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2 

 

Abstract 30 

Genetic correlation (��) between traits can offer valuable insight into underlying shared biological 31 

mechanisms. Neurodegenerative diseases overlap neuropathologically and often manifest comorbid 32 

neuropsychiatric symptoms. However, global �� analyses show minimal �� among neurodegenerative 33 

and neuropsychiatric diseases. Importantly, local ��s can exist in the absence of global relationships. 34 

To investigate this possibility, we applied LAVA, a tool for local �� analysis, to genome-wide 35 

association studies of 3 neurodegenerative diseases (Alzheimer’s disease, Lewy body dementia and 36 

Parkinson’s disease) and 3 neuropsychiatric disorders (bipolar disorder, major depressive disorder 37 

and schizophrenia). We identified several local ��s missed in global analyses, including between (i) all 38 

3 neurodegenerative diseases and schizophrenia and (ii) Alzheimer’s and Parkinson’s disease. For 39 

those local ��s identified in genomic regions containing disease-implicated genes, such as SNCA, CLU 40 

and APOE, incorporation of expression quantitative trait loci suggested that genetic overlaps 41 

between diseases may be driven by more than one gene. Collectively, we demonstrate that complex 42 

genetic relationships exist among neurodegenerative and neuropsychiatric diseases, highlighting 43 

putative pleiotropic genomic regions and genes. These findings imply sharing of pathogenic 44 

processes and the potential existence of common therapeutic targets.  45 

Abbreviations: AD = Alzheimer’s disease; BIP = bipolar disorder; bp = base pair; CI = confidence 46 

interval; DLB = dementia with Lewy bodies; eQTL = expression quantitative loci; FDR = false discovery 47 

rate; GWAS = genome-wide association study; kb = kilobase; LAVA = local analysis of [co]variant 48 

annotation; LBD = Lewy body dementia; LD = linkage disequilibrium; LDSC = linkage disequilibrium 49 

score regression; MDD = major depressive disorder; PD = Parkinson’s disease; SCZ = schizophrenia; 50 

SNP = single nucleotide polymorphism; UKBB = UK Biobank; ρ = rho; �� = genetic correlation 51 
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Introduction 52 

Neurodegenerative diseases are a group of syndromically-defined disorders that are characterised 53 

by the progressive loss of the structure and function of the central nervous system. They are 54 

typically grouped by their predominant neuropathological protein deposit (e.g. synucleinopathies by 55 

α-synuclein deposition), but more often than not, they present with co-pathologies, suggesting that 56 

they might share common pathogenic pathways1,2. This notion is supported by genome-wide 57 

association studies (GWASs), which have (i) identified shared risk loci across neurodegenerative 58 

diseases, such as APOE and BIN1 in Alzheimer’s disease (AD) and Lewy body dementia (LBD), or GBA, 59 

SNCA, TMEM175 in Parkinson’s disease (PD) and LBD and (ii) demonstrated that genetic risk scores 60 

derived from one neurodegenerative disease can predict risk of another, as with AD and PD scores 61 

predicting risk of LBD3–5. The importance of identifying common pathogenic processes cannot be 62 

overstated, given the implications for our mechanistic understanding of these diseases as well as 63 

identification of common therapeutic targets benefitting a wider range of patients. 64 

From a clinical perspective, neurodegenerative diseases are often also defined in terms of their 65 

predominant symptom (e.g. AD by memory impairment or PD by parkinsonism), but in reality, 66 

present as highly heterogenous diseases, with symptoms spanning multiple domains including 67 

neuropsychiatric symptoms6,7. Indeed, a higher prevalence of depression has been observed in 68 

individuals with dementia compared to those without dementia.
8
 Furthermore, depression and 69 

anxiety are more common in individuals with PD compared to the general population, with clinically 70 

significant symptoms in 30-35% of patients
9,10

.  A similar (albeit reversed) phenomenon has been 71 

observed in some neuropsychiatric disorders, with a higher risk of dementia diagnoses observed in 72 

individuals with schizophrenia (SCZ) versus individuals without a history of serious mental illness
11,12

 73 

and a higher risk of PD in individuals diagnosed with depressive disorder in mid or late life
10,13,14

. 74 

Together, these observations suggest the possibility of intersecting pathways between 75 

neurodegenerative and neuropsychiatric diseases.  76 
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Importantly, clinical and neuropathological overlaps are not reflected in global genetic correlations 77 

(��), with a recent study of global �� between neurological phenotypes demonstrating limited 78 

overlap between individual neurodegenerative diseases as well as between neurodegenerative 79 

diseases and neuropsychiatric disorders15,16. One explanation for the lack of global genetic 80 

correlation is that global studies only consider the average �� across the entire genome. A genome-81 

wide average of �� may fail to detect strong local ��s confined to specific genomic regions or local ��s 82 

that have opposing directions across the genome15,17. This limitation can be addressed with recently-83 

developed bioinformatics tools such as local analysis of [co]variant annotation (LAVA), which is able 84 

to evaluate local heritability over multiple traits of interest (using summary statistics) and detect 85 

local regions of shared genetic association18.  Here, we apply LAVA to GWASs derived from 3 86 

neurogenerative diseases (AD, LBD and PD)3,5,19,20 and 3 neuropsychiatric disorders (bipolar disorder, 87 

BIP; major depressive disorder, MDD; and SCZ)21–23. In addition, we use data from blood- and brain-88 

derived gene expression traits, in the form of expression quantitative loci (eQTLs), to facilitate 89 

functional interpretation of local ��s between disease traits.   90 
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Results 91 

Local analyses reveal genetic correlations among neurodegenerative and 92 

neuropsychiatric diseases 93 

We applied LAVA to 3 neurodegenerative diseases (AD, LBD and PD) and 3 neuropsychiatric 94 

disorders (BIP, MDD and SCZ) (Table 1), all of which represent globally prevalent diseases24.  Among 95 

neurodegenerative diseases, AD and PD are the most common, with a global prevalence of 8.98% 96 

and 1.12% in individuals > 70 years of age6,24,25 and consequently, have large GWAS cohorts (AD, N 97 

cases = 71,880; PD, N cases = 33,674)3,19. LBD is the second most common dementia subtype after 98 

AD, affecting between 4.2-30% of dementia patients26. As such, the LBD GWAS cohort is small (N 99 

cases = 2,591), but unlike AD and PD neurodegenerative GWASs, 69% of the cohort is pathologically 100 

defined5. Among neuropsychiatric disorders, MDD is the second most prevalent, with an estimated 101 

185 million people affected globally (equivalent to 2.49% of the general population), while BIP and 102 

SCZ have a prevalence of 0.53% and 0.32%, respectively24. Accordingly, all 3 disorders have large, 103 

well-powered GWASs (BIP, N cases = 41,917; MDD, N cases = 170,756; SCZ, N cases = 40,675)21–23. 104 

We tested pairwise local genetic correlations (��s) across a targeted subset of 300 local autosomal 105 

genomic regions that contain genome-wide significant GWAS loci from at least one trait 106 

(Supplementary Figure 1, Supplementary Table 1). These genomic regions, henceforth referred to 107 

as linkage disequilibrium (LD) blocks, were filtered from the original 2,495 LD blocks generated by 108 

