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Abstract

Multiple clinical phenotypes have been proposed for COVID-19, but few have stemmed from data-driven 

methods. We aimed to identify distinct phenotypes in patients admitted with COVID-19 using cluster 

analysis, and compare their respective characteristics and clinical outcomes.

We analyzed the data from 547 patients hospitalized with COVID-19 in a Canadian academic hospital 

from January 1, 2020, to January 30, 2021. We compared four clustering algorithms: K-means, PAM 

(partition around medoids), divisive and agglomerative hierarchical clustering. We used imaging data and 

34 clinical variables collected within the first 24 hours of admission to train our algorithm. We then 

conducted survival analysis to compare clinical outcomes across phenotypes and trained a classification 

and regression tree (CART) to facilitate phenotype interpretation and phenotype assignment. 

We identified three clinical phenotypes, with 61 patients (17%) in Cluster 1, 221 patients (40%) in 

Cluster 2 and 235 (43%) in Cluster 3. Cluster 2 and Cluster 3 were both characterized by a low-risk 

respiratory and inflammatory profile, but differed in terms of demographics. Compared with Cluster 3, 

Cluster 2 comprised older patients with more comorbidities. Cluster 1 represented the group with the 

most severe clinical presentation, as inferred by the highest rate of hypoxemia and the highest radiological 

burden. Mortality, mechanical ventilation and ICU admission risk were all significantly different across 

phenotypes.

We conducted a phenotypic analysis of adult inpatients with COVID-19 and identified three distinct 

phenotypes associated with different clinical outcomes. Further research is needed to determine how to 

properly incorporate those phenotypes in the management of patients with COVID-19.
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Abbreviations

APN – average proportion of non-overlap 

AD – average distance

ADM – average distance between means 

CART – classification and regression tree

CCI – Charlson Comorbidity Index 

CXR – chest radiographs

FAMD – factor analysis of mixed data

FOM – figure of merit

ICU – intensive care unit

MCI – Medicines Comorbidity Index 

MV – mechanical ventilation

NLR – neutrophil-to-lymphocyte ratio

PAM – partition around medoids

PCR – polymerase chain reaction

POLST – Physician Orders for Life-Sustaining Treatment

VIA – variable importance analysis
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Introduction

Patients affected with coronavirus disease 2019 (COVID-19) have shown significant clinical 

heterogeneity and variability in disease trajectory (1). Clinical phenotypes are homogeneous subgroups of 

a disease presenting distinct clinical features (2). Well-established phenotypes are potentially useful at the 

bedside for appropriately classifying patients into meaningful categories, predicting disease course, and 

personalizing treatments.

Since the first case description of COVID-19, various phenotypes have emerged, each using various 

layers of clinical information. Two phenotypes have been described based on lung mechanics and 

radiological findings (3,4), others have focused on disease complications—as such, a hypercoagulable 

phenotype has been observed, prompting recommendations for intensified antithrombotic therapy (5–7). 

The majority of those phenotypes failed to fully describe the complexity of the disease as they focused on 

characterizing one dimension of the clinical presentation. Being mostly derived from clinical observation, 

or based on outcomes that can only occur in the future is however potentially less relevant in a 

prospective and real-world context. Thus, the reliability and the methodology of those first phenotyping 

efforts have been put into question (8,9). Increasing amounts of medical data allow conducting 

phenotypic analyses using data-driven techniques. Those methods are hypothesis-agnostic and solely rely 

on the assumption that clinical patterns lie within the data (10). Clustering is an unsupervised machine 

learning method used to identify homogeneous groups within a heterogeneous dataset. This method has 

been used to describe clinical phenotypes in other diseases such as asthma (11,12), COPD (13) and sepsis 

(14). 

The primary objective of this study was to identify COVID-19 cluster of phenotypes at patient 

presentation using multimodal real-world clinical data and medical imaging data (15). Our secondary 
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objectives were to assess the association of those phenotypes with three clinical outcomes: mechanical 

ventilation (MV), intensive care unit (ICU) admission and hospital mortality. Finally, we created a simple 

decision tree classifier allowing the interpretation and assignment of patients to one of the identified 

phenotypes.

