization programme.

Dynamics of directly transmitted infections, disregarding maternally derived antibod-

ies and differential mortality due to the disease, is considered. In the modelling, a life-long

immunity, induced by both the natural infection and the vaccine, is assumed. A closed

community is divided into three classes named susceptible, infectious and recovered indi-

viduals, with the fractions of respective classes at time t being denoted by s(t), i(t) and

r(t). Instead of infectious individuals i(t), the force of infection λ(t), defined by

λ(t) = βi(t), (1)
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is taken into account in the modelling. The parameter β is the transmission coefficient

being given by β = β′N , where β′ is the constant per-capita contact rate and N is the

constant population size.

Assuming that the susceptible and infectious individuals are mixed homogeneously in

the community [3], the SIR model is, then, described by
d

dt
s(t) = µ− [µ+ ν(t) + λ(t)] s(t)

d

dt
λ(t) = βλ(t)s(t)− (µ+ γ)λ(t),

(2)

where r(t) = 1− s(t)−λ(t)/β, which comes out from the assumption that we are dealing

with a constant population size, that is, the birth rate is equal to the natural death rate,

denoted by µ. The parameter γ−1 is the average recovery period (γ is the recovery rate)

and ν(t) is the vaccination rate applied to susceptible individuals in all ages.

The analysis of the model given by equation (2) with constant ν was done in [24].

Briefly, suppose that ν(t) = 0. Equation (7), without vaccination, has two equilibrium

points denoted by P =
(
s̄, λ̄

)
(see [23] for details): one is the trivial, given by P 0 = (1, 0),

and the other is the non-trivial P ∗ = (s0, λ0) with coordinates

s0 =
µ

µ+ λ0

and λ0 = µ (R0 − 1) , (3)

where the basic reproduction number R0 is

R0 =
β

µ+ γ
. (4)

When a constant and continuous vaccination ν is applied on a population (with R0 > 1),

there is a reproduction number due to the vaccination Rν , given by Rν = µR0/ (µ+ ν),

such that Rν = R0, for ν = 0, and Rν < R0, for ν > 0 [2]. Clearly there is a threshold of

ν, denoted by νth, given by

νth = µ (R0 − 1) = λ0, (5)

which, for all ν > νth, the disease is eradicated by vaccination.
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The application of mass immunization strategy consisting of a series of pulses as a

vaccination scheme is proposed and evaluated. This type of vaccination arises the ques-

tion of the choice of the time interval between two successive pulses immunization. The

main aspect about this question is related to the outbreak of severe epidemics when sus-

ceptible individuals prevail in the population. For example, in a long time delayed pulses

vaccination scheme, the number of susceptible individuals who were not covered by each

successive immunizations is summed up and increases, and, consequently, a small number

of infectious individuals can trigger a severe epidemics [23]. To avoid this undesirable

effect, the time lag between successive pulses must be chosen appropriately, for instance,

the natural-epidemics period multiplied by a factor.

Based on the above reasonings, a mass vaccination in the form of pulses [1] is described

by the vaccination rate ν(t) given by

ν(t) =
Jm∑
j=0

pδ (t− jετ) , (6)

where Jm is the number of pulses vaccination applied, and δ(t) is the Dirac delta function

[4]. The parameters τ and ε are respectively the natural-epidemics period and security

factor, with preferentially ε < 1, and p is the effective proportion of the susceptible

individuals covered by vaccination at time tj = jετ . Hethcote [10] used this form of

vaccination rate to determine the optimal vaccination age.

A series of pulses vaccination strategy can be described by equation (2) dropping out

ν(t), that is, 
d

dt
s(t) = µ− [µ+ λ(t)] s(t)

d

dt
λ(t) = βλ(t)s(t)− (µ+ γ)λ(t),

(7)

and the Dirac delta pulses are transferred to boundary conditions, which are
s+(jετ) = (1− p) s−(jετ)

λ+(jετ) = λ−(jετ).

