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Abstract 1 
 2 

Ultraviolet radiation (UV) is causally linked to cutaneous melanoma, yet the underlying epigenetic 3 

mechanisms, known as molecular sensors of exposure, have never been characterized in clinical 4 

biospecimen. Here, we integrate clinical and epigenome (DNA methylome), genome and 5 

transcriptome profiling of 112 cutaneous melanoma from two multi-ethnic cohorts. We identify 6 

UV-related alterations in regulatory regions and immunological pathways, with multi-OMICs 7 

cancer driver potential affecting patient survival. TAPBP, the top gene, is critically involved in 8 

immune function and encompasses several UV-altered methylation sites that were validated by 9 

targeted sequencing, providing cost-effective opportunities for clinical application. The DNA 10 

methylome also reveals non UV-related aberrations underlying pathological differences between 11 

the cutaneous and 17 acral melanomas. Unsupervised epigenomic mapping demonstrated that 12 

non UV-mutant cutaneous melanoma more closely resembles acral rather than UV-exposed 13 

cutaneous melanoma, with the latter showing better patient prognosis than the other two forms. 14 

These gene-environment interactions reveal translationally impactful mechanisms in 15 

melanomagenesis. 16 

17 
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 3 

Introduction 18 
 19 

Melanoma is a neoplasm arising from melanocytes in the skin, mucosa, or uvea1. It 20 

accounts for more than 75% of skin cancer-related deaths though it represents less than 5% of 21 

all cutaneous malignancies2. The incidence of melanoma has been increasing worldwide3 and 22 

this trend has been observed for decades in some populations (e.g. the US)4.  23 

Epidemiologic studies have highlighted that the strongest risk factors for cutaneous 24 

melanoma development are severe sunburns during childhood and intense intermittent ultraviolet 25 

(UV) exposure, which consists of UVC (100-280 nm), UVB (290–320 nm) and UVA (320–400 26 

nm)5. However, there are types of melanoma that arise in body parts protected from direct UV 27 

light, and these are acral, mucosal and uveal melanomas. These types represent uncommon 28 

cancers, among which the most frequent is the acral melanoma, which occurs on the glabrous 29 

skin (the skin of palms of the hands and the soles of the feet) and the subungual area6,7. Even 30 

though it is rare in the general population, acral melanoma is the most common melanoma among 31 

people with darker skin8.  32 

The melanoma genome has the highest mutation burden of any cancer and a predominant 33 

C>T nucleotide transition signature attributable to UV radiation9,10. Recently, ten mutated UV 34 

signature genes were identified in both clinical samples and animal models, and patients 35 

harboring the UV mutation signature presented longer disease-free and overall survival11. 36 

Although associations between genetic changes and UV exposure have been well characterized, 37 

the role of epigenetic modifications induced by UV exposure has never been investigated directly 38 

in human melanoma tissues (Supplementary Data 1). Epigenetic mechanisms function as central 39 

players in tumorigenesis and as molecular sensors to environmental factors12. In fact, CpG DNA 40 

methylation sites are highly sensitive to UV damage, as evidenced from experimental approaches 41 

of UV exposure using cell line and animal models13. 42 
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Furthermore, the DNA methylation profile of acral melanomas is barely characterized, 43 

which could be due in part to its scarcity. It is also unclear whether molecular differences between 44 

UV-related and non UV-related melanoma types are due to intrinsic pathological characteristics, 45 

extrinsic responses to UV exposure or a combination of both. To address such critical research 46 

questions in the field, a comparative study encompassing both cutaneous and acral melanomas 47 

would represent an important step forward, with particular focus on epigenetic mechanisms as 48 

they can function as both sensors to exposures and key determinants of cell identity. The most 49 

recent melanoma classification by the World Health Organization (WHO), including the Blue 50 

Books by the International Agency for Research on Cancer (IARC), presented evidence based 51 

on epidemiologic, clinical, histopathologic and genomic features14, while not comprising yet 52 

epigenomics.  53 

We hypothesize that epigenetic alterations, interplaying with transcriptional and mutational 54 

events, constitute critical biological mechanisms underpinning intrinsic pathological differences 55 

and extrinsic responses to UV exposure in cutaneous and acral melanomas. We perform 56 

differential DNA methylome-wide analysis in cutaneous melanoma patients comparing UV-57 

exposed and non UV-exposed melanomas in two independent clinical cohorts, including a sample 58 

population from Brazil which encompasses the white and pigmented phenotypes (Figure 1). UV 59 

exposure status is predicted from UV mutational signatures derived from whole genome 60 

sequencing (WGS) or whole exome sequencing (WES). This is followed by functional genomic, 61 

pathway and methylation-expression analysis of the identified DNA methylation alterations, 62 

assessment of their cancer driver roles using a multi-OMICs approach, investigation of their effect 63 

on patient survival, and validation of the top hits using bisulfite pyrosequencing. The methylome 64 

landscape of cutaneous melanoma is then compared to that of acral melanoma to elucidate the 65 

relative contributions of intrinsic pathological and extrinsic UV-related differences towards 66 

shaping the cancer epigenome of the two major UV-related and non UV-related melanoma types 67 

(Figure 1).  68 
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Results 69 

Cross genome-methylome analysis of UV exposure in cutaneous melanoma 70 

UV mutation status was predicted in cutaneous melanoma patients using WGS and WES 71 

data from Barretos Cancer Hospital (BCH) in the context of International Cancer Genome 72 

Consortium (ICGC)-Brazil project and The Cancer Genome Atlas (TCGA) study, respectively 73 

(Figure 1). Similar characteristics were observed in the BCH and TCGA cutaneous melanoma 74 

patients, including larger proportions of the male sex, white skin phenotype, metastatic tumor 75 

type, UV mutation signature, and BRAF molecular group (Table 1). Primary tumors and BRAF 76 

mutations were relatively more enriched in BCH than in TCGA patients (Table 1, p= 9.40e-03, p= 77 

3.20e-03, respectively).  78 

We observed that UV-mutant cutaneous melanoma patients have higher melanoma-79 

specific survival relative to non UV-mutant patients in both BCH and TCGA (Figure 2a).  In order 80 

to investigate whether the DNA methylome functions as a molecular sensor to UV exposure and 81 

underlies the difference in survival between UV-mutant versus non UV-mutant cutaneous 82 

melanoma patients, DNA methylome-wide analysis based on Infinium HumanMethylation450 83 

(450K) array was performed in BCH samples and compared with that in the TCGA cohort (the 84 

quality control analysis and selection of the appropriate statistical model, including adjustment for 85 

potential confounders, are described in the Methods section and Supplementary Data 2-5).  86 

In BCH melanomas, of the 2,620 differentially methylated regions (DMRs), 1,541 (58.8%) 87 

were hypermethylated and 1,079 (41.2%) were hypomethylated (Figure 2b; Supplementary Data 88 

2). A similar proportion of hypermethylated (62.8%; 378 out of 602) and hypomethylated (37.2%; 89 

224 out of 602) DMRs was observed in TCGA (Figure 2b; Supplementary Data 6). The enrichment 90 

distributions in CpG regulatory or density regions were also similar in both cohorts. Specifically, 91 

in CpG regulatory regions, the significant enrichments in both cohorts were those of 92 

hypomethylated DMRs in regions 1-5Kb upstream of the transcription start site and of 93 

hypermethylated DMRs in promoters, exon/intron boundaries and 5’UTR (p<0.001) (Figure 2c). 94 
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In CpG density regions, the significant enrichments were those of hyper- or hypo-methylated 95 

DMRs in CpG islands or shores (p< 0.001) (Figure 2d).  96 

 97 

The DNA methylome marks UV exposure with effect on immunomodulation 98 

In order to prioritize the top DMRs that distinguish UV-mutant and non UV-mutant 99 

cutaneous melanoma patients (Supplementary Data 7-8), we applied the filters described in 100 