Methods

Data sources

We used real-world data extracted from clinical source system comprising relevant clinical information 

from all COVID-19-related hospitalizations at the Centre for the Integration and Analysis of Medical 

Data (CITADEL) of the Centre Hospitalier de l’Université de Montréal (CHUM), a Canadian academic 

quaternary center. The analytical dataset contains de-identified data for over 1,100 patients hospitalized 

with COVID-19, including demographics, comorbidities, laboratory results, vital signs, drugs, medical 

procedures, frontal chest radiographs (CXR) and clinical outcomes. The raw data was managed using 

SQLite 3, and further data processing was conducted using Python version 3.7 and R version 4.0.3. We 

provided additional details regarding initial data processing. (see S1 text, supplementary methods). 

Study population

We included all unique adult hospitalizations (≥ 18 years of age) for COVID-19 from January 1, 2020, to 

January 30, 2021, for which a chest X-ray was available within 24 hours of admission. A COVID-19 

hospitalization episode was defined as a hospitalization within seven days of a positive SARS-CoV-2 

PCR result. The Institutional Review Board of the CHUM (Centre Hospitalier de l’Université de 

Montréal) approved the study and informed consent was waived because of its low risk and retrospective 

nature.
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Imaging Data Processing

Imaging data were obtained in the DICOM format, and frontal CXR (posteroanterior and anteroposterior) 

were processed, discarding lateral CXR. Lung opacities observed on CXR were manually annotated with 

bounding boxes by a board-certified radiologist using a bounding box annotation software (16). This 

annotation method is recognized by the Radiological Society of North America (RSNA) and is the 

annotation methodology of choice for all deep learning challenges involving image detection (17,18). 

Bounding boxes are rectangular or squared delimitations of the opacities found on a given chest 

radiograph reported with a scaled width and a scaled length. Hence, from the manual annotation, we 

derived the number of opacities and the total size of opacities as a relative percentage of the total surface 

of the image.

Variables Selection and Feature Engineering

From the analytical dataset, we extracted 160 candidate variables. We provided the list of those variables 

in the supplementary material (see S1 Table). For each of those variables, we exclusively used the first 

recorded value within the first 24 hours of admission. We then excluded 56 variables for which more than 

25% of observations were missing. The remaining missing variables were imputed using all available 

features except clinical outcomes (ICU admission, mechanical ventilation and death). We used 

classification and regression tree (CART) single mean imputation, a robust method against outliers, 

multicollinearity and skewed distributions that has the benefit of being simple to implement in a real-

world setting (19). We acknowledge that other imputation algorithms such as Expectation Maximization 

(EM) and Multiple Imputation (MI) have shown superior performance but the additional computational 

cost makes those approaches difficult to implement in a real-world setting (20). 

We then computed three more variables that have recently been associated with COVID-19 mortality: 

neutrophil-to-lymphocyte ratio (NLR) (21), the ratio of peripheral arterial oxygen saturation to the 

inspired fraction of oxygen (SpO2/FiO2) (22), and the shock index (heart rate/systolic blood pressure) 
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(23). We also computed the Medicines Comorbidity Index (MCI), a metric to assess multimorbidity that 

has shown similar epidemiological value to the Charlson Comorbidity Index (CCI) (24). We relied on the 

MCI instead of the CCI because comorbidities were not systematically recorded in our database, but 

home medications were (see S1 Table). MCI was computed at the time of study enrollment only using 

data that was available on presentation to mimic real-world setting. We summarized the final set of 

variables included for analysis with their respective subdomains of interest in Table 1. 

Table 1. Final set of variables and respective subdomains

Subdomain Clinical variable

Demographic Age, sex, comorbidities (MCI)

Hemodynamic SBP, DBP, HR, Shock index (HR/SBP), Anion Gap

Respiratory SpO2, SpO2/FiO2

Imaging Opacities number, Opacities size

Hematologic Neutrophils, Lymphocytes, NLR

Inflammatory/Thrombotic MPV, Temperature

Renal Creatinine, Sodium, Potassium, Bicarbonate

 

Despite receiving little attention, feature engineering in clustering efforts has shown to increase learning 

performance through dimensionality reduction (25). In the healthcare setting, aggregated variables such as 

the one included in our algorithm also enhances the stability of a learning model’s performance over time 

(26). In addition to the statistical advantages mentioned, feature engineering also allows for better 

interpretability, as aggregated variables are often clearer and more intuitive. Pre-processed variables do 

not impede the hypothesis-agnostic premise of unsupervised machine learning, as all these variables are 

directly derived from the features of the original dataset and no preferential weighting was conducted.