Werme et al.
18 using a genome-wide partitioning algorithm that aims to reduce LD between LD 109 

blocks.  110 

First, we performed a univariate test for every disease trait at each of the 300 LD blocks to ensure 111 

sufficient local genetic signal was present to proceed with bivariate local �� analyses. Pairs of traits 112 

exhibiting a univariate local genetic signal of p < 0.05/300 were then carried forward to bivariate 113 

tests, resulting in 1,603 bivariate tests across 275 distinct LD blocks. Using a Bonferroni-corrected p-114 

value threshold of p < 0.05/1,603, we detected 77 significant bivariate local ��s across 59 distinct LD 115 
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blocks, with 25 local ��s between trait pairs where no significant global �� was observed (Figure 1a, 116 

Figure 1b, Supplementary Table 2, Supplementary Table 3). These 25 correlations included: (i) local 117 

��s between all 3 neurodegenerative diseases and SCZ; (ii) a local �� between PD and BIP; and (ii) 20 118 

local ��s between AD and PD. 119 

For 30 of the 77 local ��s, the genetic signal of both disease traits may overlap entirely, suggested by 120 

the upper limit of the 95% confidence interval (CI) for explained variance (i.e. ��, the proportion of 121 

variance in genetic signal of one disease trait in a pair explained by the other) including 1. Notably, 122 

the trait pairs where the upper limit of the 95% CI
 
did not include 1 all involved at least one 123 

neurodegenerative disease, with the one exception being a local �� between PD and SCZ, suggesting 124 

that the genetic overlap between neurodegenerative diseases is smaller than between 125 

neuropsychiatric disorders in the tested LD blocks (Figure 1c). 126 

 127 

Local analyses associate disease-implicated genomic regions with previously 128 

unrelated traits  129 

Across the 77 local ��s, 22 involved trait pairs where both traits had genome-wide significant single 130 

nucleotide polymorphisms (SNPs) overlapping the LD block tested, 35 involved trait pairs where one 131 

trait in the pair had genome-wide significant SNPs overlapping the LD block tested and 20 involved 132 

trait pairs where neither trait had genome-wide significant SNPs overlapping the LD block tested 133 

(Figure 2a). Thus, despite the targeted nature of our approach (which biased analyses towards LD 134 

blocks that contain genome-wide significant GWAS SNPs), 71% of the detected local ��s linked 135 

genomic regions implicated by one of the six disease traits with seemingly unrelated disease traits.  136 

For example, LD block 1719 and 2281 both contained genome-wide significant GWAS SNPs from 137 

MDD and SCZ, an overlap which was mirrored by a significant local �� between MDD and SCZ (Figure 138 

2b). In addition, both LD blocks implicated disease traits that did not have overlapping genome-wide 139 

significant GWAS SNPs in the region, indicating novel trait associations. These included (i) LBD in LD 140 
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block 1719, which negatively correlated with SCZ (ρ = -0.65, p = 4.72 x 10-6) and (ii) AD and PD, which 141 

were positively correlated in LD block 2281 (ρ = 0.41, p = 1.24 x 10
-8

). Notably, both LD blocks 142 

contain genes of interest to traits implicated by local �� analyses, including DRD2 in LD block 1719 143 

(encodes dopamine receptor D2, a target of drugs used in both PD7 and SCZ treatment27) and 144 

RAB27B in LD block 2281 (encodes Rab27b, a Rab GTPase recently implicated in α-synuclein 145 

clearance28)  146 

Local �� analyses also highlighted relationships between neurodegenerative traits in regions 147 

containing well-known, disease-implicated genes, such as: (i) SNCA (implicated in monogenic and 148 

sporadic forms of PD
3,5

) in LD block 681, where a negative local �� was observed between AD and PD 149 

(ρ = -0.41, p = 6.51 x 10-13); (ii) CLU (associated with sporadic AD19,29) in LD block 1273 , where a 150 

positive local �� was observed between AD and PD (ρ = 0.36, p = 8.76 x 10-12); and finally, (iii) APOE 151 

(E4 alleles associated with increased AD risk30) in LD block 2351, where ��s were observed between 152 

LBD and both AD and PD (LBD-AD: ρ = 0.59, p = 1.24 x 10
-139

; LBD-PD: ρ = -0.29, p = 2.75 x 10
-7

) 153 

(Figure 2c). We also noted a positive correlation between AD and PD in LD block 2128, which 154 

contains the AD-associated KAT8 locus
19

 and the PD-associated SETD1A locus
3
. Importantly, while a 155 

genetic overlap between AD and PD has been previously reported at the MAPT locus (rs393152 156 

shown to increase risk of both AD and PD31), we were unable to replicate this association due to 157 

insufficient univariate signal for AD in the LD block containing MAPT (LD block 2207, chr17: 158 

43,460,501-44,865,832). In addition, we were unable to replicate a genetic overlap reported 159 

between AD and PD in the HLA region (specifically in chr6: 31,571,218-32,682,664)32, as several of 160 

the overlapping LD blocks (LD block 961-6, ranging across chr6: 31,427,210-32,682,213) had too few 161 

overlapping SNPs between the 6 disease traits.  162 

 163 
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Sensitivity analysis indicates that by-proxy cases do not drive spurious local 164 

correlations among neurodegenerative diseases 165 

Given concerns that UK Biobank (UKBB) by-proxy cases could potentially be mislabelled (i.e. parents 166 

of by-proxy case suffered from another type of dementia) and lead to spurious ��s between 167 

neurodegenerative traits, we performed sensitivity analyses using GWASs for AD and PD that 168 

excluded UKBB by-proxy cases20. Of the 21 LD blocks where significant local ��s were observed 169 

between the 3 neurodegenerative traits using AD and PD GWASs with by-proxy cases, only 2 (LD 170 

block 1273 and 2351) had sufficient local genetic signal for both AD and PD without by-proxy cases. 171 

This likely reflects the decrease in cohort numbers when UKBB by-proxy cases are excluded from AD 172 

and PD GWASs (Table 1). We were able to replicate 2 of the 3 significant local ��s observed in LD 173 

block 1273 and 2351, including the positive �� between AD and PD in LD block 1273 and the positive 174 

�� between AD and LBD in LD block 2351 (Supplementary Figure 2, Supplementary Table 4). Further, 175 

while the local �� between LBD and PD in LD block 2351 was non-significant when using the PD 176 

GWAS without by-proxy cases, the correlation was in the same direction in the complementary 177 

analysis using the PD GWAS with by-proxy cases (no by-proxy: ρ = -0.201, ρ CI = -0.443 to 0.007, p = 178 

0.061; by-proxy: ρ = -0.293, ρ CI = -0.405 to -0.184, p = 2.75 x 10-7) (Supplementary Figure 2, 179 