Supplementary Fig. 1a to focus on DMRs encompassing at least 3 CpGs, with consistent 101 

directions of effect, absolute effect sizes ≥ 10%, and not enriched in single nucleotide 102 

polymorphisms (SNPs). The resultant methylome map distinctly clustered UV-mutant from non 103 

UV-mutant patients in both BCH and TCGA (Figure 3a). In the BCH cohort, cluster C1 (as defined 104 

by Euclidean distance) was fully occupied by non UV-mutant samples (Figure 3a) and exhibited 105 

a DNA methylation profile that was visually distinct, with an upper hypermethylation (red) stretch 106 

and a lower hypomethylation (blue) stretch, relative to the other clusters. Even if C1 is merged 107 

with the adjacent cluster C2, the non UV-mutant patients remain statistically enriched in this 108 

combined cluster (p-value= 1.95e-03), which now encompasses almost all non UV-mutants 109 

analyzed. A similar pattern was observed in the TCGA cohort. Cluster C3 was fully occupied by 110 

non UV-mutant samples and was visually distinct, exhibiting again an upper hypermethylation 111 

(red) stretch and a lower hypomethylation (blue) stretch, relative to the other clusters. Even if C3 112 

is merged with the adjacent cluster C4, the non UV-mutant patients remain statistically enriched 113 

in this combined cluster (p-value= 3.00e-10), which now encompasses almost all non UV-mutants 114 

analyzed (Figure 3a). 115 

 Recently, TCGA cutaneous melanoma patients have been classified into four molecular 116 

mutation subgroups: 1- BRAF, associated with younger patients and with BRAF and MITF 117 

amplifications; 2- RAS, associated with MAPK activation and AKT3 overexpression; 3- NF1, 118 

associated with older patients and higher mutation burden; 4- The triple negative (TN), which is 119 

wild-type for BRAF, RAS and NF-1, lacks the UV mutational signature and has higher copy 120 
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number and complex rearrangements9. Indeed, we observed that the TN molecular subgroup is 121 

significantly enriched in non UV-mutant patients in both BCH and TCGA cohorts (Figures 3a-b). 122 

We also observed that the BRAF mutant group was the most enriched in UV-mutant patients in 123 

both BCH and TCGA, though reaching statistical significance only in BCH (Figures 3a-b). This 124 

was in line with other studies15,16, further reinforcing the reproducibility potential of our data. 125 

Interestingly, BRAF, NF1 and RAS were not significantly differentially methylated in melanoma 126 

tissues in relation to UV exposure (Supplementary Data 7-8), highlighting that UV exposure 127 

produces DNA methylation changes in genes that can be different from critical ones mutationally 128 

altered by the same environmental exposure.  129 

Jensen disease analysis of the filtered DMRs showed a significant implication of the 130 

differentially methylated genes in skin disorders, such as systemic scleroderma (BCH and TCGA), 131 

vitiligo (BCH and TCGA), melanoma (BCH), and skin cancer (BCH), particularly among the top 132 

and false discovery rate (FDR)-adjusted ontologies (FDR < 0.05) (Supplementary Data 9-10). A 133 

number of other cancers and diseases were significantly enriched as well (Supplementary Data 134 

9-10). This was complemented by KEGG pathway analysis, revealing 28 and 30 significant 135 

pathways (p< 0.05) in BCH and TCGA, respectively. Among them, a large proportion (10 136 

pathways) were identical between BCH and TCGA, 8 and 6 of which remained significant after 137 

adjustment for the number of CpGs per gene and FDR, respectively (Figure 3c, Supplementary 138 

Data 11-14). These pathways constituted of differentially methylated genes implicated in immune 139 

system regulation: hematopoietic cell lineage, allograft rejection, graft-versus-host disease, 140 

intestinal immune network for IgA production, antigen processing presentation, inflammatory 141 

bowel disease, and relatedly, autoimmune diseases, such as type 1 diabetes mellitus, 142 

autoimmune thyroid disease, systemic lupus erythematosus and rheumatoid arthritis (Figure 3c). 143 

The role of DNA methylation alterations in regulating immune system function was 144 

investigated in further depth and validated using RNA sequencing data (Methods section), 145 

demonstrating that immune cell composition was indeed different between UV-mutant and non 146 
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UV-mutant cutaneous melanoma patients (Figure 3d). Specifically, dendritic cells were 147 

significantly infiltrated in the non UV-mutant than in UV-mutant cutaneous melanoma (Figure 3d, 148 

p= 0.03). Complementary analysis using differentially expressed genes comparing non UV-149 

mutant and UV-mutant cutaneous melanoma patients (p < 0.05, Supplementary Data 15) also 150 

showed enrichment in immune disorders and skin-related diseases, though none reached FDR 151 

significance (Supplementary Data 16-17).  152 

 153 

DNA methylome markers of UV are prognostic of patient survival 154 

In addition to the large proportion of overlap in biological pathways between BCH and 155 

TCGA described above, there was a significant overlap in DNA methylation alterations at the gene 156 

and CpG levels between BCH and TCGA (Figure 4a). Out of the 458 CpGs from 169 genes 157 

significantly overlapping (p= 2.3e-109 and p= 3.71e-29, respectively) between BCH and TCGA 158 

cohorts (Supplementary Data 18, Figure 4a), 6 CpGs (HOXC9, KCNQ1DN and MGMT genes) 159 

were hypermethylated and 30 CpGs (TAPBP, ERICH3, FINL2, ZNF732, SLC6A18, MFSD13A, 160 

SLFN12L and IFNLR1 genes) were hypomethylated in both BCH and TCGA, considering CpGs 161 

with absolute effect sizes ≥ 10% and with no significant enrichment in SNPs (Supplementary Fig. 162 

1b-c).  163 

We complemented the cohort-specific analyses with a DMR meta-analysis across the 164 

BCH and TCGA datasets (Figure 4b). As the results demonstrate, there are 45,915 CpGs 165 

significantly differentially methylated across the two datasets between UV-mutant and non UV-166 

mutant cutaneous melanomas (FDR < 0.05), of which a high proportion of CpGs (equal to 24,711 167 

CpGs or equivalent to 53.8%) have the same direction of effect between BCH and TCGA 168 

(Supplementary Data 19, Figure 4b). 121 meta-analysis CpGs (FDR < 0.05) overlapped with the 169 

458 CpGs that are common between the BCH and TCGA cohort-specific analyses. As expected, 170 

the meta-analysis yields a larger number of significant hits (due to higher statistical power) than 171 

the cohort-specific analyses. However, the former is more prone to false positivity especially given 172 
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some clinicopathological and ethnic dissimilarities (Table 1) and methodological differences 173 

between the two cohorts in predicting UV signature status (WGS versus WES, respectively). For 174 

this reason, (1) we additionally report the more stringent Bonferroni threshold, which yielded 175 

similar results as FDR (Supplementary Data 20, Figure 4b), and (2) we present the meta-analysis 176 

results as a complementary method that reinforces the robustness of the findings across the 177 

different cohorts and analysis approaches, while prioritizing the more conservative cohort-specific 178 

analysis which yields signals that are common between BCH and TCGA and which, though less 179 

profuse, are less prone to error. 180 

Thus, we further investigated whether the 36 CpGs in common between BCH and TCGA 181 

could be used to predict the survival of patients with cutaneous melanoma. Among them, 182 

cg06230948-TAPBP, cg18930100-TAPBP, cg19495013-FIGNL2 and cg26835312-IFNLR1 were 183 

significantly associated with survival in BCH after adjustment for multiple testing (FDR < 0.05) 184 