Data Preparation and Cluster Analysis
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Before applying clustering algorithms, we adequately processed our dataset, log-transforming skewed 

continuous variables (skewness > 0.5) and excluding highly correlated variables (correlation > 0.8). The 

then obtained principal components via factor analysis of mixed data (FAMD) (27) for all our 

observations. The excluded variables based on high correlation were the total white blood cell count 

(WBC), the Fraction of Inspired Oxygen (FiO2) and the heart rate (HR). Those three variables were 

respectively highly correlated with neutrophils, the SpO2/FiO2 ratio and the shock index. We provided 

additional details regarding the data preparation in the supplementary material (see S1 text).

We compared four clustering algorithms: K-means, PAM (partition around medoids), divisive and 

agglomerative hierarchical clustering. We used three internal validation metrics (connectivity, Dunn 

index, the average silhouette width) and four stability measures (average proportion of non-overlap 

(APN), the average distance (AD), the average distance between means (ADM), and the figure of merit 

(FOM)) to compare the algorithms. The optimal algorithm and the optimal number of clusters were then 

determined by rank aggregation of the ranked lists of each validation metric. We used the optCluster 

package, an R package facilitating the execution of the aforementioned analyses (28). 

Phenotypes Robustness: sensitivity analyses

We conducted a sensitivity analysis to assess whether the removal of imaging data altered the 

performance of the clustering algorithm. We first compared the clustering results given these two 

scenarios using the average silhouette width and the adjusted rand index (29), a measure of the similarity 

between two data clustering. We then assessed the number of patients that underwent phenotypic 

reclassification before and after the removal of imaging data in the clustering algorithm. In other words, 

we analyzed the characteristics of patients for which the cluster assignment differed after the removal of 

imaging data.

Statistical Analysis
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Clusters Interpretation

We assessed the difference in the distribution of features across identified clusters using the Chi-Square 

test for categorical variables, analysis of variance (ANOVA) and Kruskal–Wallis test for normally 

distributed and non-normally distributed continuous variables respectively. 

To facilitate the interpretation and clinical usability of the obtained clusters, we trained a simple decision 

tree using the CART with the clusters as predicted outcomes (30). We also determined the most critical 

variables to distinguish the clusters by conducting a variable importance analysis (VIA) (31). Details 

regarding VIA were provided in the supplementary material (see S1 text, S1 Figure). 

Clinical Outcomes Evaluation

We conducted survival analysis using Kaplan-Meier method to compare clinical outcomes according to 

clusters. We assessed three clinical outcomes: 7-day ICU admission, 7-day mechanical ventilation and 

30-day mortality. To reduce confounding bias, we specifically restricted clinical outcomes analysis to 

patients eligible for MV and ICU admission according to their Physician Orders for Life-Sustaining 

Treatment (POLST) form.

Results

Study Population

In total, 1,125 unique COVID-19 hospitalizations were screened. A total of 559 patients were excluded 

after removing readmissions (n = 36), patients without a CXR within 24 hours of admission (n = 523), 

and patients for which clinical data was missing (n = 19), leaving 547 patients for the cluster analysis (see 

Fig 1). We provided details regarding the characteristics of our study cohort (see Table 2). Our 

population was similar to other cohorts of patients hospitalized with COVID-19 in North America during 
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the first two waves, with a mean age of 69 years old, a relatively similar proportion of men and women, 

and an in-hospital mortality rate of 20% (32). 

Table 2. Baseline characteristics of the study population.