Supplementary Table 4). 180 

 181 

Local heritability of Lewy body dementia in an APOE-containing LD block is 182 

only partly explained by Alzheimer’s disease and Parkinson’s disease 183 

Eleven LD blocks were associated with > 1 trait pair, of which 8 LD blocks had a trait in common 184 

across multiple trait pairs. In other words, the genetic component of one disease trait (the outcome 185 

trait) could be modelled using the genetic components of multiple predictor disease traits. This 186 

included 3 LD blocks (758, 951 and 952) where all 3 neuropsychiatric disorders were significantly 187 

correlated with one another, and thus could arguably be the outcome trait. In these situations, each 188 
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neuropsychiatric disorder was separately modelled as the outcome trait, resulting in 3 independent 189 

models within each of these 3 LD blocks. The remaining 5 LD blocks only had 1 trait in common 190 

across correlated trait pairs, therefore only one model was constructed for each. A total of 14 191 

multivariate models were run across all 8 LD blocks, of which 6 models were found to contain a 192 

predictor trait that significantly contributed to the local heritability of an outcome trait (Figure 3a, 193 

Supplementary Table 5).  194 

We noted that all models with a neuropsychiatric outcome trait and a significant neuropsychiatric 195 

predictor trait had a high multivariate �� (range: 0.53-1), with upper confidence intervals including 1 196 

(Figure 3b), suggesting that the genetic signal of the neuropsychiatric outcome trait could be entirely 197 

explained by its predictor traits in these LD blocks. In contrast, in the APOE-containing LD block 2351, 198 

which was modelled with LBD as the outcome and AD and PD as predictors, the multivariate �� was 199 

0.43 (95% CI: 0.38 to 0.5), a result that held using GWASs for AD and PD that excluded by-proxy 200 

cases (�� = 0.49, 95% CI: 0.44 to 0.57; Supplementary Figure 2). Thus, while AD and PD jointly 201 

explained approximately 40% of the local heritability of LBD, a proportion of the local heritability for 202 

LBD was independent of AD and PD.  203 

 204 

Incorporation of gene expression traits to facilitate functional interpretation of 205 

disease trait correlations 206 

To dissect whether regulation of gene expression might underlie local ��s between disease traits, we 207 

performed local �� analyses using expression quantitative trait loci (eQTLs) from eQTLGen
33

 and 208 

PsychENCODE34, which represent large human blood and brain expression datasets, respectively 209 

(Table 1). We restricted analyses to the 5 LD blocks highlighted in Figure 2 (LD blocks: 681, 1273, 210 

1719, 2281, 2351), which contained genes of interest to at least one of the disease traits implicated 211 

by local �� analyses. From these LD blocks of interest, we defined genic regions (gene start and end 212 

coordinates ± 100 kb) for all overlapping protein-coding, antisense or lincRNA genes (n = 92).   213 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2022. ; https://doi.org/10.1101/2022.05.30.22275781doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.30.22275781
http://creativecommons.org/licenses/by/4.0/


10 

 

We detected a total of 135 significant bivariate local ��s across 47 distinct genic regions (FDR < 0.05), 214 

with 43 local ��s across 27 distinct genic regions between trait pairs involving a disease trait and a 215 

gene expression trait (Supplementary Figure 3, Supplementary Table 6). We noted that the 216 

explained variance (��) between trait pairs involving a disease trait and a gene expression trait 217 

tended to be lower than between trait pairs involving two disease traits (Supplementary Figure 4), 218 

an observation that aligns with a recent study that found only 11% of trait heritability to be 219 

mediated by bulk-tissue gene expression35.   220 

With the exception of the SNCA-containing LD block 681, where eQTLs for only 1 out of 5 genes 221 

tested in the block were correlated with a disease trait (negative �� between blood-derived SNCA 222 

eQTLs and PD), the expression of multiple genes was associated with disease traits across the 223 

remaining LD blocks (Figure 4a). In addition, the expression of several genes was associated with 224 

more than one disease trait (Figure 4b). For example, blood- and brain-derived ANKK1 eQTLs (DRD2-225 

containing LD block 1719) were negatively correlated with both MDD and SCZ, which themselves 226 

were positively correlated (Figure 4c). A SNP residing in the coding region of ANKK1 (rs1800497, 227 

commonly known as TaqIA SNP) has been previously associated with alcoholism, schizophrenia and 228 

eating disorders, although it is unclear whether this SNP exerts its effect via DRD2 or ANKK1
36

. As 229 

DRD2 is not expressed in blood, and brain-derived DRD2 eQTLs did not pass the univariate test for 230 

sufficient local genetic signal, we were unable to test for local ��s between DRD2 eQTLs and any 231 

neuropsychiatric disorder. The data available would therefore suggest that the shared risk of MDD 232 

and SCZ in the overlapping ANKK1 and DRD2 genic regions may be partly driven by ANKK1 gene 233 

expression. 234 

A high degree of eQTL sharing across disease traits was observed in the CLU-containing LD block 235 

1273, with blood-derived eQTLs from 5 out of the 6 genes implicated in local ��s found to correlate 236 

with both AD and PD (Figure 4b,d). This included situations where eQTL-disease trait correlations 237 

had (i) the same direction of effect across both disease traits (as observed with PBK, PNOC and 238 
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SCARA5) or (ii) opposing directions of effect across both disease traits (as observed with CLU and 239 

ESCO2) (Figure 4d). Notably, while a significant positive local �� was observed between AD and PD in 240 

the SCARA5 genic region (reflecting the positive local �� observed between AD and PD across the 241 

entire LD block), no local �� was observed between AD and PD in the CLU genic region, suggesting 242 

that the shared risk of AD and PD in LD block 1273 may be driven by the expression of genes other 243 

than the AD-associated CLU (Figure 4e). As a ferritin receptor involved in ferritin internalisation, 244 

SCARA5 could plausibly drive shared AD and PD risk, given that cellular iron overload and iron-245 

induced oxidative stress have been implicated in several neurodegenerative diseases such as AD and 246 

PD37,38. 247 

Compared to LD block 1273, the degree of eQTL sharing across disease traits was lower in the APOE-248 

containing LD block 2351, with eQTLs from 4 out of 16 genes implicated in local ��s found to 249 

correlate with AD and one of PD or LBD (Figure 4b, f). Shared eQTL genes were only observed in 250 

blood and included BCL3, CLPTM1, PVRL2 and TOMM40, with expression of BCL3 and CLPTM1 251 

positively correlating with AD and PD and expression of PVRL2 and TOMM40 positively correlating 252 

with AD and LBD. As the exception, PVR eQTLs were negatively associated with both AD and PD 253 

albeit in different tissues: AD in brain and PD in blood. Expression of the remaining 11 genes was 254 

exclusively associated with either AD (n = 8) or PD (n = 3). No significant local �� was observed 255 

between APOE eQTLs and AD (FDR < 0.05), although a nominal positive �� was observed in blood (ρ = 256 

0.178, ρ CI = 0.007 to 0.352, p = 0.039; Supplementary Figure 3e, Supplementary Table 6). Overall, 257 

these results indicate that risk of neurodegenerative diseases (in particular, AD) is associated with 258 

expression of multiple genes in the APOE-containing LD block. Further, they add to a growing body 259 

of evidence suggesting that in parallel with the well-studied APOE-ε4 risk allele, there are additional 260 

APOE-independent risk factors in the region (such as BCL3
39 and PVRL2

40) that may contribute to AD 261 

risk.  262 
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For a complete overview of all genic regions tested across the 5 LD blocks of interest, see 263 