(Supplementary Data 21). Among these four CpGs, cg18930100-TAPBP was also significantly 185 

associated with survival in a lookup analysis in TCGA. Specifically, patients in the low methylation 186 

groups at this CpG site had significantly higher melanoma-specific survival in both cohorts 187 

(Supplementary Data 21 and Figure 4c). This was concordant with the observed hypomethylation 188 

effects at this CpG (Figure 4d) that are associated with increased survival (Figure 2a) in UV-189 

mutant relative to non UV-mutant patients. Notably, TAPBP differential methylation is robustly 190 

significant in both the cohort-specific and meta-analyses of the BCH and TCGA cohorts (Figure 191 

4b and Supplementary Data 7,8,19 and 20). 192 

 193 

Validation and multi-OMICs functional roles of UV methylome markers 194 

 We next investigated the functional effect of UV-related DNA methylation alterations on 195 

gene expression using expression quantitative trait methylation (eQTM) analysis applied to DNA 196 

methylome and transcriptome data profiled on the same samples (Figure 1). We first used a 197 

targeted approach focusing on cg18930100-TAPBP prioritized in the previous analysis (Figure 4) 198 
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 10 

and found that its methylation levels were significantly correlated with TAPBP RNA expression 199 

changes (Figure 5a). We then performed eQTM analysis on all 458 CpGs that are common 200 

between TCGA and BCH (Supplementary Fig. 2a) in order to investigate whether the TAPBP 201 

gene could be still identified agnostically among the eQTMs. Out of the 458 CpGs, 10 (TAPBP: 202 

cg01253676, cg01654446, cg06230948, cg06375761, cg02863594, cg18930100, cg18353226; 203 

and EIF2AK4: cg20255370, cg16127683, cg01081584) were significantly correlated with 204 

expression, among which 7 CpGs were indeed located in the TAPBP gene, including its 205 

cg18930100 (Figure 5a). All the significant correlations showed an inverse association between 206 

CpG methylation and RNA expression levels of each gene, with TAPBP showing hypomethylation 207 

while EIF2AK4 showing hypermethylation in UV-mutant relative to non UV-mutant cutaneous 208 

melanoma patients (Figure 5a). Notably, cg18930100 in TAPBP presented hypomethylation 209 

associated with both increased TAPBP RNA expression (Figure 5a) and increased patient 210 

survival (Figure 4c) in UV-mutant relative to non UV-mutant cutaneous melanoma patients. 211 

TAPBP and EIF2AK4 RNA expression levels did not significantly associate with patient survival 212 

(Supplementary Fig. 2b), suggesting that their methylation levels may be stronger prognostic 213 

markers than their transcript levels. 214 

 Next, we pooled all 36 CpGs prioritized in Supplementary Fig. 1b (being common between 215 

BCH and TCGA) with the 10 CpGs prioritized in Supplementary Fig. 2a (being significant eQTMs) 216 

and investigated their cancer driver potential derived from our recent multi-OMICs driver score17. 217 

This was performed using data on copy number variation, point mutations, RNA expression and 218 

DNA methylation profiled in cutaneous melanoma patients. We found that the top half of the CpGs 219 

with the highest cancer driver potential were largely predominated by CpGs of the TAPBP gene 220 

(Figure 5b) and that this gene ranked among the top 4 driver genes when methylation levels were 221 

averaged across CpGs of a given gene (Supplementary Fig. 2c).  222 

As a positive control, we used a list of genes known to play driver roles in cutaneous 223 

melanoma based on the ConsensusDriver score method (i.e. with ConsensusDriver > 1.5)18, 224 
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which preferentially selects cancer driver genes that are frequently mutated in tumor tissues. We 225 

calculated the multi-OMICs driver scores for those genes, derived by measuring the extent of their 226 

OMICs alterations in UV-mutant relative to non UV-mutant melanomas (Supplementary Fig. 2d), 227 

as was done for the experimental gene set (Figure 5b). We found that the multi-OMICs driver 228 

scores of the latter, including TAPBP, were predominantly in the same range as that of the positive 229 

control genes (1.24 - 2.50) (Supplementary Fig. 2d), reinforcing the cancer driver potential of the 230 

the experimental gene set relative to known driver genes in melanoma. 231 

    Because of the biological and clinical relevance of TAPBP methylation, which was 232 

correlated with melanoma-specific survival and RNA expression and concurred with other 233 

genome-wide deregulations that led to its high multi-OMICs driver potential, we performed 234 

technical validation of TAPBP methylation using bisulfite pyrosequencing in the BCH cohort 235 

(Supplementary Data 22). Methylation by pyrosequencing validated that obtained with the 236 

methylome-wide array, confirming the observed TAPBP hypomethylation (including similar effect 237 

sizes and baseline methylation levels) in UV-mutant relative to non UV-mutant cutaneous 238 

melanoma (Figure 5c).  239 

  240 

Cutaneous and acral melanoma cross-OMICs: UV versus pathobiology 241 

In addition to the genome- and methylome-wide analysis of UV exposure status in 242 

cutaneous melanoma, we next investigated whether the transcriptome landscape, taken alone or 243 

integrated with the methylome map, can better distinguish UV-mutant from non UV-mutant 244 

melanomas (Figure 1). Based on PLS-DA modelling (Methods section), we observed that the 245 

DNA methylome alone predicts the two groups of patients (Figure 6A – left panel) better than the 246 

transcriptome alone (Figure 6a – right panel). The discriminative potential of the DNA methylome 247 

between UV-mutant and non UV-mutant cutaneous melanomas was sufficiently powerful, with 248 

slight or no improvement observed by the integrated methylome-transcriptome map (Figure 6b 249 

and Supplementary Data 23) using LASSO coupled to DIABLO (Methods section). This 250 
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complemented our earlier results showing that DNA methylation levels altered in UV-mutant 251 

melanomas are more prognostic to patient survival than the transcript levels of the corresponding 252 

genes (Figures 4 and Supplementary Fig 2b). 253 

We further investigated whether the DNA methylome could also underlie differences 254 

between pathologically different melanomas, with interaction by UV mutation status, namely 255 

between melanoma types predominantly associated with UV exposure (cutaneous melanoma) 256 

and those not UV-associated (acral melanoma). Table 1 shows the clinical annotations of the 257 

acral samples collected at BCH. In contrast to cutaneous melanomas, out of 21 acral, only a few 258 

(19.0% compared to 81.5% in BCH cutaneous melanoma, p=4.24e-07) had the UV mutation 259 

signature as expected. The majority (47.6%) of the acral melanoma patients did not exhibit 260 

mutations in BRAF, NRAS or NF1, and a substantial portion (28.6% compared to 5.6% in BCH 261 

cutaneous melanoma, p=2.28e-05) presented a pigmented skin phenotype.  262 

Based on PLS-DA modelling in BCH, we observed that the DNA methylome of the non 263 

UV-mutant cutaneous melanomas resembles more that of the pathologically different acral 264 

melanomas than the pathologically related UV-mutant cutaneous melanomas (Figure 6c). This 265 

was in line with the survival analysis showing that the non UV-mutant cutaneous melanoma 266 

patients presented worse prognosis, more closely resembling that of acral melanoma patients 267 

(known to have poorer prognosis) rather than that of UV-mutant cutaneous melanoma patients 268 

(Figure 6d, p<1.00e-04).  269 

The impact of tumor pathology on DNA methylome alterations was still observable, 270 

however, as evident by 1,784 DMRs distinguishing non UV-mutant cutaneous and non UV-mutant 271 

acral melanomas (Supplementary Data 24). Jensen disease ontology and KEGG pathway 272 

analyses of the filtered DMRs (as described in Supplementary Fig. 2e and Supplementary Data 273 