(8)
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The superscript + stands for the limit of time coming from the right hand (tj ← t) and
−, for the limit coming from the left (t→ tj). Notice that at t = 0, the initial conditions

are s+(0) = (1− p) s0 and λ+(0) = λ0, where s0 and λ0 are given by equation (3).

By varying the proportion of susceptible individuals covered by the immunization, the

scenarios yielded form application of a series of pulses vaccination strategy are described.

3 Studying pulses of vaccination

A series of pulses vaccination strategy, described by the vaccination rate given by equation

(6), is based on three parameters: the natural-epidemics period τ , the security factor ε

and the proportion covered by the vaccination scheme p. Here τ and ε are fixed, and only

p is allowed to vary. Rubella infection is taken as an example.

Numerical simulations of the system of equations (7) by supplying the boundary con-

ditions (8) are done, in order to obtain different scenarios (or, bifurcations). Numeri-

cal solutions are obtained by applying the stepsize controlled fourth order Runge-Kutta

method [18]. Figures are shown in the phase space portrait λ×s containing the non-trivial
equilibrium P ∗ given by equation (3).

Besides the evaluation of pulses as a vaccination scheme, another goal is the under-

standing of the complex dynamical trajectories. Since the time between successive pulses

is fixed (ετ) but the proportion p is varied, periodic impulsive system with varying ampli-

tudes is considered here. This study can be useful to understanding results of modelling

the seasonal variations mimicked by periodic sinusoidal functions.

3.1 Model parameters

Using the field data from the City of Caieiras, São Paulo State, Brazil [7], the steady state

force of infection was estimated for Rubella, which was λ0 = 0.0766 years−1. Assuming

that µ = 0.016 years−1, the steady state fraction of susceptible individuals is s0 = 0.1728,

and the basic reproduction number is R0 = 5.787, from equation (3). Finally, letting

γ = 30.4 years−1, the transmission coefficient is β = 176.03 years−1 from equation (4).

For rubella infection, the natural-epidemics period is τ = 4.118 years [23].
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The quasi-periodic trajectories of the SIR model are illustrated in Figure 1, assum-

ing that few infectious individuals are introduced in a susceptible population. Equation

(2) is simulated assuming that there is not vaccination (ν = 0), with initial conditions

given by s(0) = 1 and λ(0) = 10−5 years−1, or i(0) = λ(0)/β = 57 × 10−9 (57 indi-

viduals in 1 billion). After huge amplitudes in the beginning (Figure 1(a), shown until

30 years), oscillations are damped toward the non-trivial equilibrium P ∗ = (s0, λ0) =

(0.1728, 0.0766years−1) (filled square), which is shown inside of the damped oscillations

(Figure 1(b), shown from 100 to 150 years). The first peak of epidemics occurs at t1 = 0.15

years, with λ(t1) = 88, 71 years−1 (i(t1) = 0.504), and the next second peak occurs at

t2 = 21.39 years, with λ(t2) = 4.80 years−1 (i(t2) = 0.027). Hence, the first inter-

epidemics period is θ = t2 − t1 = 21.24 years.
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Figure 1: Introduction of an infection in a community free of disease without vaccination
(ν = 0), described by the initial conditions s(0) = 1 and λ(0) = 10−5 years−1: phase
portrait of (a) initial time (until 30 years), and (b) intermediate time (from 100 to 150
years), showing damped oscillations toward the non-trivial equilibrium P ∗ (filled square).

Figure 2 illustrates the time varying fraction of susceptible individuals (s) and the

force of infection (λ) corresponding to Figure 1 disregarding the initial huge amplitudes

(shown from 40 to 100 years). Clearly, the time elapsed between two consecutive peaks of

epidemics decreases, and as t increases, the period of time between successive epidemics

tends to the natural-epidemic period τ (see [23]).
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Figure 2: The time varying fraction of susceptible individuals (s) and the force of infection
(λ) from 40 to 100 years, corresponding to Figure 1.