Characteristics Count (%) or Mean(SD) or Median [IQR]

N 547

Age (years) 66.56 (17.94)

Sex (male, %) 313 (57.2)

Laboratory results

Hemoglobin 127.23 (20.69)

Platelet 207.00 [157.00, 271.50]

WBC 6.80 [5.30,9.85]

Neutrophil count 5.01 [3.60,7.60]

Lymphocyte count 0.95 [0.62,1.35]

Monocytes count 0.63 (0.39)

Basophils count 0.01 (0.03)

Eosinophils count 0.05 (0.12)

VPM 9.89 (1.33)

VGM 89.90 [85.90,93.85]

NLR 5.25 [3.19,10.00]

Sodium 137.59 (5.05)

Potassium 4.00 (0.53)

Bicarbonate 24.95 (3.76)

Anion gap 11.05 (3.69)

Creatinine (µmol/L) 78.00 [63.00,105.00]

Vital Signs

FiO2 21.00 [21.00,28.00]

SpO2 95.00 [94.00,97.00]

SpO2/FiO2 447.62 [339.29,461.90]

Temperature 36.98 (0.51)

Systolic Blood Pressure 130.00 [116.00,144.50]

Diastolic Blood Pressure 75.00 [68.00, 82.00]

Heart Rate 92.2 (20.2)

Shock Index 0.69 [0.58,0.82]

Respiratory Rate 20.00 [20.00,24.00]

Home Medication

Medicines Comorbidity Index 2.77 (2.04)

Anticholesterolemic agents 183 (33.5)
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Antihypertensive agents 241 (44.1)

Bronchodilator agents 178 (32.5)

Diuretics 137 (25.0)

Factor Xa Inhibitors 50 ( 9.1)

Hypoglycemic agents 209 (38.2)

Platelet aggregation inhibitors 150 (27.4)

Imaging Data

Opacities Numbers (%)   

0 141 (25.8)

1 89 (16.3)

2 279 (51.0)

3 37 ( 6.8)

4 1 ( 0.2)

Opacities Size (surface area %) 7 [0.0,15]

Clinical outcomes

Length of Stay (days) 8.29 [3.48, 18.20]

Mechanical Ventilation 48 ( 8.8)

Wave (1st) 295 (53.9)

ICU admission 132 (24.1)

Death 113 (20.7)
Count (%) or Mean (SD) or Median [IQR]

Clinical Characteristics of Phenotypes 

Agglomerative hierarchical clustering was deemed the most robust clustering algorithm for our dataset. 

The optimal number of K clusters was K = 3 (see Fig 2), yielding the highest clustering performance as 

exhibited by the rank aggregation of seven internal validation measures (see S2 Figure, S2 Table). 

We summarized the characteristics regarding those clusters in Table 3. As determined through the VIA, 

the most important variables for discriminating clusters were age, the MCI, the SpO2/FiO2 ratio, opacities 

size, the neutrocyte-lymphocyte ratio, creatinine and the shock index (see Figures 3A-3B). 
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Table 3. Clinical characteristics stratified by clusters

Cluster 1 Cluster 2 Cluster 3 p-value

N (%) 61 (11%) 211 (39%) 275 (50%)

Age (years) 66.18 (15.01) 75.46 (12.54) 59.82 (19.10) <0.001

Sex (male) 26 (42.6) 123 (58.3) 164 (59.6) 0.695

Laboratory results

Hemoglobin 117.69 (21.57) 125.55 (20.83) 130.43 (20.35) <0.001

Platelet 244.00 [187.00, 
333.00]

195.00 [148.50, 
259.00]

207.00 [160.50, 
269.00]

0.004

WBC† 9.80 [6.90, 13.60] 6.70 [5.35, 9.80] 6.60 [4.90, 9.25] <0.001

Neutrophil count 8.70 [5.82, 12.63] 5.03 [3.76, 7.46] 4.63 [3.25, 6.92] <0.001

Lymphocyte count 0.60 [0.35, 0.98] 0.90 [0.60, 1.30] 1.06 [0.76, 1.54] <0.001

Monocytes count 0.51 (0.31) 0.68 (0.42) 0.61 (0.37) 0.006

Basophils count 0.01 (0.03) 0.02 (0.03) 0.01 (0.02) 0.358

Eosinophils count 0.02 (0.04) 0.06 (0.14) 0.04 (0.09) 0.010

NLR 13.53 [9.37, 25.22] 6.00 [3.45, 10.20] 4.36 [2.66, 7.08] <0.001

Sodium 137.92 (5.56) 138.08 (5.46) 137.47 (4.58) 0.764

Potassium 4.24 (0.68) 4.08 (0.54) 3.91 (0.45) 0.013

Bicarbonate 22.78 (4.85) 25.23 (3.76) 25.20 (3.02) <0.001

Anion Gap 13.22 (4.25) 10.67 (3.64) 10.87 (3.43) <0.001

Creatinine (µmol/L) 84.00 [62.00, 140.00] 91.00 [71.00, 126.00] 72.00 [58.00, 87.00] 0.002

