
Investigation of a SARS-CoV-2 outbreak in a Texas summer camp 1 

resulting from a single introduction 2 

Daniele M. Swetnam1, R. Elias. Alvarado2, Stephanea Sotcheff1, Brooke M. Mitchell3,4, Allan 3 

McConnell3, Rafael R.G. Machado3,4, Nehad Saada3, Florence P. Haseltine4, Sara Maknojia6, 4 

Anajane Smith5, Ping Ren7, Philip Keiser8, Scott C. Weaver3,4,9, Andrew Routh1,9,10 5 

 6 

Affiliations 7 

1) Department of Biochemistry and Molecular Biology, The University of Texas 8 

Medical Branch, Galveston, TX 77550, USA 9 

2) Department of Human Pathophysiology, The University of Texas Medical Branch, 10 

Galveston, TX 77550, USA 11 

3) Department of Microbiology and Immunology, The University of Texas Medical 12 

Branch, Galveston, TX 77550 13 

4) World Reference Center for Emerging Viruses and Arboviruses, The University of 14 

Texas Medical Branch, Galveston, TX  15 

5) North Texas Genome Center, University of Texas, Arlington  16 

6) Galveston County Health District 17 

7) Department of Pathology, The University of Texas Medical Branch, Galveston, TX 18 

77550 19 

8) Department of Internal Medicine- Infectious Disease, The University of Texas 20 

Medical Branch 21 

9) Institute for Human Infections and Immunity, University of Texas Medical Branch, 22 

Galveston, TX, USA 23 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2022. ; https://doi.org/10.1101/2022.05.29.22275277doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.05.29.22275277
http://creativecommons.org/licenses/by-nd/4.0/


10) Sealy Center for Structural Biology and Molecular Biophysics, The University of 24 

Texas Medical Branch, Galveston, TX 77550, USA25 

26 

Address for Correspondence 27 

Daniele Swetnam  28 

dmswetna@utmb.edu 29 

30 

Andrew Routh 31 

alrouth@utmb.edu 32 

33 

Abstract 34 

SARS-CoV-2 is the etiological agent responsible for the COVID-19 pandemic. It is estimated 35 

that only 10 aerosol-borne virus particles are sufficient to establish a secondary infection with 36 

SARS-CoV-2. However, the dispersal pattern of SARS-CoV-2 is highly variable and only 10–37 

20% of cases are responsible for up 80% of secondary infections. The heterogeneous nature of 38 

SARS-CoV-2 transmission suggests that super-spreader events play an important role in viral 39 

transmission. Super-spreader events occur when a single person is responsible for an unusually 40 

high number of secondary infections due to a combination of biological, environmental, and/or 41 

behavioral factors. While super-spreader events have been identified as a significant factor 42 

driving SARS-CoV-2 transmission, epidemiologic studies have consistently shown that 43 

44 

45 

46 

education settings do not play a major role in community transmission. However, an outbreak of 

SARS-CoV-2 was recently reported among 186 children (aged 10-17) and adults (aged 18 +) 

after attending an overnight summer camp in Texas in June 2021. To understand the 

transmission dynamics of the outbreak, RNA was isolated from 36 nasopharyngeal swabs 47 
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collected from patients that attended the camp and 19 control patients with no known connection 48 

to the outbreak. Genome sequencing on the Oxford Nanopore platform was performed using the 49 

ARTIC approaches for library preparation and bioinformatic analysis. SARS-CoV-2 amplicons 50 

were produced from all RNA samples and >70% of the viral genome was successfully 51 

reconstructed with >10X coverage for 46 samples. Phylogenetic methods were used to estimate 52 

the transmission history and suggested that the outbreak was the result of a single introduction. 53 