3.2 Evaluating pulses vaccination strategy

In an attempt to avoid the emerging of severe epidemics, a mass vaccination described by

a series of pulses is applied in a community with equal period of time between successive

vaccinations, being this period lower than the nature-epidemics period given by ετ .

When p = 0, damped oscillations drive the dynamical trajectories to attain the non-

trivial equilibrium point P ∗ (see Figures 1 and 2). For p ̸= 0, periodic orbits must arise

due to the periodically forcing external input (pulses vaccination with period T = ετ),

which must be preceded by initial fluctuations due to transient effect. The period T

of closed orbit is obtained solving numerically equation (7) by supplying the boundary

conditions (8) as follows: (1) after elapsed a sufficient time until the transient effects fade

out, at an arbitrary time t1 the values s(t1) and λ(t1) are stored, (2) for t > t1, the values

s(t) and λ(t) are compared with s(t1) and λ(t1), (3) if inequalities defined by∣∣∣∣s(t1)− s(t2)

s(t2)

∣∣∣∣ ≤ ϵ and

∣∣∣∣λ(t1)− λ(t2)

λ(t2)

∣∣∣∣ ≤ ϵ

are satisfied, then s(t1) = s(t2) and λ(t1) = λ(t2) are assumed and, then, (4) the period

of closed orbit is calculated by T = t2 − t1. Another periods are also searched. For the

relative error, it is considered ϵ = 10−6.

All simulations are obtained considering security factor being ε = 0.8 and by varying

the proportion of susceptible individuals vaccinated p. Hence, the following scenarios are
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related to a community submitted to a series of pulses with the time lag of T = ετ = 3.2944

years between them. The number of pulses vaccination performed, Jm, is set in such a

way that the vaccination is applied over all the time of simulation.

Figure 3 shows the case p = 5%: (a) initial time (until 50 years), and (b) long time

(from 100 to 300 years). The closed orbit contains the non-trivial equilibrium P ∗, and

this orbit has the same period as the periodic pulses vaccination, that is, T = ετ = 3.2944

years [21]. The non-trivial equilibrium P ∗ is shown as a filled square and is presented in

all figures hereafter.
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Figure 3: Phase space portrait for p = 5%: (a) initial time (until 50 years) and (b) long
time (from 100 to 300 years), a one cycle orbit.

The closed orbits are formed after the transient period, which can last for more than

hundreds of years as p increases. For this reason, the periodic orbits are searched after

elapsing more than 160, 000 years, which is an arbitrary but sufficiently higher value to

fade out transient behavior. The asymptotic phase space trajectories are shown from

163, 500 to 164, 000 years, which are called asymptotic curves.

As shown in Figure 3, for 0 < p ≤ 8.987%, damped oscillations are driven to a single

closed orbit (limit cycle), with period T = ετ , that is, one cycle orbit persists until

p = 8.987%. As p increases, λ and s circulate around P ∗, but with increased amplitudes.

For p > 8.987%, closed orbits whose period is multiple of ετ appear, besides irregular

trajectories. At p = 8.987% occurs a flip bifurcation.

Figure 4 shows the case p = 8.988%: (a) initial time (until 50 years), and (b) asymp-

totic curve. The period of closed orbit is T = 2ετ = 6.5888 years. At this vaccination

coverage occurs closed orbit of two cycles and doubling of the period.
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Figure 4: Phase space portrait for p = 8.988%: (a) initial time (until 50 years) and (b)
asymptotic curve, a two cycles orbit.

Two cycles orbit persists until p = 9.316%. It is worth to showing behavior for

intermediate and upper bound values of p. Figure 5 shows the asymptotic curves for:

(a) p = 9.1%, and (b) p = 9.316%. Figures 4(b), 5(a) and 5(b) show clearly that the

difference between the maximum values of s in both cycles increases as p increases.
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Figure 5: Asymptotic two cycles phase space portrait for: (a) p = 9.1% and (b) p =
9.316%.