Vital Signs

FiO2
† 80.00 [40.00, 100.00] 21.00 [21.00, 24.50] 21.00 [21.00, 21.00] <0.001

SpO2 92.00 [88.00, 95.00] 95.00 [94.00, 97.00] 96.00 [94.00, 98.00] <0.001

SpO2/FiO2
118.75 [92.00, 225.00]

447.62 [368.75, 
457.14]

457.14 [442.86, 
466.67]

<0.001

Temperature 36.89 (0.36) 36.96 (0.52) 37.00 (0.54) 0.327

Systolic Blood Pressure 125.00 [116.00, 
153.00]

133.00 [120.00, 
149.50]

125.00 [114.00, 
140.00]

<0.001

Diastolic Blood Pressure 75.00 (10.67) 73.57 (12.31) 76.34 (13.06) 0.054

Heart Rate†

91.77 (18.05) 89.61 (17.55) 94.34 (22.33)
0.037

Shock Index 0.72 [0.54, 0.86] 0.66 [0.58, 0.76] 0.73 [0.61, 0.86] <0.001

Respiratory Rate 26.00 [22.00, 32.00] 20.00 [18.00, 24.00] 20.00 [18.50, 23.00] <0.001

Home Medication
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Medicines Comorbidity Index 
(MCI) 3.34 (1.89) 4.30 (1.65) 1.47 (1.38) <0.001

Anticholesterolemic agents 20 (32.8) 133 (63.0) 29 (10.5) <0.001

Antihypertensive agents 22 (36.1) 145 (68.7) 69 (25.1) <0.001

Bronchodilator agents 20 (32.8) 79 (37.4) 74 (26.9) 0.046

Diuretics 28 (45.9) 77 (36.5) 30 (10.9) <0.001

Factor Xa Inhibitors 1 ( 1.6) 42 (19.9) 5 ( 1.8) <0.001

Hypoglycemic agents 40 (65.6) 120 (56.9) 50 (18.2) <0.001

Platelet aggregation inhibitors 13 (21.3) 113 (53.6) 24 ( 8.7) <0.001

Imaging Data

Opacities Numbers (%)       <0.001

0 1 ( 1.6) 34 (16.1) 106 (38.5)

1 4 ( 6.6) 47 (22.3) 38 (13.8)

2 54 (88.5) 106 (50.2) 119 (43.3)

3 2 ( 3.3) 23 (10.9) 12 ( 4.4)

4 0 ( 0.0) 1 ( 0.5) 0 ( 0.0)

Opacities Size (surface area 
%) 20 (8) 9 (7) 7 (7)

<0.001

Clinical outcomes

Length of stay (days) 14.99 [6.00, 34.42] 9.95 [4.61, 20.04] 5.04 [1.32, 11.51] <0.00

Mechanical ventilation 24 (39.3) 16 ( 7.6) 8 ( 2.9) <0.001

ICU admission 43 (70.5) 46 (21.8) 43 (15.6) <0.001

Death 26 (42.6) 51 (24.2) 36 (13.1) <0.001

Other

Wave (1st) 38 (62.3) 122 (57.8) 135 (49.1) 0.061

Count (%) or Mean (SD) or Median [IQR]
† Those variables were excluded from the clustering algorithm effort because of the presence of other highly correlated variables

Cluster 1 (n = 61, 11%) represented the group of patients with the most severe presentation having the 

highest NLR (median 13.5), the highest rate of hypoxemia (median SpO2/FiO2 118) and the highest 
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radiographic burden, with 91% of patients with at least two pulmonary opacities and a median total 

opacities size of 20% (ratio of opacities area/total CXR area).

Cluster 2 (n = 211, 39%) and Cluster 3 (n = 275, 50%) were similar regarding the respiratory, 

hematologic and hemodynamic subdomains. They both presented milder clinical manifestations than 

Cluster 1, but both phenotypes differed in terms of demographics. Cluster 2 represented the oldest cohort 

(mean 75.4 years) and Cluster 3 represented the youngest cohort (mean 59.8 years). They also differed by 

MCI, as Cluster 2 represented the group with the highest proportion of comorbidities, with a mean MCI 

of 4.30, compared to 1.47 for Cluster 3. Accordingly, Cluster 2 included patients with high proportions of 

concurrent medication on admission: 68% took anti-hypertensive agents, 63% hypolipemiant agents, 

56.9% hypoglycemic agents, 53.6% antiplatelets agents and 37.4% bronchodilator agents.