We also found evidence for secondary transmission from campers to the community. Together, 54 

these findings demonstrate that super-spreader events may occur during large gatherings of 55 

children.  56 
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Main Text 57 

The rapid spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the 58 

virus driving the Coronavirus disease 2019 (COVID-19) pandemic, is partly due to the highly 59 

infectious nature of the virus. Approximately 10 aerosol-borne virus particles are sufficient to 60 

establish a novel infection (1). However, the dispersal pattern (K) of SARS-CoV-2 is highly 61 

variable. Approximately 60–75% of infected patients do not transmit SARS-CoV-2 infection, 62 

and only 15% of cases are responsible for up to 80% of secondary infections (2). The 63 

heterogenoeus dispersal dynamics of SARS-CoV-2 suggest that super-spreader events play a 64 

major role in transmission dynamics.  65 

 Super-spreader events result in the transmission of SARS-CoV-2 from an infected 66 

individual to an unusually high number of persons due to some combination of environmental, 67 

biological and/or behavioral factors. Such events have been reported frequently, especially 68 

involving mass gatherings (reviewed (3)). Given the well-documented role of super-spreader 69 

events in the transmission of SARS-CoV-2, there is considerable concern over the risk of super-70 

spreader events occurring in educational settings among children, their caregivers, and staff. 71 

Studies in Europe (4–11), North America (12–15), and Oman (16) have repeatedly shown that 72 

educational settings are not major drivers of SARS-CoV-2 transmission in the community, 73 

despite the dense populations and prolonged exposure of children and adolescents in classrooms. 74 

Even when infected, children usually develop milder disease (17) and emit fewer virus particles 75 

than adults (18). Outbreaks among schools report low secondary attack rates (4,19) with child-to-76 

child transmission, which is significantly lower than adult-to-adult and adult-to-child 77 

transmission (19–22). However, several studies have noted an important distinction between 78 

transmission among young children (age 6-12) and adolescents (23,24) with reports of larger and 79 
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more frequent outbreaks among secondary schools (25). Rather, household transmission appears 80 

to be a more important driver of SARS-CoV-2 spread (14,22,26). 81 

While educational settings have not been a major source of SARS-CoV-2 transmission, 82 

large outbreaks among children and adolescents have been reported in several summer camps 83 

throughout the United States of America (27–29), with primary attack rates as high as 46% (28) 84 

in Georgia and even 76% in Wisconsin (29). However, some reports have demonstrated success 85 

preventing and event halting the transmission of SARS-CoV-2 with multi-layered mitigation 86 

approaches, including but not limited to vaccination, pre-arrival quarantine, pre-post arrival 87 

testing, masking, and social distancing (30–32). However, studies investigating SARS-CoV-2 88 

outbreaks in summer camps have relied on diagnostic and epidemiological methods alone and 89 

have lacked phylogenetic approaches that could provide insights into the patterns of viral 90 

transmission. 91 

Such an outbreak occurred at an overnight summer camp in Texas during June 2021. 92 

Four hundred and fifty-one individuals attended including 364 youths (ages 10-17) and 87 adults 93 

(age 18 or older). At the conclusion of the camp, attendees began to show symptoms and tested 94 

positive for SARS-CoV-2 by RT-PCR. An investigation of the outbreak led to the identification 95 

of 186 SARS-CoV-2 positive cases (33). The vaccination rate among attendees was low (19% 96 

fully vaccinated and 6% partially vaccinated), pre-arrival testing was not required for camp 97 

attendance, and no post-arrival testing was conducted. The primary attack rate within the camp 98 

was 41% (48% among unvaccinated attendees and 20% among vaccinated), which is consistent 99 

with outbreaks reported in overnight summer camps in Georgia (28). 100 

Notably, the Texas outbreak occurred at the beginning of the Delta variant wave in the 101 

US, while cases were still low in the community but rapidly increasing. To better understand the 102 
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pattern of viral transmission, we obtained 55 SARS-CoV-2 positive nasopharyngeal swabs 103 

collected by the University of Texas Medical Branch, Galveston, TX from patients who attended 104 

the summer camp (36) as well as from unrelated community members who tested positive during 105 

the same time period (17). RNA was extracted from the swabs as previously described (34) and 106 

used for deep sequencing with the well-defined ARTIC nanopore approach and associated 107 

bioinformatic pipeline (34). SARS-CoV-2 reads were detected in all samples, and 70% genome 108 

coverage greater than 10X was achieved for 43 samples (31 camp attendees and 13 Galveston 109 

County residents). The results were aligned with 3 additional genomes that were isolated from an 110 