The origin of the two cycles orbit is due to the enlargement in the amplitude of

oscillation of the fractions of susceptibles (s) by increasing p (vaccination of susceptible

individuals). Figure 4(b) shows practically coincident orbits, but as p increases, the

increasing in the amplitude of s in one of two cycles orbit decreases the amplitude of

the second cycle (internal orbit, Figure 5). The effect on λ as p increases is the splitting

of two cycles, one with high amplitude, and the other with low amplitude. However,

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.30.22275782doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.30.22275782
http://creativecommons.org/licenses/by-nc-nd/4.0/


the closed orbit of two cycles could be destabilized by increasing p. This behavior has

correspondence in a simple logistic discrete model [13], which is discussed below.

Figure 6 shows the case p = 9.317%: (a) initial time (until 50 years), and (b) asymp-

totic curve. The are not closed orbits, and the behavior is irregular, but circulating the

equilibrium point.
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Figure 6: Phase space portrait for p = 9.317%: (a) initial time (until 50 years) and (b)
asymptotic curve, an irregular trajectory.

Irregular behavior persists until p = 15.24%. To explore this irregular behavior, Figure

7 shows the asymptotic curves for: (a) p = 15.23%, and (b) p = 15.24%.
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Figure 7: Asymptotic irregular phase space portrait for: (a) p = 15.23% and (b) p =
15.24%. Decreasing the relative error ϵ, periodic orbits are found.

For p = 15.22% (not shown here), there is a shrinking of trajectories observed in Figure

6(b): after large perturbations, the phase space trajectory is settle in a quasi rectangular

box. Figure 7(a), for p = 15.23%, shows that the trajectories are bounded in a strip, and
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closed orbits are not observed (this is true for error ϵ ≤ 4.94 × 10−4). Figure 7 can be

classified as torus bifurcation. However, if we decrease the accuracy (error is increased)

to ϵ ≥ 4.95× 10−4, then the orbit can be classified as closed with T = 308ετ = 1, 014.68

years, that is, the period is increased in 308 times. In Figure 7(b), for p = 15.24%, the

strip is reduced, but there are not closed orbits for ϵ ≤ 7.29543 × 10−5. If the error is

increased to ϵ ≥ 7.29544×10−5, then two closed orbits, with periods T1 = 56ετ = 184.486

years and T2 = 1776ετ = 5, 850.85 years are found. Figure 7 shows a trend for higher

p: two types of cycles, where one has low amplitude in λ, and the other, high amplitude

cycling the equilibrium point P ∗.

As p increases from 9.317%, the irregular behavior is changed to bounded trajectories.

Hence, it is expected that increasing p, closed orbits could be achieved. As p varies since

15.25%, closed orbits appear, with periods decreasing until p = 17.437%, in which case a

close orbit with periodicity ετ occurs.

Figure 8 shows the case p = 15.25%: (a) initial time (until 50 years), and (b) asymp-

totic curve. The period of closed orbit is T = 16ετ = 52.7104 years, and this sixteen

cycles orbit persists until p = 15.26%.
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Figure 8: Phase space portrait for p = 15.25%: (a) initial time (until 50 years) and (b)
asymptotic curve, a sixteen cycles orbit.

Figure 9 shows asymptotic curves for two values of p. When p = 15.27% (a), the

period of closed orbit is T = 8ετ = 26.3552 years, and eight cycles orbit persists until

p = 15.32%. When p = 15.33% (figure not shown), the period of closed orbit is T = 4ετ =

13.1776 years, which persists until p = 15.70%. When p = 15.71% (figure not shown), the

period of closed orbit is T = 2ετ persisting until p = 17.436%. When p = 17.437% (b), a
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one cycle orbit is observed with period T = ετ , which persists until p = 18.926%. Notice

that the closed orbit is formed with the equilibrium point P ∗ situating near the boundary

of the line segment joining the points before and just after the pulse vaccination.
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Figure 9: Phase space portrait for: (a) p = 15.27% with eight cycles, and (b) p = 17.437%
with one cycle.