25) showed a significant implication (p< 0.05) of the differentially methylated genes in skin 274 

disorders (Supplementary Data 26) and immunological pathways (Figure 6e, Supplementary Data 275 
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27-28), respectively, but we interpret these results with caution as none of them remained 276 

significant after correcting for multiple testing (FDR > 0.05) (Supplementary Data 26-28).277 
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Discussion 278 

 Melanoma is a type of skin cancer, which represents one of the most complex and 279 

heterogeneous cancers compared to other cancer types19. Although the positive association 280 

between UV exposure with melanoma development is well known, the underlying epigenetic 281 

mechanisms have never been characterized yet in human melanoma tissues, as outlined by our 282 

systematic literature search (Supplementary Data 1). With the advent of new powerful 283 

technologies, such as WGS/WES, UV exposure status can now be predicted and analysed in 284 

human tissues. The present study investigated DNA methylome-wide alterations associated with 285 

UV mutation status in two cohorts of human cutaneous melanomas, with in-depth analysis of the 286 

functional and clinical implications of those alterations, including effects on regulatory regions, 287 

biological pathways, gene transcription, cancer driver potential, tumor classification and patient 288 

survival. This was complemented by testing whether the DNA methylome could also underlie 289 

differences between pathologically and molecularly different subtypes of melanomas with 290 

interaction by UV mutation status, namely between BRAF, RAS, NF1 and TN molecular groups 291 

and between melanoma types predominantly associated with UV exposure (cutaneous 292 

melanoma) and those not UV-associated (acral melanoma). To date, there is only one study that 293 

described the methylome landscape of acral melanomas20, and our work additionally highlights 294 

genes and biological pathways that are epigenetically deregulated in this uncommon melanoma 295 

type in comparison with cutaneous melanoma analysed in the same cohort encompassing 296 

patients of European and Latin-American descents.  297 

 The only available melanoma dataset with methylome and genome data for replication of 298 

our BCH findings was from TCGA. The number of detectable signals was higher in the BCH 299 

relative to the TCGA cohort, and this is probably not due to statistical power differences as both 300 

datasets had similar sample sizes. This could be rather due in the BCH dataset to (1) the better 301 

quality of samples and/or their processing using our in-house optimized automated workflow to 302 

generate DNA methylome data, coupled to a priori designed sample distribution on the array that 303 
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minimizes confounding with batch effects based on statistical semi-randomization, and (2) more 304 

accurate technology, using WGS rather than WES, to assess UV exposure. Even though there 305 

were some clinicopathological and ethnic dissimilarities (Table 1) and methodological differences 306 

between the two cohorts in predicting UV signature status (WGS versus WES, respectively), we 307 

observed consistent findings in both at the CpG, gene and biological pathway levels. Moreover, 308 

UV-related DNA methylation alterations showed similar distributions between BCH and TCGA in 309 

hypo- and hyper-methylated regions as well as similar enrichments in regulatory and CpG density 310 

regions, in skin disorders and in immunological pathways. Among the CpGs and genes 311 

differentially methylated in both BCH and TCGA, methylation levels of TAPBP (encompassing 312 

several differentially methylated CpGs) were significantly associated with RNA expression of this 313 

gene, concurred with other genome-wide deregulations to yield a high multi-OMICs driver 314 

potential and were significantly correlated with melanoma-specific survival. The array-based 315 

methylation results of TAPBP were independently validated by bisulfite pyrosequencing, further 316 

reinforcing the robustness of the findings and providing promising opportunities for clinical 317 

application via pyrosequencing as a cost-effective technique. 318 

TAPBP is a member of the immunoglobulin superfamily, which mediates the interaction 319 

between newly assembled major histocompatibility complex class 1 (MHC-I) and the transporter 320 

associated with antigen processing21. Downregulation of TAPBP (tapasin) protein expression has 321 

been observed in multiple cancers as an immune escape mechanism of human tumors, which is 322 

restored after cytokine administration, indicating that deficient TAPBP expression might be due 323 

to dysregulation than to structural alterations22. Our findings show that TAPBP transcription is 324 

significantly inversely associated with its DNA methylation levels, and the latter are altered in 325 

relation to UV exposure rather than to melanoma pathological identity since this gene was not 326 

found to be differentially methylated in non UV-mutant cutaneous versus acral melanomas 327 

(Supplementary Data 25).  328 
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MHC-I complex expression on tumor cells has been described as an excellent surrogate 329 

marker of the overall tumor immunogenicity level as well as a predictor of response to immune 330 

checkpoint blockade therapy23. Moreover, MHC-I downregulation was identified as a common 331 

mechanism of resistance to PD-I inhibitor in melanoma clinical samples24. Restoring TAPBP 332 

expression can enhance MHC-I (HLA-B and -C) expression, as demonstrated in vitro, highlighting 333 

the possibility that patients with defects in MHC-I antigen-processing machinery may benefit from 334 

combining immunotherapeutic strategies with demethylating agents (such as those that could 335 

restore TAPBP expression)25. In complement with TAPBP, several HLA genes were also 336 

differentially methylated in UV-mutant versus non UV-mutant cutaneous melanoma in both BCH 337 

and TCGA, and these genes were centrally involved in the multiple immunological pathways 338 

identified (Figure 3c). Taken together, TAPBP and MHC-I machinery genes, dysregulated by DNA 339 

methylation mechanisms as observed in our study, represent promising targets for epigenetic 340 

therapy and for predicting clinical response to immunotherapy.  341 

TAPBP methylation significantly predicted patient prognosis in both BCH and TCGA. Even 342 

though the sample size of expression data was the same as that of methylation data, the 343 

association between TAPBP expression and survival was not significant. This suggests that the 344 

difference is not merely due to statistical power but could indeed reflect biological basis. DNA 345 

methylation does not act solely through affecting gene transcription but is known to also associate 346 

with chromosomal instability, the induction of splice variants, alterations in enhancer regions, 347 

changes in microRNA binding regions and expression control regions, and mutations26-28. Hence, 348 

DNA methylation may function as a prognostic marker per se or through these various non 349 

expression-related mechanisms. Our observation is in line with a multitude of studies highlighting 350 

the high sensitivity of the epigenome to exposure and risk factors12,29. 351 

The relation between TAPBP methylation and survival may not be necessarily causal. Our 352 

results, however, pinpoint to an increased likelihood of causality because (1) they were 353 

reproduced in two independent populations, including different ethnicities, which offer a natural 354 
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means of effect randomization (hence, minimizing the influence of confounders), (2) they showed 355 

a dose-response (TAPBP hypomethylation was associated with increased survival relative to 356 

hypermethylation), and (3) they yielded a cancer driver potential for TAPBP that was comparable 357 

to that of known cancer driver genes. Still, more datasets will be needed to better reinforce the 358 

causality of the associations, for example, by using in larger sample sizes germline data as 359 

proxies for TAPBP methylation through Mendelian Randomization. 360 

In addition to the findings focused on TAPBP, we reported that the UV mutational 361 

signature is associated with a high load (thousands) of epigenetic alterations affecting the 362 

methylome landscape of cutaneous melanoma. This highlights that, even though the UV-mutant 363 

and non UV-mutant cutaneous melanomas are supposed to share the same pathological/cellular 364 

origin, they may need to be classified separately, at least based on their underlying epigenomic 365 

landscape, which has the potential to capture markers of both exposures and cell identity. 366 

Moreover, the non UV-mutant cutaneous melanoma, by resembling in its epigenome the acral 367 

melanoma, may have a poorer prognosis and require a different therapeutic approach than the 368 

UV-exposed cutaneous melanoma. This is in line with our data showing that patient survival is 369 

worse for the non UV-mutant cutaneous and acral melanomas relative to the UV-mutant 370 

cutaneous melanomas. Our findings also corroborate those of another study showing that 371 

cutaneous melanoma patients harboring the UV mutation signature had higher disease-free and 372 

overall survival11. The consistency between findings is notable especially that our dataset included 373 

a different ethnic group and a more accurate methodology (WGS rather than WES) to predict the 374 