Phenotypes and clinical outcomes 

Among the 547 patients in our study cohort, 436 patients were eligible for ICU admission and MV as 

deemed by their POLST form, and were thus analyzed for clinical outcomes (see Fig 1).

The cumulative mortality risk was significantly different across clusters (log-rank test, p = 0.01) . The 30-

day mortality risks were respectively 39% (21-53%, 95 CI), 33% (22-43%, 95 CI) and 20% (10-28%, 95 

CI) for clusters 1, 2 and 3. The difference in cumulative ICU admission risk and cumulative mechanical 

ventilation risk were also statistically significant across all clusters (log-rank test respectively,  p< 0.0001 

and p< 0.0001). More precisely, the 7-day ICU admission risk was 74% (60-83%, 95% CI) for Cluster 1, 

28% for Cluster 2 (20-35%, 95% CI) and 21% (15-26%, 95% CI) for Cluster 3. The 7-day mechanical 

ventilation risk was 58% (43-70%, 95% CI) for Cluster 1, 14% (8-19%, 95% CI) for Cluster 2 and 11% 

(6-15%, 95% CI) for Cluster 3 (see Fig 4).

Phenotypes Interpretability and Assignment
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We developed a simple decision tree that allows the assignment of patients to their respective clinical 

phenotypes using the rules shown in Fig 5. Using only four variables (age, MCI, SpO2/FiO2, opacities 

size) and by following between three and five steps, one can assign a patient to one of the three 

phenotypes with an accuracy varying between 63 and 100% according to the given path. 

Phenotypes Robustness: sensitivity analyses 

When comparing the clustering results with and without the inclusion of imaging data, the adjusted rand 

index was 0.55 indicating that the similarity of the two clusterings was moderate. The average silhouette 

width remained unchanged (0.34 with imaging; 0.33 without imaging), indicating that both approaches 

yielded homogeneous clusters.

We then further characterized the individuals who underwent phenotypic reclassification. 16 percent of 

patients (n = 87) underwent reclassification (see Fig 6), meaning that their clusters assignment changed 

after the removal of imaging data.  The highest proportion of reclassified observations came from Cluster 

1 as 32 percent of observations (n = 20) were reclassified to Cluster 2 or 3 after the removal of imaging 

data. When analyzing the clinical outcomes of those patients, we noted that 11 out of 20 patients died 

(55%). Conversely, we noted that eight patients who were initially assigned to Cluster 2 or 3, were 

reassigned to Cluster 1 (the most severe phenotype) after the removal of imaging data from the algorithm. 

All of those eight patients survived. 

Discussion

We identified three clinical phenotypes with distinct clinical characteristics and outcomes using 

multimodal clinical data in patients admitted with COVID-19. The three phenotypes can be summarized 

as follows: severely hypoxemic with high radiological burden irrespective of age (Cluster 1), mildly 

hypoxemic with either a high comorbidity index or old age (Cluster 2), and mildly hypoxemic with a low 

comorbidity index (Cluster 3).
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The identified phenotypes were clinically relevant as they were associated with distinct clinical outcomes. 

Cluster 1 included patients with the most severe presentation and was thus unsurprisingly the phenotype 

with the highest mortality and morbidity risk. Cluster 2 and Cluster 3 represented patients with similar 

milder clinical presentations but with distinct comorbidities profiles. Patients in Cluster 2 had a higher 

comorbidity index (4.30  vs 1.47) and the 30-day mortality was higher when compared to Cluster 3 (32% 

vs. 21%). Being able to distinguish phenotypes with appearing similar features, but different outcomes, is 

clinically meaningful. Those represent patients currently treated identically, but who might benefit from a 

distinct and targeted treatment approach. 