Figure 10 shows the case p = 18.927%: (a) initial time (until 50 years), and (b)

asymptotic curve. The period of closed orbit is T = 6ετ = 19.7664 years. Six cycles orbit

persists until p = 18.928%.
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Figure 10: Phase space portrait for p = 18.927%: (a) initial time (until 50 years) and (b)
asymptotic curve, a six cycles orbit.

There are alternating one cycle – six cycles orbits (11 alterations were observed between

18.929% and 18.974% by varying p in 0.001%; could other alternations be found if the

increment is lower than 0.001%?). The last six cycles orbit occurs between 18.973%
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and 18.974%. Figure 11 shows the asymptotic curves for: (a) p = 18.972%, and (b)

p = 18.974%. The periods of closed orbits are T = ετ and T = 6ετ , respectively.
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Figure 11: Asymptotic curves for: (a) p = 18.972%, one cycle orbit, and (b) p = 18.974%,
six cycles orbit.

In Figure 9(b), when p = 17.437%, a one cycle orbit contains P ∗ quasi at the boundary.

The minimum value of the force of infection, λ = 1.6 × 10−5 years−1, occurs at t = 4.9

years, or, i = 9 × 10−8 (90 individuals in 1 billion). When p = 18.972%, a one cycle

orbit does not contain P ∗ anymore, and the minimum value of the force of infection,

λ = 1.8 × 10−11 years−1, occurs at t = 153.2 years, or, i = 1 × 10−13 (10 individuals in

1 trillion). For p = 18.975%, one cycle orbit appears again, which is very similar than

that observed in Figure 11(a). The period of closed orbit is T = ετ , which persists until

p = 18.977%. However, for p = 18.978%, three cycles orbit arises, which is shown in

Figure 12: (a) initial time (until 50 years), and (b) asymptotic curve. The period of

closed orbit is T = 3ετ , persisting until p = 18.978%, and at p = 18.979% one cycle orbit

arises.

There are alternating one cycle – three cycles orbits (60 alterations were observed be-

tween 18.979% and 19.367%). Again a one cycle orbit does not contain P ∗. Additionally,

three special trajectories are found in this interval. (1) At p = 19.010% there are not

closed orbits, but the trajectories are bounded in a strip for small error ϵ ≤ 8.0 × 10−5.

Figure 13(a) shows the asymptotic curve. However, for lower accuracy (the error is in-

creased, ϵ ≥ 8.1× 10−5), then T = 72ετ = 237.1968 years, that is, the period is increased

in 72 times. (2) Figure 13(b) shows the asymptotic curve for the case p = 19.018%. The

period of closed orbit is T = 18ετ = 59.2992 years, which persists until p = 19.019%.
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Figure 12: Phase space portrait for p = 18.978%: (a) initial time (until 50 years) and (b)
asymptotic curve, a three cycles orbit.

(3) The asymptotic curve for the case p = 19.022% is similar to figure shown in Figure

13(b), but the period of closed orbit is T = 9ετ = 29.6496 years, which occurs again at

p = 19.029%.
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Figure 13: Asymptotic curve for: (a) p = 19.010%, irregular but a seventy two cycles
orbit for decreased relative error ϵ, and (b) p = 19.018%, an eighteen cycles orbit.

With respect to the alternating one cycle – three cycles orbits, the last three cycles

orbit occurs between 19.366% and 19.367%. At p = 19.368% one cycle orbit is observed,

and the minimum value of the force of infection, λ = 8.1 × 10−13 years−1, occurs at

t = 169.5 years, or, i = 4.6× 10−15 (5 individuals in 1 quadrillion). Figure 14 shows the

asymptotic curves for: (a) p = 19.367% (T = 3ετ), and (b) p = 19.368% (T = ετ).

After p = 19.368% only one cycle orbit is observed, which persists until p = 22%.

Figure 15 shows for p = 22%: (a) initial time (until 50 years), and (b) long time (from
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Figure 14: Asymptotic curves for: (a) p = 19.367%, a three cycles orbit, and (b) p =
19.368%, a one cycle orbit.