UV signature. 375 

To date there is only one recent study that investigated the genetic changes related to UV 376 

in clinical melanoma samples and found 10 genes commonly mutated in UV-mutant relative to 377 

non UV-mutant cutaneous melanoma11. Among them, PKHD1L1, LRP1B, ADGRV1 and DNAH10 378 

were hypomethylated in UV-mutant compared with non UV-mutant cutaneous melanoma patients 379 

in BCH (Supplementary Fig. 3a). Moreover, methylation of 6 CpGs of LRP1B were significantly 380 
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associated with melanoma-specific survival (FDR < 0.05) (Supplementary Data 29); the most 381 

significant of those CpGs was cg02322989, the hypomethylation of which was associated with 382 

higher melanoma-specific survival (Supplementary Fig. 3b). The TCGA cohort did not corroborate 383 

the DMRs of these genes.  384 

 Consensus driver30 and secondary driver genes have been recently described in 385 

cutaneous melanoma31, among which several were differentially methylated in UV-mutant versus 386 

non UV-mutant cutaneous melanomas patients in our analysis (COL5A1, DACH1, MECOM, 387 

PTEN, TP53, BRD9, BCL7, SPRED1, SIGLEC12 and SIGLEC10) (Supplementary Data 2-6). 388 

These driver genes were derived mostly based on genomic data. We identified driver genes in 389 

melanoma and validated others already described, based on our multi-OMICs driver score 390 

encompassing genomics, transcriptomics and DNA methylome data. Our results suggest that 391 

genes differentially methylated in response to UV may play driver mechanisms in melanoma 392 

development.  393 

In this work, we applied a battery of powerful technology, encompassing WGS, WES, RNA 394 

sequencing and DNA methylome-wide profiling, coupled to state-of-the-art bioinformatics tools 395 

onto a unique series of cutaneous and acral melanoma samples. Specifically, we leveraged 396 

publicly available data and complemented that with the generation of new datasets, with larger 397 

sample sizes, higher genomic coverage, more detailed phenotypic assessment, high-quality 398 

frozen tissue samples, and the inclusion of melanomas other than cutaneous and of ethnicities 399 

besides European-descent. In fact, less than 5% of genetic studies worldwide include participants 400 

with multiple ancestry32, specifically in acral melanoma research33, and our work helps address 401 

this timely advocated need32,33 by contributing to genomics and epigenomics data from 402 

populations of non-European descent. By investigating epigenetic markers of UV exposure in 403 

human melanoma tissues from two distinct populations and overlaying the DNA methylome 404 

landscape onto the transcriptome and genome maps of UV-mutant cutaneous relative to non UV-405 

mutant cutaneous and acral melanomas, this work contributes to (1) uncovering potentially 406 
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powerful exposure and cancer epigenetic biomarkers that can be exploited in risk stratification; 407 

(2) enhancing tumor classification within and across melanoma types; (3) revealing molecular 408 

drivers in melanomagenesis that could be at the origins of this cancer, hence, suitable for targeted 409 

therapy; and (4) diminishing population disparities and knowledge inequalities in melanoma 410 

pathobiology. The translational impact of the work covers common and less frequent melanomas 411 

and offers a roadmap guiding similar gene-environment investigations of other melanoma types. 412 

 413 

Methods 414 

 Patient eligibility, biospecimen and clinical data 415 

The study was conducted according to the Brazilian national and institutional ethical 416 

policies, and it was previously approved by the Barretos Cancer Hospital Ethics Committee 417 

(716/2013). No compensation was provided to the participants in this study and informed consent 418 

was obtained by all participants included in BCH cohort. Patients were recruited at BCH in the 419 

context of the ICGC-Brazil project, which encompassed 100 melanoma patients prior to any 420 

systemic treatment and from whom paired tumor/blood tissues were profiled by WGS34 and tumor 421 

tissues by 450K DNA methylation array. We selected two subsets of patients from ICGC-Brazil 422 

(BCH cohort): first, Discovery cohort 1, encompassing 54 cutaneous melanomas patients 423 

harboring or not the UV mutation signature; second, Discovery cohort 3, constituting of 17 acral 424 

melanomas that are non UV-mutant (Figure 1), after having excluded the 4 acral samples that 425 

were UV-mutant. All BCH samples were fresh frozen. Clinicopathological data were collected 426 

under ICGC guidelines. During the admission process at BCH, all patients self-report their skin 427 

type and ethnicity, and this information was extracted from medical records given the 428 

retrospective nature of the study. In addition, several studies were conducted on this patient 429 

population to determine their genetic-based ethnicity and correlate their ancestry with clinical 430 

characteristics. These studies observed considerable admixture in the genetic composition35-38. 431 
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 The second cohort comprised 58 cutaneous melanoma samples from TCGA-432 

SKCM for which information about UV signature was available (Figure 1) based on WES. We 433 

excluded formalin fixed paraffin embedded samples and selected only fresh frozen samples for 434 

best quality of data and to eliminate sample processing bias in our comparisons with BCH 435 

samples. Clinicopathological data were downloaded from the TCGA-SKCM published study9. 436 

 437 

DNA isolation 438 

DNA from fresh frozen BCH-cohort samples were isolated using the DNA Mini 439 

Qiasymphony kit (Qiagen catalog no 937236) following BCH Biobank procedures and the 440 

manufacturer’s instructions39. Briefly, approximately 25 mg tissue in 180 μL ATL Buffer was 441 

homogenized (Precellys, Bertin-instruments) at 6,500 1x10/10 seconds for three times. After 442 

samples were centrifuged for 1 minute at 2,867 xg, supernatants were transferred for another 443 

tube, 25 μL of Proteinase K were added per sample, and samples were incubated at 56ºC, 134 444 

xg for 3 hours. Then 4 μL RNase were added per sample and DNA was isolated using 445 

QIAsymphony (Qiagen catalog no 9001297). 446 

 447 

Whole genome and exome sequencing and prediction of UV mutational signatures 448 

The WGS library construction and sequencing of BCH samples were performed at 449 

Mendelics (São Paulo, SP, Brazil). A total amount of one ug of each matched normal and tumor 450 

DNA was submitted to sonication fragmentation and further library preparation by Illumina TruSeq 451 

DNA PCR-Free Library Preparation kit (Illumina catalog no 20015963) using the 350 bp protocol. 452 

Libraries were quantified by Qubit Fluorometer (Thermofisher catalog no Q33238) and qualified 453 

by 2100 Bioanalyzer (Agilent catalog no G2939BA). The sequencing was carried out using 454 

Illumina HiSeq 2500 by paired-end strategy at a minimum of 30X coverage. WES data of TCGA 455 

samples was available from GDC Legacy Portal9. Molecular subgroups were defined by 456 

investigating somatic single-nucleotide mutations in BRAF hotspot, RAS hotspot 457 
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and NF1 throughout Mutect40 algorithm and further annotated using Annovar41. The TN molecular 458 

subgroup denoted melanoma patients who did not harbour mutations in any of the three genes34.  459 

The UV mutational signature identification was performed using the SomaticSignatures 460 

Bioconductor package42. We used the Non-negative Matrix Factorization (NMF) algorithm43 to 461 

determine the consensus signatures among the 71 patients. At the moment of the analyses, we 462 

used the 21 signatures10 that were available and identified a consensus signature with more than 463 

0.8 cosine similarity.  For both BCH and TCGA cohorts, we classified samples as harboring an 464 

UV mutation signature (Cosmic Signature 7) based on the recommended criteria in which C>T 465 

transitions at dipyrimidine sites accounted for more than 60% or CC>TT mutations more than 5% 466 

of the total mutation burden9. 467 

 468 

Bisulfite conversion 469 

The isolated DNA (500 ng) from BCH-cohort was bisulfite-modified using the EZ DNA 470 