Supplementary Figure 3 and Supplementary Table 6. 264 

  265 
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Discussion 266 

Despite clinical and neuropathological overlaps between neurodegenerative diseases, global 267 

analyses of genetic correlation (��) show minimal �� among neurodegenerative diseases or across 268 

neurodegenerative and neuropsychiatric diseases. However, local ��s can deviate from the genome-269 

wide average estimated by global analyses and may even exist in the absence of a genome-wide ��, 270 

thus motivating the use of tools to model local genetic relations.  271 

Here, we applied LAVA to 3 neurodegenerative diseases and 3 neuropsychiatric disorders to 272 

determine whether local ��s exist in a subset of 300 LD blocks that contain genome-wide significant 273 

GWAS loci from at least one of six investigated disease traits. We identified 77 significant bivariate 274 

local ��s across 59 distinct LD blocks, with 25 local ��s between trait pairs where no significant global 275 

�� was observed, including between (i) all 3 neurodegenerative diseases and SCZ and (ii) AD and PD. 276 

Local ��s highlighted expected associations (e.g. AD and LBD in the APOE-containing LD block 2351
5
) 277 

and putative new associations (e.g. AD and PD in the CLU-containing LD block 1273) in genomic 278 

regions containing well-known, disease-implicated genes. Likewise, incorporation of eQTLs 279 

confirmed known relationships between diseases and genes, such as the association of AD with CLU 280 

expression29 and PD with SNCA expression in blood41, and revealed putative new disease-gene 281 

relationships. Together, these results indicate that more complex aetiological relationships exist 282 

between neurodegenerative and neuropsychiatric diseases than those revealed by global ��s. 283 

Further, they highlight potential gene expression intermediaries that may account for local ��s 284 

between disease traits. 285 

These findings have important implications for our understanding of neurodegenerative diseases 286 

and the extent to which they overlap. An overlap between the synucleinopathies and AD is often 287 

acknowledged in the context of LBD, which has been hypothesised to lie on a disease continuum 288 

between AD and PD5,42. In support of this continuum, LBD was found to associate with both AD and 289 

PD in the APOE-containing LD block 2351. Multiple regression analyses confirmed that AD and PD 290 
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were significant predictors of LBD heritability in LD block 2351. Importantly, when AD and PD were 291 

modelled together, they explained only ~ 40% of the local heritability of LBD in LD block 2351, 292 

implying that LBD represents more than the union of AD and PD. Further, the associations of AD and 293 

PD with LBD had opposing regression coefficients, suggesting that the contribution of AD and PD to 294 

LBD in the APOE locus may not be synergistic. This mirrors the observation that genome-wide 295 

genetic risk scores of AD and PD do not interact in LBD,
5
 and may indicate that different biological 296 

pathways underlie the association between LBD and AD/PD. Indeed, only blood-derived PVRL2 and 297 

TOMM40 eQTLs were found to correlate with both AD and LBD, while no shared eQTL genes were 298 

detected between PD and LBD.  299 

Less acknowledged is the genetic overlap between AD and PD, with no global �� reported between 300 

the two diseases
16,43

 and no significant evidence for the presence of loci that increase the risk of 301 

both diseases
44

. As the exception, genetic overlaps have been reported between AD and PD in the 302 

HLA
32

 and MAPT loci
31

, hinting that pleiotropy may exist locally. In support of local pleiotropy, we 303 

observed 20 local ��s between AD and PD  in genomic regions containing disease-implicated genes, 304 

such as SNCA (LD block 681) and CLU (LD block 1273). In the case of the CLU-containing LD block 305 

1273, incorporation of eQTLs indicated that the association of AD and PD may be driven by the 306 

expression of several genes, including the ferritin receptor SCARA5. In contrast, only blood-derived 307 

SNCA eQTLs were associated with PD in LD block 681, suggesting that the association between AD 308 

and PD at the SNCA locus could be driven by tissue- or context-dependent gene expression or 309 

alternatively other molecular phenotypes.  310 

A few studies have demonstrated genetic overlaps between neurodegenerative and 311 

neuropsychiatric diseases, such as AD and BIP45 as well as AD and MDD46, while others have 312 

demonstrated no overlap16,47, with divergences in outcomes ascribed to differences in methodology 313 

and cohort46. Here, we observed a local ��  between BIP and PD, in addition to  local ��s between 314 

schizophrenia and all 3 neurodegenerative diseases, which in the case of LBD was observed in an LD 315 
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block containing the DRD2. Notably, parkinsonism in dementia with Lewy bodies (DLB, one of the 316 

two LBDs), is often less responsive to dopaminergic treatments than in PD
48

. Furthermore, 317 

methylation of the DRD2 promoter in leukocytes has been shown to differ between DLB and PD
49

, 318 

while D2 receptor density has been shown to be significantly reduced in the temporal cortex of DLB 319 

patients, but not AD
50

, suggesting that the DRD2 locus may harbour markers that could distinguish 320 

between these neurodegenerative diseases. Our study adds to the body of evidence in favour of a 321 

shared genetic basis between neurodegenerative and neuropsychiatric diseases, although further 322 

work will be required to determine whether this genetic overlap underlies the clinical and 323 

epidemiological links observed between these two disease groups. 324 

This study is not without its limitations, with several limitations related to the input data. These 325 

limitations include: (i) the variability in cohort size, which in the case of the smallest GWAS, LBD, may 326 

explain the limited number of local ��s observed involving this trait; (ii) the risk of misdiagnosis; and 327 

(iii) the lack of genetic diversity (i.e. all traits used were derived from individuals of European 328 

ancestry). Given that population-specific genetic risk factors exist, such as the lack of MAPT GWAS 329 

signal in the largest GWAS of Asian patients with PD51, and that transethnic global ��s between traits 330 

such as gene expression are significantly less than 1
52

, it is imperative that studies of local �� are 331 

expanded to include diverse populations.  332 

Among methodological limitations, both LDSC and LAVA only consider autosomal chromosomes, 333 

leaving out chromosome X, which is not only longer than chromosome 8-22, but also encodes 858 334 

and 689 protein-coding and non-coding genes, respectively (Ensembl v106)
53

. Furthermore, as 335 

mentioned by the developers of LAVA
18

, local ��s could potentially be confounded by association 336 

signals from adjacent genomic regions, a limitation which is particularly pertinent in our analysis of 337 

gene expression traits where LD blocks were divided into smaller (often overlapping) genic regions.  338 

Importantly, as with any genetic correlation analysis, an observed �� does not guarantee the 339 

presence of true pleiotropy. Spurious ��s can occur due to LD or misclassification17. Here, we 340 
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attempted to address the potential misclassification of by-proxy cases via sensitivity analyses using 341 

GWASs for AD and PD that excluded UKBB by-proxy cases. We replicated 2 of the 3 significant local 342 