400 to 800 years). The period of closed orbit is T = ετ . The force of infection decreases

up to 10−15 years−1(i = 5.6 × 10−18), but the maximum value of s is near 0.193, which

is higher than s0 = 0.1728 (Figure 15(a)). For this reason the force of infection increases

after 65 years, and approaches to 0.008 years−1 (Figure 15(b)).
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Figure 15: Phase space portrait for p = 22%: (a) initial time (until 50 years) and (b)
long time (from 400 to 800 years), an one cycle orbit.

At and after p = 23% there are not closed orbits: the fraction of susceptibles oscillates,

but the force of infection always decreases. However, these oscillations have two behaviors.

One of them is the maximum value of susceptibles being higher than the equilibrium value

s0. In the second type, the maximum value of oscillating s situates always lower than s0.

Figure 16 shows the phase space portrait (from 0 to 50 years) for: (a) p = 23%, and (b)

p = 27%. Notice that Figure 16(a) is quasi similar than that shown in Figure 15(a), but
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asymptotically there is not closed orbit for the force of infection (λ is always decreasing).
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Figure 16: Phase space portrait (from 0 to 50 years) for: (a) p = 23%, with s oscillating
beyond the equilibrium value, and (b) p = 27%, with s oscillating below the equilibrium
value.

When a vaccination does not eradicated the disease, there is a well known result about

the fraction of susceptible individuals: the steady state fraction of susceptible individuals

just before the introduction of the vaccination is equal to the asymptotic fraction of

susceptible individuals after vaccination [2] [24]. In above simulations dealing with a

series of pulse vaccinations, for p ≤ 23%, the fraction of susceptible individuals oscillates

above the equilibrium value s0. However, for p > 23%, the fraction of susceptibles does

not surpass s0 anymore, rather the successive peaks decrease assuming values lower than

s0. Hence, p near 23% can be assumed as the proportion of susceptibles to be vaccinated

to eradicate the disease in the dynamical point of view.

4 Discussion

In this paper, neither the vertical transmission nor vaccination of newborns were consid-

ered. The proportion of susceptibles being vaccinated p was varied broadly, fixing the

period at T = ετ . Let the variation of susceptibles and periodic orbits be discussed.

In all simulations, the range of variation of the fraction of susceptible individuals are

narrow in comparison with the variations in the force of infection. The largest amplitude of

the variation of the fraction os susceptible individuals divided by the equilibrium fraction

s0 is around (0.22− 0.13) /0.173 ∼ 0.52 at p = 15.22%; however, for the force of infection,
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this quotient is 0.6/0.078 ∼ 7.69 at p = 15.71%. This fact shows the necessity of choosing

carefully the proportion of susceptibles to be vaccinated (the risk of a severe epidemics

is higher for p near 15%, which is in the range 8.987% < p < 19.368% where complex

behavior occurs). All the foregoing scenarios show that, when the disease is not eradicated,

the possible outbreak of an epidemics is not negligible, especially in the scenarios where

closed orbits with multiplicity of basic period T occur.

There are clearly two windows in the proportion vaccinated p at which a single closed

orbit occurs with period T = 3.2944 years: 0 < p ≤ 8.987% and 19.368% ≤ p < 22%.

Between 8.987% < p < 19.368% (excluding 17.437% < p < 18.926% where single orbit

occurs), closed orbits with multiplicity of basic period T are observed, besides bounded

trajectories (torus bifurcation). After p > 22%, none periodic orbits are observed. When

22% < p ≤ 23%, the non-periodic trajectories oscillates beyond the value s0; but for

p > 23%, the oscillations occur below this value. Notice that one cycle is observed in the

range 19.368% ≤ p < 22%, but this one-cycle arises after transient behavior where the

number of infectious individuals reaches extremely small value, for instance, i = 10−18 (see

Figure 15). Notably, at p = 18.972% and above this value, when a one cycle orbit occurs,

this closed orbit does not contain P ∗ anymore, and the minimum value for the infectious

individuals is very small, for instance, 10 individuals in 1 trillion for p = 18.972%.