Arlington, TX family that tested positive following contact with asymptomatic attendees after 111 

the camp concluded. The Arlington genomes were sequenced using similar methods (35). All 112 

genomes are available on GSAID EPI_ISL_12486186-213 (Table 1).  113 

 The evolutionary history of the genomes was inferred using a maximum likelihood 114 

approach implemented with IQ-Tree (36) (Figure 1A). The phylogenetic tree demonstrated that 115 

all the SARS-CoV-2 genomes collected from camp attendees shared a single common ancestor, 116 

including the genomes collected from the family from Arlington, TX that became sick after 117 

contact with camp attendees. This suggests that the outbreak was initiated from a single infected 118 

individual. Genomes from campers that shared suspected risk factors, including bus or cabin 119 

assignment, did not cluster together. Similarly, the genomes collected from siblings did not 120 

appear to cluster together, suggesting that transmission occurred while the youths were at the 121 

camp as opposed to when they returned home. However, these negative results should be 122 

interpreted with caution because there was insufficient diversity to resolve all branches within 123 

the phylogeny. The lack of diversity also prevented generation of a transmission tree, which may 124 

have provided additional epidemiologically relevant insights. This was unsurprising, given the 125 
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short duration of the outbreak (5 days) relative to the generation time (delta variant mean=4.7 126 

days, 95% CI=4.1-5.6 days)(37). Interestingly, several genomes from patients that did not attend 127 

the camp clustered among the campers, suggesting that transmission occurred from campers to 128 

the community.  129 

To further investigate the role of the camp outbreak in community transmission, all 130 

complete genomes published on GISAID collected in Galveston County and Harris County, 131 

Texas (4085 genomes in total) were compared to the genomes collected from the campers. 132 

Phylogenetic analysis using the Nextstrain platform (38) identified 29 genomes that clustered 133 

among the camper’s genomes that were collected after the camp concluded between June 28, 134 

2021 and July 30, 2021, suggesting that community transmission originating from the camp 135 

outbreak continued at least until the end of July (Figure 1B-C).  136 

It is essential to understand the mechanisms that support super-spreader events, such as 137 

the Texas summer camp outbreak of 2021, and the risk factors associated with them. Taken 138 

together, our study demonstrates that the Texas camp outbreak was likely the result of a single 139 

introduction that spread in the camp environment and eventually into the community, creating a 140 

chain of transmission that persisted until at least July 30, 2021. This study also highlights the 141 

risks associated with overnight summer camps that do not employ adequate prevention 142 

strategies, such vaccination, pre- and post-arrival testing, etc. Furthermore, this study is the first 143 

of our knowledge to combine epidemiological, genomic, and phylogenetic approaches to 144 

investigate an outbreak at an overnight camp. It illustrates the importance of multidisciplinary 145 

collaborations between public health specialists and evolutionary virologist in responding to this 146 

and future pandemics.  147 

148 
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Figure Captions: 149 

Figure 1. Evolutionary history of genomes collected from camp attendees. The genomes 150 

collected from camp attendees with at least 70% genomic coverage were aligned. (A) The 151 

evolutionary history was inferred with IQ-Tree using the Maximum likelihood method based on 152 

the general time reversible model. A discrete gamma distribution was used to model variation 153 

among sites and allow for invariable sites. The consensus tree following 1000 UF bootstraps is 154 

shown. Genomes collected from camp attendees are shown in red and genomes collected from 155 

community members are shown in black. Bootstrap values greater than 70 are provided. (B) All 156 

complete genomes (n=4085) available on GSAID collected in Harris and Galveston Counties 157 

between May and July were combined with the genomes sequenced in this study. The 158 

evolutionary history was inferred using the Nextstrain platform, which using Augar to preform 159 

bioinformatic analysis including aligning and filtering the genomes, generating a phylogeny with 160 

IQ-Tree, and removing polytomies, inferring node dates, and pruning branches with TimeTree. 161 