��s observed in 2 LD blocks when using GWASs with by-proxy cases. However, we were unable to 343 

test for local ��s across the remaining 19 LD blocks due to insufficient univariate signal, which could 344 

reflect (i) a genuine contribution of by-proxy cases to trait �� in the region or (ii) a lack of statistical 345 

power to detect a genetic signal. Given the substantial decrease in cohort numbers when UKBB by-346 

proxy cases are excluded from AD and PD GWASs (Table 1), a lack of statistical power seems the 347 

more likely explanation, warranting a revisit of this analysis as clinically-diagnosed and/or 348 

pathologically-defined cohorts increase in size.  349 

Finally, even where observed ��� potentially represent true pleiotropy, LAVA cannot discriminate 350 

between vertical and horizontal pleiotropy (also known as mediated and biological pleiotropy, 351 

respectively17,18). Thus, while incorporation of gene expression can provide testable hypotheses 352 

regarding the underlying genes and biological pathways that drive relationships between 353 

neurodegenerative and neuropsychiatric diseases, experimental validation is required to establish 354 

the extent to which these genes represent genuine intermediary phenotypes. 355 

In summary, our results have important implications for our understanding of the genetic 356 

architecture of neurodegenerative and neuropsychiatric diseases, including the demonstration of 357 

local pleiotropy particularly between neurodegenerative diseases. Not only do these findings suggest 358 

that neurodegenerative diseases may share common pathogenic processes, highlighting putative 359 

gene expression intermediaries which may underlie relationships between diseases, but they also 360 

infer the existence of common therapeutic targets across neurodegenerative diseases that could be 361 

leveraged for the benefit of broader patient groups.   362 
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Materials and methods 363 

Trait pre-processing 364 

GWAS summary statistics from a total of 8 distinct traits were used, including 6 disease traits and 2 365 

gene expression traits. Gene expression traits were used to facilitate functional interpretation of 366 

local genetic correlations (��) between disease traits. Disease traits included 3 neurodegenerative 367 

diseases (Alzheimer's disease, AD; Lewy body dementia, LBD; and Parkinson's disease, PD) and 3 368 

neuropsychiatric disorders (bipolar disorder, BIP; major depressive disorder, MDD; and 369 

schizophrenia, SCZ)3,19–23,54. Gene expression traits included expression quantitative trait loci (eQTLs) 370 

from eQTLGen33 and PsychENCODE34, which represent large human blood and brain expression 371 

datasets, respectively. All traits used were derived from individuals of European ancestry. Details of 372 

all summary statistics used can be found in Table 1. Where necessary, SNP genomic coordinates 373 

were mapped to Reference SNP cluster IDs (rsIDs) using the SNPlocs.Hsapiens.dbSNP144.GRCh37 374 

package55. In the case of the PD GWAS without UK Biobank (UKBB) data (summary statistics were 375 

kindly provided by the International Parkinson Disease Genomics Consortium), additional quality 376 

control filtering was applied, including removal of SNPs (i) with MAF < 1%, (ii) displaying an I2 377 

heterogeneity value of ≥W80 and (iii) where the SNP was not present in at least 9 out of the 13 378 

cohorts included in the meta-analysis.  379 

 380 

Global genetic correlation analysis and estimation of sample overlaps 381 

Across disease trait pairs, LD score regression (LDSC) was used to (i) determine the global ��and (ii) 382 

estimate sample overlap56,57. The latter was used as an input for LAVA, given that potential sample 383 

overlap between GWASs could impact estimated local ��s18. Summary statistics for each trait were 384 

pre-processed using LDSC's munge_sumstats.py 385 

(https://github.com/bulik/ldsc/blob/master/munge_sumstats.py) together with HapMap Project 386 

Phase 3 SNPs58. For the LD reference panel, 1000 Genomes Project Phase 3 European population 387 
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SNPs were used59. Both HapMap Project Phase 3 SNPs and European LD Scores from the 1000 388 

Genomes Project are made available by the developers of LDSC
56,57

 from the following repository: 389 

https://alkesgroup.broadinstitute.org/LDSCORE/ (see Key resources for details).  Any shared 390 

variance due to sample overlap was modelled as a residual genetic covariance. As performed by 391 

Werme et al.
18

, a symmetric matrix was constructed, with off-diagonal elements populated by the 392 

intercepts for genetic covariance derived from cross-trait LDSC and diagonal elements populated by 393 

comparisons of each phenotype with itself. This symmetric matrix was then converted to a 394 

correlation matrix. Importantly, it is not possible to estimate sample overlap with eQTL summary 395 

statistics, but given that the cohorts used in the GWASs were different from the cohorts included in 396 

the eQTL datasets, we assumed sample overlap between GWASs and eQTL datasets to be negligible. 397 

Thus, they were set to 0 in the correlation matrix. However, given the inclusion of GTEx samples in 398 

both eQTL datasets and our inability to estimate this overlap, downstream LAVA analyses were 399 

performed separately for each eQTL dataset. 400 

 401 

Defining genomic regions for local genetic correlation analysis 402 

Between disease traits 403 

Genome-wide significant loci (p < 5 x 10-8) were derived from publicly available AD, BIP, LBD, MDD, 404 

PD and SCZ GWASs. Genome-wide significant loci were overlapped with linkage disequilibrium (LD) 405 

blocks generated by Werme et al.
18 using a genome-wide partitioning algorithm. Briefly, each 406 

chromosome was recursively split into blocks using (i) a break point to minimise LD between the 407 

resulting blocks and (ii) a minimum size requirement. The resulting LD blocks represent 408 

approximately equal-sized, semi-independent blocks of SNPs, with a minimum size requirement of 409 

2,500 SNPs (resulting in an average block size of around 1Mb). Only those LD blocks containing 410 

genome-wide significant GWAS loci from at least one trait were carried forward in downstream 411 

analyses, resulting in a total of 300 autosomal LD blocks. Of the 22 possible autosomes, 21 contained 412 
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LD blocks with overlapping loci, with the highest number of LD blocks located in chromosome 1 and 413 

6 (Supplementary Figure 1). 414 

Between disease and gene expression traits 415 

A total of 5 LD blocks, as highlighted by bivariate local �� analysis of disease traits, were used in this 416 

analysis (LD block 681, 1273, 1719, 2281 and 2351). From these LD blocks of interest, we defined 417 

genic regions for all protein-coding, antisense or lincRNA genes that overlapped an LD block of 418 

interest. Most lead cis-eQTL SNPs (i.e. the SNP with the most significant p-value in a SNP-gene 419 

association) lie outside the gene start and end coordinates and are located within 100 kb of the 420 

gene. Indeed, in eQTLGen, 55% of lead-eQTL SNPs were outside the gene body and 92% were within 421 

100 kb from the gene33. Thus, we extended genic regions with a 100-kb window (100 kb upstream 422 

and 100 kb downstream of gene coordinates). These genic regions (n = 92) were carried forward in 423 

downstream analyses.  424 

 425 

Estimating bivariate local genetic correlations 426 

Between disease traits 427 

The detection of valid and interpretable local �� requires the presence of sufficient local genetic 428 

signal. For this reason, a univariate test was performed as a filtering step for bivariate local 429 

��analyses. Bivariate local �� analyses were only performed for pairs of disease traits which both 430 

exhibited a significant univariate local genetic signal (p < 0.05/300, where the denominator 431 

represents the total number of tested LD blocks). This step resulted in a total of 1,603 bivariate tests 432 

spanning 275 distinct LD blocks. Bivariate results were considered significant when p < 0.05/1603.  433 