In order to understand the breaking of cyclic regime (p > 22%), let a constant and

continuous vaccination scheme be recalled. In this modeling, the asymptotic fraction

of susceptible individuals always reaches the same value (s̄ = s0 = 1/R0) regardless

the vaccination rate, if this rate is lower than the threshold νth given by equation (5).

However, if the vaccination rate is higher than the threshold (ν > νth), the asymptotic

fraction of susceptible individuals attains s̄ = µ/ (µ+ ν) < s0, which is obtained by letting

λ = 0 in equation (2). Following this reasoning, the proportion p at which the fraction of

susceptible individuals oscillates below the value s0 could be considered as the threshold

of proportion vaccinated pmin. In this case, the minimum proportion to be vaccinated is

pmin = 23% in order to achieve eradication.

However, numerical simulations showed the possibility of choosing two other propor-

tions of vaccination in which the disease can be considered eradicated. The first is the

disappearance of cyclic behavior, which occurs when p > 22%, near to the pmin = 23%
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obtained previously. The second is the appearance of the first single orbit where the

equilibrium point is outside the cycle, which occurs at p = 18.972%. In both cases, the

number of infectious individuals achieves extremely low value.

The occurrence of periodic solutions is compared with a simple discrete model, and

the results from sinusoidal modeling are discussed.

4.1 Bifurcation in discrete model

May [13] showed, dealing with a discrete logistic map

xn+1 = rxn (1− xn) ,

where r is the birth rate and xn is the fraction of a population in n-th generation, the

appearing of 2k-cycle as r increases. (Notice that the discrete size of population is Xn =

Kxn, where K is the carrying capacity.) Further increase in r results in the appearing of

odd cycles: 3-cycle, followed by 6-cycle and further period doubling. For higher r, chaos

is found. When period doubling occurs, there are attractors with small and high values,

which difference increases with increasing r.

The first transcritical bifurcation, when there is a doubling of period from one cycle,

is explained as follows. As the birth rate r increases, the number of individuals increases,

but reaching a certain value, the corresponding fraction of population destabilizes by

the fact that it cannot bear such amount anymore. Hence, after the first bifurcation

value of r occurs a jump between two values, that is, one lower and other higher than

the corresponding unstable value, and the difference between these values (fixed points)

increases as r increases. The biological meaning of this first doubling of period is the role

played between food availability and replenishing of population: a high size of population

exhausts the food, and the next generation is settle at a lower size; which in turn allows

elevate number in the next generation due to abundance of food. The second transcritical

bifurcation destabilizes these two fixed points, allowing the appearance of four fixed points.

The reason is that the depression of next generation due to the highest level of population

is so great that two intermediate levels (fixed points) are needed as steps to return to the

highest level. This explanation follows for higher number of fixed points.
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However, in the corresponding continuous modelling, the logistic equation dX/dt =

rX (1−X/K), where K is the carrying capacity and X is a continuous size of a popula-

tion, there is a single closed orbit with period given by the time lag between successive

impulses [6]. In this particular example (the solution X(t) is monotonically increasing),

there are not transient trajectories. However, in pulse vaccinations modelling, closed or-

bits arise after a period of time when transient dynamics fades out, and this transient

period is increased as the perturbation (proportion vaccinated p) increases. In some cases,

the transient dynamics persists indefinitely, in which case closed orbit does not occur.

In some extent, those results found in [13] can explain the bifurcations occurred in pulse

vaccination strategy analyzed here. (In a pulse vaccination modelling, the accumulation

of susceptible individuals by birth plays the role of limited food and space in the logistic

map.) In another words, if the vaccination (perturbation of the system) p increases, then

a huge epidemics exhausts susceptible individuals, and during the inter-vaccination period

occurs a small accumulation of susceptibles, triggering next mild epidemics. However, this

mild epidemics left relatively high size of susceptible individuals, which, gathered with

the accumulated susceptibles during inter-vaccination period, originates huge epidemics,

and so on.