The phylogeny was visualized with Auspice and Figtree. The branches of the phylogeny were 162 

colored to indicate clade membership. The cluster containing genomes collected from campers is 163 

indicated by the black circle and expanded (C). Genomes isolated from campers and community 164 

members are depicted in red and black, respectively. Genomes obtained from GSAID are 165 

depicted in blue.  166 

167 

168 
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Table 1. Sequence Metadata. All relevant metadata are provided including sample names, dates 169 

the samples were collected, type of patients (camper or community member) and the GSAID 170 

accession number. 171 

 172 

Sample Name 
Collection 

Date Patient Type Accession Number 

MicroGNL-1131 6/28/21 Camper EPI_ISL_12486192 

MicroGNL-1134 6/28/21 Community Member EPI_ISL_12486173   

MicroGNL-1136 6/28/21 Camper  EPI_ISL_12486193 

MicroGNL-1138 6/28/21 Camper EPI_ISL_12486179  

MicroGNL-1137 6/29/21 Community Member EPI_ISL_12740992 

MicroGNL-1139 6/28/21 Camper EPI_ISL_12486194  

MicroGNL-1140 6/28/21 Community Member EPI_ISL_12486174  

MicroGNL-1149 6/29/21 Camper EPI_ISL_12486180  

MicroGNL-1150 6/29/21 Camper EPI_ISL_12486181  

MicroGNL-1151 6/29/21 Camper EPI_ISL_12486182  

MicroGNL-1152 6/29/21 Camper EPI_ISL_12486183  

MicroGNL-1153 6/28/21 Community Member EPI_ISL_12486168 

MicroGNL-1154 6/29/21 Community Member EPI_ISL_12486184  

MicroGNL-1155 6/28/21 Camper EPI_ISL_12486195 

MicroGNL-1156 6/29/21 Camper EPI_ISL_12486185  

MicroGNL-1157 6/29/21 Camper EPI_ISL_12486186 

MicroGNL-1160 6/29/21 Camper  EPI_ISL_12486187 

MicroGNL-1161 6/29/21 Community Member  EPI_ISL_12486172 

MicroGNL-1163 6/29/21 Community Member EPI_ISL_12486175  

MicroGNL-1164 6/30/21 Camper EPI_ISL_12486196 

MicroGNL-1166 6/30/21 Community Member EPI_ISL_12486176  

MicroGNL-1167 6/29/21 Camper EPI_ISL_12486197 

MicroGNL-1168 6/29/21 Camper EPI_ISL_12486198 

MicroGNL-1170 6/30/21 Camper EPI_ISL_12486199 

MicroGNL-1171 6/29/21 Camper EPI_ISL_12486188 

MicroGNL-1172 6/30/21 Camper EPI_ISL_12486200  

MicroGNL-1173 6/30/21 Community Member EPI_ISL_12486177 

MicroGNL-1174 6/29/21 Camper EPI_ISL_12486189 

MicroGNL-1175 6/29/21 Camper EPI_ISL_12486201  

MicroGNL-1180 6/30/21 Camper EPI_ISL_12486202  

MicroGNL-1182 6/30/21 Camper EPI_ISL_12486203  
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MicroGNL-1185 6/30/21 Camper EPI_ISL_12486204  

MicroGNL-1188 7/3/21 Camper EPI_ISL_12486190 

MicroGNL-1189 7/4/21 Community Member EPI_ISL_12486178 

MicroGNL-1192 7/2/21 Camper EPI_ISL_12486205 

MicroGNL-1199 7/4/21 Camper EPI_ISL_12486206  

MicroGNL-1201 7/4/21 Camper EPI_ISL_12486207  

MicroGNL-1204 7/6/21 Community Member EPI_ISL_12486169  

MicroGNL-1205 7/6/21 Camper EPI_ISL_12486191 

MicroGNL-1211 7/6/21 Community Member EPI_ISL_12486170  

MicroGNL-1213 7/5/21 Camper EPI_ISL_12486208  

MicroGNL-1217 7/7/21 Community Member EPI_ISL_12486171  

MicroGNL-1219 7/7/21 Camper EPI_ISL_12486209  

MicroGNL-1223 7/7/21 Camper EPI_ISL_12486210  

NTD_14603 7/7/21 Community Member EPI_ISL_12486211 

NTW_14608 7/7/21 Community Member EPI_ISL_12486212 

NTF_14607 7/7/21 Community Member EPI_ISL_12486213 

NTS_14602 7/7/21 Community Member EPI_ISL_12740993 

 173 

 174 
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