Between disease and gene expression traits 434 

For each genic region, only those disease traits that were found to have significant local �� in the 435 

associated LD block were carried forward to univariate and bivariate analyses with eQTL summary 436 

statistics. As previously described, a univariate test was performed as a filtering step for bivariate 437 

local ��g analyses. Thus, bivariate local �� analyses were only performed (i) if the gene expression 438 
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trait (i.e. eQTL genes) exhibited a significant univariate local genetic signal and (ii) for pairs of traits 439 

(disease and gene expression) which both exhibited a significant univariate local genetic signal. A 440 

cut-off of p < 0.05/92 (the denominator represents the total number of tested genic regions) was 441 

used to determine univariate significance. A 100-kb window resulted in a total of 354 bivariate tests 442 

spanning 55 distinct genic regions. Bivariate results were corrected for multiple testing using two 443 

strategies: (i) a more lenient FDR correction and (ii) a more stringent Bonferroni correction (p < 444 

0.05/n_tests, where the denominator represents the total number of bivariate tests). We discuss 445 

results passing FDR < 0.05, but we make the results of both correction strategies available 446 

(Supplementary Table 6, Supplementary Table 7). 447 

We evaluated the effect of window size on bivariate correlations by re-running all analyses using a 448 

50-kb window. Following filtering for significant univariate local genetic signal (as described above), 449 

a total of 267 bivariate tests were run spanning 50 distinct genic regions. We detected 110 450 

significant bivariate local ��s (FDR < 0.05), 83 of which were also significant when using a 100-kb 451 

window (Supplementary Figure 5). We observed strong positive Pearson correlations in local �� 452 

coefficient and p-value estimates across the two window sizes, indicating that our results are robust 453 

to the choice of window size (Supplementary Figure 5 ). Of note, p-value estimates between disease 454 

and gene expression traits tended to be lower when using the 50-kb window, as compared to the 455 

100-kb window, as evidenced by the fitted line falling below the equivalent of y = x. This observation 456 

may be a reflection of stronger cis-eQTLs tending to have a smaller distance between SNP and 457 

gene
33

. In contrast, p-value estimates between two disease traits were comparable across the two 458 

window sizes. 459 

 460 

Local multiple regression 461 

For LD blocks with significant bivariate local �� between one disease trait and ≥ 2 disease traits, 462 

multiple regression was used to determine the extent to which the genetic component of the 463 
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outcome trait could be explained by the genetic components of multiple predictor traits. These 464 

analyses permitted exploration of the independent effects of predictor traits on the outcome trait. A 465 

predictor trait was considered significant when p < 0.05.  466 

 467 

Sensitivity analysis using by-proxy cases 468 

As UK Biobank (UKBB) by-proxy cases could potentially be mislabelled (i.e. parent of by-proxy case 469 

suffered from another type of dementia) and lead to spurious ��s between neurodegenerative traits, 470 

we performed replication analyses using GWASs for AD20 and PD that excluded UKBB by-proxy cases. 471 

LD blocks were filtered to include only those where significant bivariate local ��s were observed 472 

between LBD and either by-proxy AD or by-proxy PD GWASs, in addition to between by-proxy AD 473 

and by-proxy PD GWASs. These criteria limited the number of LD blocks to 21. Bivariate local 474 

correlations were only performed for pairs of traits which both exhibited a significant univariate local 475 

genetic signal (p < 0.05/21, where the denominator represents the total number of tested loci), 476 

which resulted in a total of 10 bivariate tests spanning 6 distinct loci. We additionally performed 477 

multiple regression in LD block 2351 using LBD as the outcome and AD and PD (both excluding UKBB 478 

by-proxy cases) as predictors. A predictor trait was considered significant when p < 0.05.  479 

 480 

R packages 481 

All analyses were performed in R (v 4.0.5)60. As indicated in the accompanying GitHub repository 482 

(https://github.com/RHReynolds/neurodegen-psych-local-corr), all relevant packages were sourced 483 

from CRAN, Bioconductor (via BiocManager61) or directly from GitHub. Figures were produced using 484 

circlize, ggplot2 and ggraph
62–64

. All open-source software used in this paper is listed in Key 485 

resources. 486 

 487 
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Code availability 488 

Code used to pre-process GWASs, run genetic correlation analyses and to generate figures for the 489 

manuscript are available at: https://github.com/RHReynolds/neurodegen-psych-local-corr 490 

(doi:10.5281/zenodo.6587707). All other open-source software used in this paper is listed in Key 491 

resources. 492 

 493 

Data availability 494 

Analyses in this study relied on publicly available data, all of which are listed in Key resources. In the 495 

case of the PD GWAS without UK Biobank (UKBB) data, summary statistics were kindly provided by 496 

the International Parkinson Disease Genomics Consortium: https://pdgenetics.org/. 497 

 498 

Key resources 499 

Resource Source/Reference Identifier/URL 

Deposited Data 

Ensembl GRCh37 Ensembl v87 Ensembl genome 

browser
53

 

http://ftp.ensembl.org/pub/

grch37/current/gtf/homo_s

apiens/  

eQTLGen eQTLs Vosã et al., 2021
33

 https://www.eqtlgen.org/ci

s-eqtls.html 

GWAS, Alzheimer’s disease (clinically diagnosed 

+ UK Biobank proxy cases and controls) 

Jansen et al., 2019
19

 https://ctg.cncr.nl/software

/summary_statistics  

GWAS, Alzheimer’s disease (clinically 

diagnosed) 

Kunkle et al., 2019
20

 https://www.niagads.org/ig

ap-rv-summary-stats-

kunkle-p-value-data  

GWAS, Bipolar disease Mullins et al., 202122 https://www.med.unc.edu/

pgc/download-results/  

GWAS, Lewy body dementia Chia et al., 20215 https://www.ebi.ac.uk/gwa

s/studies/GCST90001390  

GWAS, Parkinson’s disease excluding 23andMe Nalls et al., 20193 https://pdgenetics.org/reso

urces  

GWAS, Major depressive disorder Howard et al., 201921 https://www.med.unc.edu/

pgc/download-results/  

GWAS, Schizophrenia Pardiñas et al., 2018
23

 https://www.med.unc.edu/

pgc/download-results/  

LAVA LD blocks  Werme et al., 2021
18

 https://github.com/cadelee

uw/lava-partitioning  
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LDSC: HapMap Project Phase 3 SNPs International HapMap 

3 Consortium58 

https://alkesgroup.broadins

titute.org/LDSCORE/; file 

name: w_hm3_snplist  

LDSC: 1000 Genomes European LD Scores 1000 Genomes Project 

Consortium
59

 

https://alkesgroup.broadins

titute.org/LDSCORE/; file 

name:  
eur_w_ld_chr.tar.bz2 

PsychENCODE eQTLs Wang et al., 201834 http://resource.psychencod

e.org/ 

Software 

Bioconductor   http://www.bioconductor.o

rg; RRID:SCR_006442 

BiocManager (v 1.30.16) Morgan, 2021
61

 https://CRAN.R-

project.org/package=BiocM

anager  

CRAN  http://cran.r-project.org/; 