4.2 Sinusoidal contact rate modeling

Now, let a forced SIR model be considered. Instead of pulses of vaccination, the model

described by equation (7) takes into account the periodicity in the transmission rate,

mimicking a seasonal variation during a year. This model is described by
d

dt
s(t) = µ− {µ+ β0 [1 + β1 cos(2πt)] i(t)} s(t)

d

dt
i(t) = β0 [1 + β1 cos(2πt)] i(t)s(t)− (µ+ γ) i(t),

where the transmission coefficient β(t) is an annual periodic function with t in years. By

varying β0 (β1 is fixed in 0.28) from 500 to 1800 years−1, Rand and Wilson [20] obtained

stability of annual limit cycle, but for higher values, they observed biennial cycle, which

was followed by period doubles and then chaotic attractor. They observed very long-
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term transient dynamics. The origin of the period doublings is again the amount of

susceptible individuals. As the logistic map where limited space and food (characterized

by a constant carrying capacity K) disturbs the size of population for large birth rate r,

the accumulation of susceptible individuals between successive outbreaks results in period

doublings: small epidemics is succeeded by large epidemics, as discussed above.

When periodically forced systems are considered, there are two main features: (1)

transient dynamics, which lasts for long time as the amplitude of the forced input in-

creases, and (2) the period doubling bifurcation, eventually arising irregular and chaotic

behaviors. However, higher order periodic cycle and even chaotic behavior occurs when

the parameter β0 assumes higher values, such that i < 10−10 [20], that is, less than 1

infectious in 10 billions.

5 Conclusion

In the literature, there are many papers dealing with pulse vaccination strategies. Jiang

and Yang [11] analyzed SIR model with birth pulse and pulse vaccination. By fixing the

proportion of susceptibles being vaccinated, they varied the maximum birth rate, and

they constructed a bifurcation diagram similar to that obtained by May [13]. Meng and

Chen [14] considered SIR model encompassing vertical transmission also, and studied

pulse vaccination applied on newborns. They established conditions for the stability of

infection-free periodic solution. Nie et al. [15] considered SIR model with state dependent

pulse vaccination. They proved the existence and stability of positive order-1 and order-2

periodic solutions. Qin et al. [19] varied the time between successive pulses vaccinations

in SIR model, and obtained a bifurcation diagram. Indeed, Qin et al. [19] considered the

varying proportion of vaccination of susceptibles be dependent on susceptible individuals

and on the resource limitation parameter.

In this paper, a pulse vaccination modeling was dealt numerically in order to under-

stand the origin of cycles in a periodically forced systems. Dynamical trajectories were

shown instead of bifurcation diagram using Poincaré map [20]. A simple periodic im-

pulsive dynamical system analyzed here presented period doublings bifurcation, and very

long lasting transient, which is essentially a irregular trajectory. These two characteristics
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are found in periodically forced dynamical system, for instance in sinusoidal contact rate.

The accumulation of susceptible individuals in forced epidemiological modeling plays the

role of constant carrying capacity in a discrete one dimensional logistic map. In both

cases, when doubling of periods occurs, there arise small and large orbits (stable fixed

points) from destabilizing orbit (unstable point).

The arising of long term complex dynamics (higher order periodic cycles and irregu-

lar behaviors asymptotically) occurs in a range of parameters leading to extremely small

number of infectious individuals (for instance, less than one in 10 billions). Also, the

transient behavior lasts for a long time. For this reason, in mathematical modelling with

periodic external forces, the existence of closed orbits and chaos is nice mathematical

results, but appears to be meaningless biologically. For instance, the knowledge of the

closed orbits arising after hundreds of years seems not be relevant to the public health au-

thorities; on the contrary, irregular transient dynamics must be taken into account, where

huge epidemics can occur occasionally. Hence, due to the long lasting transient behavior,

the description of biological phenomena by mathematical modelling should be restricted

in a pre-determined period of time. Also, experimentally observed time varying model

parameters should be preferable instead of well behaved continuous periodic functions.

For instance, Yang et al. [25] considered time varying temperature and rainfall in the

model parameters.
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