Methylation Kit (Zymo Research catalog no #ZD5004) following the manufacturer’s instructions 471 

for Illumina Infinium 450K beadchip assay. Modified DNA was stored at -20°C when short intervals 472 

were required between bisulfite conversion and further processing, and at -80°C for long-term 473 

storage. 474 

 475 

450K DNA methylome-wide array and analysis 476 

The 450K data of BCH were generated in-house, and those of TCGA were downloaded 477 

from the GDC Legacy Portal9. For BCH, bisulfite converted DNA samples were profiled using 478 

450K (Illumina catalog no WG-314-1003) and a well-established workflow optimized at the IARC 479 

Epigenomics and Mechanisms Branch for high-throughput analyses through an automated 480 

robotic system (Freedom EVO 150 by Teca) that can process the chips with minimal human error. 481 

Chips are scanned using Illumina iScan to produce two-color raw data files (.idat format). Sample 482 

allocation to the arrays was based on a semi-randomization design that ensures minimum 483 
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confounding by technical variation and minimizes the masking of biological covariates of interest 484 

by batch effects. 485 

For the bioinformatics pre-processing, IDAT files from both cohorts were imported and 486 

processed using R software. Quality-control graphs and bimodal distributions for each dataset 487 

are shown in Supplementary Fig. 4-5. We excluded cross-reactive probes and XY chromosomes, 488 

leaving a total of 459,761, 459,770 and 459,768 probes for the analysis in BCH-Cutaneous, BCH-489 

Acral and TCGA cohort, respectively. The data were further normalized using the FunNorm 490 

function of the Bioconductor Minfi package44 (Supplementary Fig. 4), that was shown to perform 491 

equally good or outperform existing normalization methods45. Inferred beta values were used to 492 

predict sex as a quality-control step using the Minfi function getSex. All samples were correctly 493 

predicted. The DNA methylation level β-values were logit transformed to M-values to map the 494 

range (0,1) to (-inf,+inf) as it is more suitable for running regressions. Surrogate variable analysis 495 

(SVA) was performed on the methylome data to correct for potential batch effects, to adjust for 496 

differences in cell type composition as a reference-free method46, and to adjust for latent 497 

variables, a choice validated by the findings of our benchmarking47. SVA also increases statistical 498 

power by removing (unwanted) variability through aggregating information at the data level and 499 

constraining the data’s variability to the phenotype of interest48.  500 

For the statistical analysis, we used robust linear regression (robust to outliers) to test four 501 

statistical models in the discovery cohort 1 (BCH), including one crude and three adjusted models, 502 

comparing the DNA methylome of UV-mutant versus non UV-mutant cutaneous melanoma 503 

patients (Supplementary Fig, 5-6): 1- Crude Model (Supplementary Data 2); 2- Adjusted Model 1 504 

adjusted for sex (Supplementary Data 3); 3- Adjusted Model 2, adjusted for sex + age at diagnosis 505 

(Supplementary Data 4); and 4- Adjusted Model 3, adjusted for sex + age at diagnosis + tumor 506 

type (primary or metastasis) (Supplementary Data 5). Supplementary Fig. 5 shows quantile-507 

quantile (Q-Q) plots of −log10P values, which deviate from their expected values under the null 508 

hypothesis across all models. Although the adjusted models yielded a larger number of significant 509 
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findings relative to the crude model (Supplementary Fig. 6), we preferred to take a conservative 510 

approach and focus our analysis on the crude model, especially that it showed the least genomic 511 

inflation and risk of false positives, with a lambda of 1.20 (i.e. approaching to 1.0 being the no 512 

inflation limit) (Supplementary Fig. 5).  Moreover, the predominant proportion of significant 513 

findings in the crude model was actually common with any of the adjusted models (Supplementary 514 

Fig. 6b). We also compared for each model, two approaches of methylome-wide analysis: the 515 

Differentially Methylated CpG Probes (DMPs), analysing individual CpGs using the Bioconductor 516 

limma package49, and the DMRs, analysing regions of genomically proximal CpGs using the 517 

Bioconductor DMRcate50 package with the default proximity-based criteria (± 1000 base pairs). 518 

At least 90% of DMP-based genes overlapped with those derived from DMRs across all models 519 

(Supplementary Fig. 6a). For this reason and because DMR analysis represents a dimension 520 

reduction approach with higher statistical power than DMP analysis, we focused downstream 521 

analyses in BCH and TCGA data onto the DMR approach applied to the crude model. This 522 

pipeline was equally applied to the DNA methylome comparison between non UV-mutant acral 523 

and non UV-mutant cutaneous melanomas. Statistically significant DMPs and DMRs were defined 524 

as those with FDR-adjusted P value < 0.05.  525 

We complemented the cohort-specific analysis by a meta-analysis across the BCH and 526 

TCGA cohorts comparing UV-mutant versus non UV-mutant cutaneous melanoma patients. We 527 

used the Metal tool51 and the Dmrff package in R to perform DMR fixed effects inverse variance 528 

weighted meta-analysis52, using the crude model as prioritized in the cohort-specific analysis. The 529 

meta-analysis lambda value was 1.16, showing low inflation. Statistically significant DMRs were 530 

defined as those with FDR-adjusted P value < 0.05. Due to the larger number of hits expected 531 

with the increased statistical power afforded by the meta-analyses, we also reported the more 532 

stringent Bonferroni-adjusted p values, especially considering the higher likelihood of false 533 

positivity due to clinicopathological, ethnic and methodological differences between meta-534 

analysed BCH and TCGA. 535 
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In addition to generating DMPs and DMRs, methylation data from BCH and TCGA 536 

samples were further investigated using Partial Least Squares Discriminant Analysis (PLS-DA)53. 537 

This approach performs classification of samples using partial least squares regression of the 538 

categorical outcome Y (cancer subtype) on the predictor variables (DNA methylation). PLS-DA is 539 

a clustering technique that allows the quantification of the discrimination relevance of a given 540 

variable (CpG) and to predict the phenotype of new samples (independent of DMPs or DMRs). 541 

This method is especially suited to deal with a much larger number of variables than samples, as 542 

in next-generation microarray and sequencing data, and we aided this method further by a filtering 543 

step using median absolute deviation (MAD)54. We selected the 100 most variable CpGs and 544 

applied PLS-DA on the methylation matrix on this subset of sites to assess the discriminative 545 

potential of the DNA methylome between UV-mutant and non UV-mutant cutaneous melanomas 546 

(as well as acral melanomas in the case of BCH samples).  547 

 548 

Pyrosequencing methylation analysis 549 

For the quantitative measurement of DNA methylation levels in individual CpG sites of the 550 

TAPBP (7 CpGs) gene (Supplementary Data 22), we pyrosequenced the bisulfite converted DNA 551 

using the PyroMark Kit (Qiagen catalog no 978703) as per the manufacturer’s instruction. Briefly, 552 

DNA was immobilized onto streptavidin-coated beads in binding buffer for 10 min. The biotin-553 

labeled PCR template was isolated and denaturated using the pyrosequencing vacuum prep tool 554 

and incubated with 0.4 µM sequencing primer in annealing buffer (20 mM Tris-acetate, 2 mM 555 

MgAc2; pH 7.6). The reaction was incubated at 80°C for 2 min and cooled down to room 556 

temperature for 20 min to allow sequencing primer annealing. The methylation levels at the target 557 

CpGs were evaluated by converting the resulting pyrograms to numerical values for peak heights 558 

and expressed as the average of all patients for a given CpG site analyzed.  559 

 560 

RNA expression data and analysis 561 
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Transcriptome data, measured by RNA sequencing (RNAseq), were downloaded from 562 