RRID:SCR_003005 

circlize (v 0.4.13) Gu et al., 201462 https://github.com/jokergo

o/circlize; RRID:SCR_002141 

cowplot (v 1.1.1) Wilke, 202065 https://CRAN.R-

project.org/package=cowpl

ot; RRID:SCR_018081 

data.table (v 1.14.2) Dowle and Srinivasan, 

202166 

https://CRAN.R-

project.org/package=data.ta

ble   

doSNOW (v 1.0.19) Microsoft and 

Weston, 202067 

https://CRAN.R-

project.org/package=doSNO

W  

foreach (v 1.5.1) Microsoft and 

Weston, 202068 

https://CRAN.R-

project.org/package=foreac

h  

GenomicRanges (v 1.42.0) Lawrence et al., 201369 https://bioconductor.org/pa

ckages/release/bioc/html/G

enomicRanges.html; 

RRID:SCR_000025 

ggbeeswarm (v 0.6.0) Clarke and Sherrill-

Mix, 201770 

https://CRAN.R-

project.org/package=ggbees

warm  

ggplot2 (v 3.3.5) Wickham, 201663 https://ggplot2.tidyverse.or

g; RRID:SCR_014601 

ggpubr (v 0.4.0) Kassambara, 202071 https://CRAN.R-

project.org/package=ggpubr

; RRID:SCR_021139 

ggraph (v 2.0.5) Pedersen, 2021
64

 https://CRAN.R-

project.org/package=ggraph

; RRID:SCR_021239 

gtools (v 3.9.2) Warnes et al., 202172 https://CRAN.R-

project.org/package=gtools  

here (v 1.0.1) Müller, 202073 https://CRAN.R-

project.org/package=here  

janitor (v 2.1.0) Firke, 202174 https://CRAN.R-

project.org/package=janitor  
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LAVA (v 0.0.6; commit #7be342) Werme et al., 202118 https://github.com/josefin-

werme/LAVA  

LDSC (v 1.0.1) Bulik-Sullivan et al., 

201575 

https://github.com/bulik/ld

sc 

openxlsx (v 4.2.4) Schauberger and 

Walker, 202176 

https://CRAN.R-

project.org/package=openxl

sx; RRID:SCR_019185 

qdapTools (v 1.3.5) Rinker, 201577 http://github.com/trinker/q

dapTools  

readxl (v 1.3.1) Wickham and Bryan, 

2019
78

 

https://CRAN.R-

project.org/package=readxl; 

RRID:SCR_018083 

R (v 4.0.5) R Core Team
60

 http://www.r-project.org/; 

RRID:SCR_001905  
rtracklayer (v 1.50.0) Lawrence et al., 200979 https://bioconductor.org/pa

ckages/release/bioc/html/rt

racklayer.html; 

RRID:SCR_021325 

tidyverse (v 1.3.1) Wickham et al., 201980 https://www.tidyverse.org/; 

RRID:SCR_019186 

  500 
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Figures 736 

 737 

 738 

Figure 1 Overview of local and global genetic correlations between neurodegenerative diseases and 739 

neuropsychiatric disorders.  740 

(a) Chord diagram showing the number of significant bivariate local s (p < 0.05/1603) between each of the 741 

disease traits across all LD blocks. Positive and negative correlations are coloured red and blue, respectively. 742 

(b) Comparison between the global s estimated by LDSC (bottom) and the mean local  from LAVA (top) 743 

across all tested LD blocks. Significant global s (p < 0.05/15) are indicated with *. The number of significant 744 

local s is indicated by a number in each tile. (c) Bar plot showing the number of significant local s between 745 

disease trait pairs. The fill of the bars indicates the number of significant LD blocks for which the upper limit of 746 

the  95% confidence interval (CI) included 1. 747 
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 748 

 749 

Figure 2 Local analyses associate disease-implicated genomic regions with previously unrelated traits.  750 

(a) Bar plot (left) showing the number of traits within trait pairs demonstrating significant local s that had 751 

genome-wide significant SNPs overlapping the tested LD block (as illustrated by the schematic on the right). (b) 752 

Two LD blocks illustrating the situations depicted in (a). Edge diagrams for each LD block show the 753 

standardised coefficient for  (rho, ρ) for each significant bivariate local . Significant negative and positive 754 

s are indicated by blue and red colour, respectively. (c) Heatmaps show the rho for each bivariate local  755 

within the LD block. Asterisks (*) indicate s that were replicated when using AD and PD GWASs that excluded 756 

UK Biobank by-proxy cases. Significant negative and positive s are indicated by blue and red fill, respectively. 757 

Non-significant s have a grey fill. In both (b) and (c) panels are labelled by the LD block identifier, the traits 758 

with genome-wide significant SNPs overlapping the LD block (indicated in the brackets) and the genomic 759 

coordinates of the LD block (in the format chromosome:start-end). 760 
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 761 

Figure 3 Multiple regression across LD blocks with multiple trait pair correlations.  762 

For both plots, only those multiple regression models with at least one significant predictor (p < 0.05) are 763 

shown. (a) Plots of standardised coefficients for each predictor in multiple regression models across each LD 764 

block, with whiskers spanning the 95% confidence interval for the coefficients. Panels are labelled by the LD 765 

block identifier and the regression model. (b) Multivariate  for each LD block and model, where multivariate 766 

 represents the proportion of variance in genetic signal for the outcome trait explained by all predictor traits 767 

simultaneously. Whiskers span the 95% confidence interval for the .  ***, p < 0.001; **, p < 0.01; *, p < 0.05. 768 
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Figure 4  Incorporation of gene expression traits to facilitate functional interpretation of disease trait 770 
correlations. 771 
(a) Bar plot of the number of eQTL genes (as defined by their genic regions) tested in each LD block. The fill of 772 
the bars indicates whether eQTL genes were significantly correlated with at least one disease trait. (b) Bar plot 773 
of the number of eQTL genes that were significantly correlated with at least one disease trait. The fill of the 774 
bars indicates whether eQTL genes in local ��s were correlated with one or more disease traits. (c, d, f) 775 

Heatmaps of the standardised coefficient for �� (rho) for each significant gene expression-disease trait 776 

correlation (FDR < 0.05) within LD block (c) 1719, (d) 1273 and (f) 2351. Genes are ordered left to right on the 777 
x-axis by the genomic coordinate of their gene start. Panels are labelled by the eQTL dataset from which eQTL 778 
genes were derived (either PsychENCODE's analysis of adult brain tissue from 1387 individuals or the eQTLGen 779 
meta-analysis of 31,684 blood samples from 37 cohorts). (e) Edge diagrams for representative genic regions 780 
show the rho for each significant bivariate local �� (FDR < 0.05). GWAS and eQTL nodes are indicated by grey 781 

and white fill, respectively. Panels are labelled by the gene tested and the eQTL dataset from which eQTL 782 
genes were derived. In panels c-f significant negative and positive ��s are indicated by blue and red colour, 783 

respectively. 784 
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Tables 

Table 1 Overview of traits included in this study. Global SNP heritability (h
2
) for each trait was obtained using LDSC

75
. SE, standard error. 