When comparing our results with previous work (33–40), the number of clusters obtained is consistent, as 

all have identified three phenotypes. However, all cited studies have reported phenotypes suggesting a 

linear relationship with age and disease severity. This drastically differs from our findings, in which the 

most severe phenotype (Cluster 1) does not represent the oldest group. In our opinion, our phenotypes 

reflect the complexity of the distribution of patients with COVID-19 in which age is not the sole 

determinant of severity. Further research is needed to understand the virological and immunological 

factors associated with severe infection in this phenotype. 

Despite having considered more than 30 variables in our clustering algorithm, only four subdomains were 

central in establishing the phenotypes: demographics, hematologic features, respiratory features, and 

imaging data. Socio-demographics, comorbidities (41) and hypoxemia’s (42) impact on the clinical 

course of patients with COVID-19 have been well documented, and their relative importance in our 

clustering effort was thus expected. Furthermore, neutrophil-to-lymphocyte ratio (NLR), previously 

identified as an independent risk predictor for mortality in COVID-19 (43), was accordingly higher in 

Cluster 1. On the other hand, mean platelet volume (MPV) was not found to significantly impact 

clustering results despite being associated with severe forms of the disease (44). 
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Our study emphasizes the importance of imaging data in COVID-19 related clustering efforts. Through 

our sensitivity analysis, we have shown that the incorporation of CXR enhanced the phenotypes’ clinical 

value. Even in the absence of ground truth in unsupervised machine learning, we showed that dismissing 

imaging data reduced the clinical accuracy of our clustering algorithm. Eight patients initially assigned to 

Cluster 2 or 3 were reclassified to the more severe Cluster 1 after the removal of imaging data from the 

algorithm. We deemed the initial assignment to the less severe Cluster 2 or 3 as the accurate one, given all 

eight of those patients survived. Likewise, 20 patients initially assigned to Cluster 1 were reclassified to 

Cluster 2 or 3 after the removal of imaging data. We deemed the initial assignment to the severe Cluster 1 

as appropriate, because the mortality rate of those 20 patients (55%) exceeded those of Cluster 2 and 3 

(respectively 24% and 14%). The use of imaging helped properly classify outlier patients: those who had 

a lower or higher radiological burden than the majority of the patients in their respective phenotypic 

group (see S3 Figure, S4 Figure). 

To our knowledge, opacity size has not previously been used in other COVID-19 phenotyping efforts. 

Instead, the number of opacities has been used as a proxy variable in only one other paper (33). The 

number of opacities is generally more accessible as it can directly be extracted from CXR reports, and 

does not demand manual annotation of medical images. However, studies have shown that even though 

those two variables provide overlapping information, they are not interchangeable and their respective 

value differs when it comes to predicting survival and the need for respiratory support in patients with 

COVID-19 (45). Furthermore, automation of chest X-ray opacities annotation is increasingly feasible 

with publicly available deep-learning models harmonizing the process (17). We opted for manual 

annotation in this paper, awaiting further validation of those tools in the COVID-19 population. 

Nonetheless, chest X-ray annotation should not be viewed as a rate-limiting process. On the contrary, it 

should be encouraged in healthcare machine learning as it allows uniformizing the inputs during training 

and upon model deployment (46).
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Our study highlights the feasibility and the importance of agnostic approaches to disease phenotyping 

with no a priori information about patient outcome.

At the bedside, clinical phenotypes help unbiasedly categorize patients. Previous studies have shown that 

individual risk factors taken alone are insufficient to properly stratify patients with COVID-19 (45). 

Phenotypes thus offer a simple, and yet holistic means to describing patients with COVID-19 while 

incorporating both clinical presentation and morbidity risk.

In clinical trials, phenotypes could help harmonizing enrolled participants and facilitate the identification 

of patients’ subgroups benefiting from a given therapy. Recent clinical trials revealed that distinct clinical 

presentations mandate distinct treatments, with some therapies showing benefits only in patients with 

severe disease (47,48). The various inclusion criteria of these trials have made it difficult for clinicians to 

clearly identify patients who would benefit the most from those novel interventions. The controversy 

regarding the benefits of anticoagulation in critically and non-critically ill patients is a testimony of this 

observation (49). Using standardized phenotypes could remove the ambiguous nature of patients 

subgrouping in future trials and facilitate the comparison of results across trials.