TCGA-SKCM project9 and normalized with DESeq package55. As with the DNA methylation data, 563 

the normalized RNAseq data was first filtered by MAD for the 100 most variable transcripts and 564 

then analysed by PLS-DA to assess the discriminative potential of the transcriptome between UV-565 

mutant and non UV-mutant cutaneous melanomas. We used quanTiseq package56 to estimate 566 

the fractions of ten immune cell types using the RNAseq from TCGA-SKCM project9, comparing 567 

UV and non UV-mutant melanoma patients. Then Mann-Whitney U Test was performed to 568 

compare the two conditions as this non-parametric test is robust to outliers, which were detected 569 

in some data points of the various cell types. 570 

 571 

Gene ontology and pathway analysis 572 

Gene ontology and pathway analysis were performed using the Jensen Disease ontology 573 

and KEGG pathway databases available on Enrich-r website57,58 574 

(https://maayanlab.cloud/Enrichr). Given that genes with larger numbers of probes are more likely 575 

to have significantly differentially methylated CpGs, potentially biasing gene set analysis, we 576 

implemented the gometh functionof the missMethyl package59 in R to adjust for the number of 577 

CpGs per gene, which ranges on the 450K array from 1 to 1,299 CpGs.  578 

 579 

Cross-OMICs and integrative analysis 580 

Regarding eQTMs, we applied Pearson correlation between RNA expression and DNA 581 

methylation data of the 169 genes that are common between BCH and TCGA DMRs, while limiting 582 

the analysis of a given gene to its constituent CpGs.  583 

For the integrated methylome-transcriptome analysis, we filtered each of the 450K and 584 

RNAseq datasets by MAD and applied PLS-DA independently to each OMICs, as described in 585 

previous sections. Next, we applied sparse PLS-DA60 that uses LASSO61 penalization technique 586 

to select the 25 most informative CpGs and transcript probes in each dataset (Supplementary 587 
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Data 23). We then applied an integrative analysis on the subsets of methylation and 588 

transcriptomic data, together with UV exposure outcome. We used the DIABLO method to gain a 589 

better understanding of the interplay between the different levels of data that are measured62. All 590 

these analyses were done using mixOmics R package63. 591 

For the prediction of multi-OMICs driver score, genome, transcriptome and DNA 592 

methylome data were downloaded from TCGA-SKCM (473 cases)9.  Then, we calculated for each 593 

gene: [CNV: Copy Number Variation], being the number of tumors affected by a deep insertion (≥ 594 

+2) or a deep deletion (≤ -2), and this number was divided by the maximum CNV value obtained 595 

across the analysed genes in order to generate the CNV score; [MUT: Mutation], being the 596 

number of tumors affected by at least one single nucleotide alteration, and this number was 597 

divided by the maximum MUT value obtained across the analysed genes in order to generate the 598 

MUT score; [EXP: Expression], being the number of UV-mutant cases presenting variations in 599 

RNA expression (|logFC| >2) relative to non UV-mutant patients, and this number was divided by 600 

the maximum EXP value obtained across the analysed genes in order to generate the EXP score; 601 

and [METH: Methylation], being the number of UV-mutant cases presenting variations in 602 

methylation (|delta betas| > 0.1) relative to non UV-mutant patients, and this number was divided 603 

by the maximum METH value obtained across the analysed genes in order to generate the METH 604 

score. The driver score for each gene was then calculated as the sum of these four proportions, 605 

representing a derivation of our recently reported cancer driver score17 by additionally including 606 

DNA methylation data on top of genomic and transcriptomic data. 607 

 608 

Power estimates 609 

The OMIC with the largest dimension (i.e. involving an agnostic approach with a multitude 610 

of statistical tests) would require the largest number of samples analysed to maintain a high 611 

statistical power. In this work, it would be the DNA methylome (~450,000 tests) followed by the 612 

transcriptome (~20,000 tests). Although WGS has a larger dimension than either, it is not being 613 
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used agnostically in this work, but rather to screen for specific mutational signatures or mutated 614 

genes known to be genetically altered in melanoma. Accordingly, statistical power is estimated 615 

based on the methylome as such: the overall mean standard deviation (SD) of methylation probes 616 

in the BCH or TCGA data is 0.11 (for methylation values ranging 0-1). Given an effect size ≥ 10% 617 

methylation difference (a threshold used in our prioritization filters as reported in Supplementary 618 

Fig. 1a-b and Supplementary Fig 2a) and based on an alpha of 0.05, we will have >80% power 619 

with at least 20 exposed cases and 20 controls. Our sample size is larger and encompasses 21 620 

UV-mutant cutaneous and 91 non UV-mutant cutaneous melanomas from BCH and TCGA. In 621 

addition to single OMIC analysis, we performed integrative OMICs analysis, which can depict 622 

small effects shared between OMICs and not detected in the individual analyses and, hence, 623 

could be performed on smaller sample sizes than single-OMIC analysis. A recent study also 624 

proposes a joint power method for all OMICs being integrated64; however, we preferred to 625 

estimate the power based on the OMICs with the largest dimension as a more conservative 626 

approach. Statistical power was further enhanced by implementing dimension reduction and SVA 627 

approaches (as described in the 450K analysis), and the false positive likelihood was reduced by 628 

monitory and correcting for potential inflation, by adjusting for multiple-testing, and by replication 629 

of findings in two independent cohorts as well as by two different techniques (array- and 630 

pyrosequencing-based). 631 

 632 

Other statistical analyses 633 

Enrichment analyses was done using Chi-Square test or, when sample sizes were small, 634 

Fisher’s exact test as proposed by R. For Kaplan-Meier melanoma-specific survival analyses, 635 

methylation data were dichotomized using the mean methylation level as cut-off, and log-rank 636 

testing was used to evaluate differences between curves65. The various plots in the manuscript 637 

were generated using ggplot2 package66, except for the heatmaps, which were generated using 638 
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Heatmap plus package. All analyses were performed on R. P Values ≤ 0.05 were considered 639 

statistically significant. Adjustment for multiple testing was based on FDR < 0.05.  640 

 641 

Systematic literature search 642 

We performed a systematic literature search on PubMed to select papers published until 643 

May 2021 that analyzed DNA methylome-wide data in clinical melanoma samples. To this end, 644 

we used the following syntax: ((melanoma) OR (melanomas)) AND ((Global DNA methylation) 645 

OR (methylome) OR (methylome-wide) OR (DNA methylation)). In total, we found 867 studies of 646 

which 20 (Supplementary Data 1) were included in our analysis since they covered methylome-647 

wide profiling rather than targeted DNA methylation assays, and they were also conducted on 648 

clinical samples rather than cell lines or animal models. 649 

 650 

Data Availability 651 

The 450K data generated in this study have been deposited in the GE0 database under 652 

accession code GSE202750 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE202750]. 653 

The WGS data are available in the ICGC database [https://dcc.icgc.org/projects/SKCA-BR]. The 654 

450K, RNAseq and WES data on melanoma samples from TCGA were downloaded from the 655 

GDC Legacy Portal [https://portal.gdc.cancer.gov/legacy-archive/search/f] and cBioPortal  656 

[https://www.cbioportal.org/datasets].  657 

 658 

Code Availability 659 

Bioinformatics pipelines used in this study are available in  660 

[https://zenodo.org/record/6530343#.Ynuzki-tFTY]67 under the DOI number: 661 

10.5281/zenodo.6530343.  662 
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Table 1: Clinicopathological characteristics of the BCH-cutaneous 
melanoma patients, TCGA-cutaneous melanoma patients and 
BCH-acral melanoma patients profiled with the DNA methylation 
array.  