Trait type Trait Abbreviation N N cases N controls Global h
2
 (SE) Original study 

Disease Alzheimer’s disease  
Clinically diagnosed + UK Biobank 

proxy cases and controls 

AD 455,258 71,880  
(46,613 proxy) 

383,378 
(318,246 proxy) 

1.5% (0.2) Jansen et al., 2019
19

 

Disease Alzheimer’s disease  
Clinically diagnosed 

AD (no proxy) 63,926 21,982 41,944 7.1% (1.1)  

 

Kunkle et al., 2019
20

 

Disease Bipolar disorder BIP 413,466 41,917 371,549 7.1% (0.3)  

 

Mullins et al., 

2021
22

 

Disease Lewy body dementia 
Autopsy-confirmed + clinically 

diagnosed 

LBD 6,618 2,591 
(1,789 autopsy-

confirmed) 

4,027 17.1% (7.6) Chia et al., 2021
5
 

Disease Major depressive 

disorder 

MDD 500,199 170,756 329,443 6% (0.2)    Howard et al., 

2019
21

 

Disease Parkinson’s disease 

excluding 23andMe 
Clinically diagnosed + UK Biobank 

proxy cases and controls 

PD 482,730 33,674 
(18,618 proxy) 

449,056 
(436,419 proxy) 

1.9% (0.2) Nalls et al., 2019
3
 

Disease Parkinson’s disease 

excluding 23andMe 
Clinically diagnosed 

PD (no proxy) 27,693 15,056 12,637 30.6% (2.8) Nalls et al., 2019
3
 

Disease Schizophrenia SCZ 105,318 40,675 64,643 41% (1.4)   Pardiñas et al., 

2018
23

 

Gene expression eQTLGen 
Blood-derived eQTLs 

eQTLGEN 31,684 - - - Vosã et al., 2021
33

 

Gene expression PsychENCODE 
Brain-derived eQTLs 

PSYCHENCODE 1,387 - - - Wang et al., 2018
34
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Supplementary Figures 

 

Supplementary Figure 1 (a) Number of LD blocks containing genome-wide significant loci per chromosome. 

Chromosomes have been ordered by the total number of LD blocks in each chromosome. (b) Number of genome-wide 

significant AD, BIP, LBD, MDD, PD and SCZ SNPs per autosome. 
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Supplementary Figure 2 Impact of excluding UK Biobank by-proxy cases on local genetic correlations and multiple 

regression. 

(a) Scatter plot of -log10(p-value) and the standardised coefficient for  (rho, ρ) for each pair of phenotypes with 

sufficient univariate signal to carry out a bivariate test using AD/PD GWASs with or without by-proxy cases. In each 

panel, Pearson’s coefficient (R) and associated p-value (p) are displayed. The black dashed line represents the line y = x.

Points are coloured, where applicable, by whether they share the same direction of effect. (b) Significant bivariate local

genetic correlations using AD/PD GWASs with or without by-proxy cases (as indicated in panel headers). Heatmaps  

show the rho for all tested associations within the LD block, with significant negative and positive correlations indicated

by blue and red fill, respectively. Non-significant correlations have a grey fill. (c) Results of multiple regression model 

across LD block 2351. Plot (left) of standardised coefficients for each predictor in multiple regression model in LD block 

2351, with whiskers spanning the 95% confidence interval for the coefficients. Plot (right) of multivariate  for LD 

block 2351, where multivariate  represents the proportion of variance in genetic signal for LBD explained by AD and 

PD simultaneously. Whiskers span the 95% confidence interval for the multivariate . ***, p < 0.001. 

. 

l 
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Supplementary Figure 3 Local gene expression and disease trait correlations across 5 LD blocks of interest. 

Heatmaps of the standardised coefficient for �� (rho) for all tested gene expression-disease trait correlation within LD 

block (a) 681, (b) 1273, (c) 1719, (d) 2281 and (e) 2351. All negative and positive ��s with p < 0.05 are indicated by blue 

and red colour, respectively, while the remainder have a grey fill. Significant local ��s (FDR < 0.05) are indicated by two 

asterisks (**), while nominally significant local ��s (p < 0.05) are indicated with a black square (1). Genes are ordered 

left to right on the x-axis by the genomic coordinate of their gene start. 
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Supplementary Figure 4 Explained variance in trait pairs with different trait types. 

Boxplot of explained variance (��, the proportion of variance in genetic signal of one disease trait in a pair explained by 

the other) in trait pairs involving a disease and gene expression trait (gwas-eqtl) or two disease traits (gwas-gwas). Only 

local ��s that passed significance are plotted (FDR < 0.05; N, local ��s = 87).
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Supplementary Figure 5 Effect of window size on local genetic correlations.   

(a) Number of significant bivariate local ’s across window sizes. Bars are coloured by whether ’s are 

significant across both window sizes (shared) or only one (unique). (b) Scatter plot of -log10(p-value) and the 

standardised coefficient for  (rho, ρ) for each pair of phenotypes that could be tested across genic regions 

with a 50-kb or 100-kb window. Panels indicate whether the pair of phenotypes included a disease and gene 

expression trait (gwas-eqtl) or two disease traits (gwas-gwas). Points are coloured by whether they share the 

same direction of effect. The black line represents a linear model fitted to the data, with the 99% confidence 

interval indicated with a grey fill. Further, Pearson’s coefficient (R) and associated p-value (p) are displayed. 

The red dashed line represents the line y = x.  
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Supplementary Tables  

Supplementary Table 1 LD blocks, their associated disease traits (as determined by overlap of genome-wide 

significant SNPs) and overlapping genes. 

Supplementary Table 2 Results of LDSC using the six disease traits. 

Supplementary Table 3 Results of LAVA using the six disease traits. 

Supplementary Table 4 Results of LAVA using GWASs for AD and PD that exclude UK Biobank by-proxy cases. 

Supplementary Table 5 Results of multiple regression analyses. 

Supplementary Table 6 Results of LAVA using disease and gene expression traits (100-kb window). Sheets 

containing bivariate results for each LD block also contain (a) locus plot of genic regions (including 100-kb 

window). Significant bivariate local genetic correlations between a disease and gene expression trait are 

highlighted in blue (FDR < 0.05). (b) Edge diagrams for genic regions where a significant bivariate local genetic 

correlation was observed between a disease and gene expression trait (FDR < 0.05). Edges display the 

standardised coefficient for genetic correlation (rho) for significant bivariate local genetic correlations, with 

negative and positive correlations indicated by blue and red colour, respectively. GWAS and eQTL nodes are 

indicated by grey and white fill, respectively. 

Supplementary Table 7 Results of LAVA using disease and gene expression traits (50-kb window). Sheets 

containing bivariate results for each LD block also contain (a) locus plot of genic regions (including 50-kb 

window). Significant bivariate local genetic correlations between a disease and gene expression trait are 

highlighted in blue (FDR < 0.05). (b) Edge diagrams for genic regions where a significant bivariate local genetic 

correlation was observed between a disease and gene expression trait (FDR < 0.05). Edges display the 

standardised coefficient for genetic correlation (rho) for significant bivariate local genetic correlations, with 

negative and positive correlations indicated by blue and red colour, respectively. GWAS and eQTL nodes are 

indicated by grey and white fill, respectively. 
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