 

Our study also highlights the clinical usability of clustering-based phenotypes (50). Variables needed to 

assign patients to phenotypes are readily available at the point-of-care, and cluster assignment can be 

done following three and five simple steps. Our decision-tree model for cluster assignment would need to 

be externally validated before being used in the clinical setting, but it nevertheless remains helpful to 

understand how the three phenotypes differ and how applicable such phenotypes would be in the clinical 

setting. Moreover, the probabilistic nature of the algorithm allows for direct quantification of the 

uncertainty, which is an important factor for clinical usability of machine learning algorithms (51). We 

restricted our clustering effort to the data available within the first 24 hours of admission to ease 

generalizability and to emulate the timing of triage decision that is often made early upon admission. To 
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our knowledge, characterizing the evolution of phenotypes over time has not been studied and would 

mandate further investigation.

We recognize that clinical phenotypes do not offer a comprehensive explanation model for the observed 

disease heterogeneity (52). However, they lay the groundwork for understanding COVID-19 

pathobiology. Studies linking biobank data to clinical phenotypes allow to capture the taxonomic 

complexity of the disease and describe how phenotypes differ in terms of pathogenic mechanisms (53).

Our study presents some limitations. Multiple variables could not be included because they were either 

not captured in our electronic health record (e.g., time from onset of symptoms, mechanical ventilation 

parameters, in-hospital complications) or excluded from our study because of missingness. However, 

missing values are common in clinical practice and investigating risk stratification while considering the 

inherent characteristics real-world data is of importance at the bedside (54). In addition, this enhances the 

applicability of our phenotypes, as they are only based on the most common variables available for 

patients admitted with COVID-19 (55). This differs from studies that have included flux cytometry and 

CD4+/CD8+ count in their algorithm (34). Besides, those omitted variables do not seem to have had 

significant impact on our results as the three clusters obtained were consistent in numbers with previous 

work (33–39). 

Additionally, our study included patients admitted between January 1, 2020, and January 31, 2021, being 

before the approval of the majority of targeted therapies against COVID-19 or vaccination. We therefore 

did not assess the effect of vaccination, treatments and the type of variant on phenotypes. Accordingly, 

this put our algorithm at risk for temporal dataset shift (56) and calibrating our clustering algorithm will 

be necessary before exploiting it in the clinical setting. Finally, because race-based data is not recorded in 

the Quebec healthcare system (57), we could not proceed to sensitivity analysis according to race. For that 
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very same reason, we acknowledge that our work could be subject to algorithmic bias as evidence has 

shown racial disparities in clinical outcomes of patients with COVID-19 (58). 

Conclusion

We developed a multidimensional phenotypic analysis of patients with COVID-19 and identified three 

distinct phenotypes, with one specifically associated with worse clinical outcomes. Our study supports the 

feasibility of using real-world clinical data to conduct unsupervised phenotypic clustering. External 

validation and further research are needed to determine how phenotypes could impact clinical trials 

design and phenotypic-guided treatment in clinical practice.
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Fig 2. Clusters visualization on factor analysis of mixed data principal components plot
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Fig 3A. Radar Plot showing the distribution of clinical variables across clusters
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Fig 3B. Bar Plot showing the distribution of clinical variables across clusters

In both figures, the variables were scaled using normalization. Non-continuous variables underwent log-
transformation if the skewness was > 0.5 and the respective mean of each scaled variable was plotted.
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Fig 4. Kaplan-Meier curves for clinical outcomes (a) death, (b) ICU admission, and (c) mechanical 
ventilation stratified by phenotypes.

A. 
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Fig 5. Clusters assignment through decision tree-based rules

 

This graphs represents the classification rules obtained after training a CART decision tree algorithm with 
the phenotypes as outcomes. The rules obtained could be used at the bedside to determine the phenotype 
of a given individual following simple steps.

The rules are located in the white squared boxes and each colored node box displays the probability of the 
predicted class.
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Fig 6. Sankey diagram assessing clustering stability with and without imaging data

This plot shows the distribution of the patients that underwent reclassification after the removal of 
imaging data in the clustering algorithm. 87 observations (16%) were reclassified when ignoring imaging 
data. Although the clusters are relatively stable, a disproportionate number of reclassified observations 
originate from Cluster 1, as 20 observations (32%) were reclassified after the removal of imaging. As 
Cluster 1 is the most severe phenotype, the potential impact of this reclassification is not without 
consequences.
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