 
*Variables statistically different between BCH-cutaneous and 
TCGA-cutaneous melanoma patients using two-sided Chi-square 
test. §Variables statistically different between BCH-cutaneous and 
BCH-acral melanoma patients using Chi-square test. *, §p< 0.05, **, 

§§p< 0.01 and ***, §§§p< 0.001.   
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Figure 1: Study design, resources and methodology. A major aim (steps 1-2) is the 
discovery and validation of genome-wide methylation alterations associated with the UV 
mutational signature in cutaneous melanoma, based on two independent cohorts. 
Another major aim (step 3) is assessing the discriminative potential of the DNA 
methylome versus transcriptome versus integrated methylome-transcriptome in 
differentiating between UV-mutant and non UV-mutant cutaneous melanomas. The 
integrative OMICs approach is expanded to include small nucleotide variants (SNVs) and 
copy number variants (CNVs) in order to assess cancer driver potential of prioritized 
differentially methylated genes. This is complemented by step 4, which investigates 
whether the DNA methylome could capture pathological and/or UV-related differences 
between major melanoma types predominantly associated with UV exposure (cutaneous 
melanoma) and those not (acral melanoma). 
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Figure 2: Cross genome-methylome analysis of UV mutation signatures in cutaneous 
melanoma patients from BCH and TCGA cohorts. a)  Kaplan–Meier survival curves of 
melanoma patients by UV signature status in BCH (n= 50) and TCGA (n= 52). The P-
values were derived by log-rank test. Also shown are the DMR distributions from the crude 
model relative to chromosomal location (b), genomic regulatory regions (c), and CpG 
density regions (d) in both BCH (n=54) and TCGA (n=58). Enrichment analysis of hyper- 
and hypo-methylated DMRs relative to the 450K reference set in (c) and (d) was done 
using two-sided Chi-square test. ***p< 0.001.   
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Figure 3: The DNA methylome marks UV exposure and associated BRAF/RAS/NF1 
mutations, with effect on immunomodulation. a) Hierarchical clustering of cutaneous 
melanoma patients in BCH and TCGA based on methylation levels of 4,721 and 793 
CpGs, respectively, as derived from Supplementary Fig. 1a. Enrichment analysis for non 
UV-mutant patients in clusters C1-C4 was performed using two-sided Chi-square test 
while delimiting the cluster boundaries by the limits statistically specified by Euclidean 
distance. b) Proportions of BRAF, NF1, RAS and TN groups in UV-mutant and non UV-
mutant melanomas. P-values were derived by two-sided Fisher’s exact test. c) Common 
KEGG pathways between BCH and TCGA of genes differentially methylated between 
UV-mutant and non UV-mutant cutaneous melanoma patients, as derived from the 
prioritized CpGs in Supplementary Fig. 1a. Solid lines around the pathways’ names 
indicate those with FDR < 0.05 in BCH and/or TCGA; whereas, dashed lines indicate 
those with p < 0.05. The percentage represents the average effect size across the CpGs 
of a given gene. Genes written in black are common between BCH and TCGA; whereas, 
green ones were found only in BCH and purple ones only in TCGA. †Pathways significant 
after adjustment for the number of CpGs associated with each gene. P-value was 
delivered from two-sided Fisher exact test. d) Immune cell composition inferred from RNA 
sequencing data comparing UV-mutant (n= 47) and non UV-mutant (n= 11) cutaneous 
melanoma patients from TCGA. Box center lines, bound of the box, and whiskers indicate 
medians, first and third quantiles, and minimum and maximum values within 1.5xIQR 
(interquartile range) of the box limits, respectively. Each data point in the box plot 
represents the samples. *p < 0.05, by two-sided Mann-Whitney U Test. 
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Figure 4: UV-related DNA methylome-wide alterations common between BCH and TCGA 
are prognostic for survival in cutaneous melanoma patients. a) Venn diagrams showing 
that DMR-derived 169 genes or 458 CpGs are common between BCH and TCGA, based 
on the crude model. b) DMR fixed effects inverse variance-weighted meta-analysis of 
BCH and TCGA, and comparison with the cohort-specific analysis. c) Kaplan-Meier 
survival of melanoma patients in relation to methylation levels of cg18930100 (TAPBP) 
measured in the target tumors derived from BCH and TCGA. Patients were categorized 
into low- and high-methylation groups depending on whether the methylation value of a 
given CpG is lower or higher, respectively, than the mean methylation across the samples 
profiled for that CpG. P-values were derived by two-sided log-rank test. d) DNA 
methylation profiles of cg18930100 (TAPBP) that is associated with melanoma-specific 
survival, showing differential methylation between UV-mutant (n= 44 and 47 in BCH and 
TCGA, respectively) and non UV-mutant patients (n= 10 and 11 in BCH and TCGA, 
respectively). Data were expressed as the average values of each group (UV-mutant and 
non UV-mutant) for each single CpG with error bars indicating the 95% confidence interval 
(CI).  
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Figure 5: Validation, eQTM and multi-OMICs cancer driver analysis of UV methylome 
markers. a) Pearson correlation was used to measure linear relationships between DNA 
methylation (Beta values) and gene expression levels measured in the same samples for 
the 10 selected CpGs (filtration step described in Supplementary Fig. 1a), using the 
TCGA dataset (UV-mutant= 11 and non UV-mutant= 47). Box center lines, bound of the 
box, and whiskers indicate medians, first and third quantiles, and minimum and maximum 
values within 1.5xIQR (interquartile range) of the box limits, respectively. Each data point 
in the box plot represents the samples. The correlation r and P-values were calculated by 
the two-sided correlation test and are shown for each CpG. b) Multi-OMICs data 
integration from TCGA, encompassing copy number variation (CNV), expression (EXP), 
methylation (METH) and mutation (MUT), was performed in order to decipher the driver 
potential of the 12 prioritized genes (see Results) in cutaneous melanoma development 
following UV exposure. For each gene, scores of CNV, MUT, EXP, METH and multi-
OMICs driver are indicated in the table and plotted in the associated circular diagram. c) 
Validation of array-based DNA methylation by bisulfite pyrosequencing of the TAPBP 
gene in BCH samples (UV-mutant= 10 and non UV-mutant= 44). Data were expressed 
as the average values of each group (UV-mutant and non UV-mutant) for each single 
CpG with error bars indicating the 95% confidence interval. 
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Figure 6: Comparative maps of the DNA methylome and transcriptome of cutaneous and 
acral melanomas in relation to UV mutational signatures, with associated patient survival 
and biological pathways. a) PLS-DA modeling based on DNA methylome (left panel) or 
transcriptome (right panel) data derived from UV-mutant and non UV-mutant cutaneous 
melanoma from TCGA. b) Diablo integrative analysis method with LASSO penalization 
were applied on methylome and transcriptome data from TCGA to select the most 
informative CpGs and transcripts that could improve the classification of the UV-mutant 
and non UV-mutant cutaneous melanomas. c) Methylome matrices of acral (excluding 
the few UV-mutants), UV-mutant and non UV-mutant cutaneous melanomas based on 
the 100 most variables CpGs selected using median absolute deviation (MAD) and 
analysed with Partial Least Squares Discriminant Analysis (PLS-DA) in the BCH samples. 
d) Melanoma-specific survival comparing the three groups of melanoma patients: 
cutaneous UV-mutant, cutaneous non UV-mutant and acral non UV-mutant. P-value was 
delivered from log rank test. e) KEGG pathways of genes differentially methylated 
between acral versus cutaneous non UV-mutant melanomas in BCH, as derived from the 
prioritized CpGs in Supplementary Fig. 2a. Dashed lines around the pathways’ names 
indicate those with p < 0.05; none were FDR-significant. The percentage represents the 
average effect size across the CpGs of a given gene. †Pathways significant after 
adjustment for the number of CpGs associated with each gene. 
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