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Abstract 8 
Measles is one the best-documented and most-mechanistically-studied non-linear infectious 9 
disease dynamical systems. However, systematic investigation into the comparative performance 10 
of traditional mechanistic models and machine learning approaches in forecasting the 11 
transmission dynamics of this pathogen are still rare. Here, we compare one of the most widely 12 
used semi-mechanistic models for measles (TSIR) with a commonly used machine learning 13 
approach (LASSO), comparing performance and limits in predicting short to long term outbreak 14 
trajectories and seasonality for both regular and less regular measles outbreaks in England and 15 
Wales (E&W) and the United States. First, our results indicate that the proposed LASSO model 16 
can efficiently use data from multiple major cities and achieve similar short-to-medium term 17 
forecasting performance to semi-mechanistic models for E&W epidemics. Second, interestingly, 18 
the LASSO model also captures annual to biennial bifurcation of measles epidemics in E&W 19 
caused by susceptible response to the late 1940s baby boom. LASSO may also outperform TSIR 20 
for predicting less-regular dynamics such as those observed in major cities in US between 1932-21 
45. Although both approaches capture short-term forecasts, accuracy suffers for both methods as 22 
we attempt longer-term predictions in highly irregular, post-vaccination outbreaks in E&W. 23 
Finally, we illustrate that the LASSO model can both qualitatively and quantitatively reconstruct 24 
mechanistic assumptions, notably susceptible dynamics, in the TSIR model. Our results 25 
characterize the limits of predictability of infectious disease dynamics for strongly immunizing 26 
pathogens with both mechanistic and machine learning models, and identify connections 27 
between these two approaches. 28 

Introduction 29 

Mechanistic and semi-mechanistic models have been foundational in developing an 30 
understanding of the spread of infectious diseases in human and wildlife populations. These 31 
models approximately depict how pathogen transmission is shaped by population dynamics (e.g., 32 
how transmission is reduced by herd immunity). Such modeling approaches are essential for 33 
understanding the natural history of pathogens transmission and providing insights into 34 
designing effective control strategies. While models such as the Susceptible-Infected-Recovered 35 
framework are mechanistically well-understood, calibrating them against stochastic, and often 36 
partially unobserved, incidence or mortality data is a steep statistical challenge. The primary 37 
focus of mechanistic models has been understanding and characterizing the natural history of 38 
transmission. In contrast to their mechanistic counterparts, implementations of statistical and 39 
machine learning techniques in infectious disease modeling have primarily focused on improving 40 
forecasting accuracy without the explicit aim of inferring transmission dynamics. Such 41 
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approaches have grown in popularity in recent years1–5, and they also have a long pedigree in 42 
terms of using statistical approaches to study measles dynamics 6,7. 43 

Patterns of pre- and post-vaccination measles incidence are among the most well-documented, 44 
and well-studied, non-linear systems in ecology. A suite of analyses using deterministic and 45 
stochastic (semi-) mechanistic models have illuminated how the interplay between seasonal 46 
forcing and susceptible recruitment shape dynamics in large urban populations 8, ranging from 47 
simple limit cycles to coexisting attractors 8,9, and even chaos with the domination of stochastic 48 
extinction in small highly vaccinated populations10,11. A focus of previous analysis has been 49 
detailed weekly spatio-temporal notifications of measles from England and Wales (E&W), 50 
interpreted with the TSIR model and other inferential approaches, notably particle filtering 12,13. 51 
While partially mechanistic approaches for measles dynamics are being explored 14–16, a more 52 
comprehensive comparison between mechanistic and fully statistical approaches is still lacking. 53 
Such comparisons would yield insight into the choice of most appropriate modeling techniques 54 
given different patterns of data. Measles is an excellent test bed for these questions, given that 55 
we have both rich historical notification time series and successful applications of mechanistic 56 
and semi-mechanistic models. 57 

In this paper, we explore and compare forecasting capability of these two contrasting approaches 58 
for both regularly periodic and relatively irregular recurrent measles epidemics in England and 59 
Wales between 1944-1994 and in the US between 1932-45. We consider both a stochastic semi-60 
mechanistic TSIR model and a fully-statistical model using a popular machine learning (ML) 61 
approach (Least Absolute Shrinkage and Selection Operator, the LASSO).  62 

Our results suggest that the proposed LASSO model, compared to the TSIR model, can 63 
efficiently use data from multiple major cities and achieve similar short-to-medium term 64 
forecasting performance for more regular measles outbreaks in E&W during the pre-vaccination 65 
era (1944-1964). Strikingly, even when trained solely on data with an annual cycle, forecasts in 66 
our LASSO framework capture the characteristic annual to biennial bifurcation 1950 driven by a 67 
decline in birth rates. When important demographic information (such as the birth rate data) is 68 
not included, the LASSO model still performs reasonably well, likely due to the fact these 69 
dynamics may have been implicitly incorporated within the approach (see Models and Methods).  70 
LASSO may also outperform the TSIR for predicting less-regular dynamics such as those 71 
observed in major cities in the US between 1932-45. Although both approaches capture short-72 
term forecasts, accuracy suffers for both methods as we attempt longer-term predictions in highly 73 
irregular, post-vaccination epidemics in E&W. Overall, our results show that fitting a LASSO 74 
model may both qualitatively and quantitatively rediscover major mechanistic assumptions in the 75 
TSIR model. These insights inform the limits of predictability, and the connections of both 76 
approaches in infectious disease dynamics for fully-immunizing pathogens.  77 

 78 

Results 79 

Forecasting measles outbreaks in England and Wales 80 

Measles dynamics pre- and post- the introduction of mass-vaccination program are particularly 81 
well-documented from historical notifications in England and Wales 17. Before widespread 82 
vaccination in the late 60s, measles epidemics in E&W were characterized by highly regular 83 
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periodic (often biennial) cycles in large cities (see Figure 1 showing outbreaks in London). 84 
Analyses often focus on populations at, or above, the Critical Community Size (i.e., the endemic 85 
threshold, CCS) of approximately 300,000 individuals 18. We follow this precedent here and 86 
focus on modeling eight major cities, each with a population above the CCS: namely, London, 87 
Liverpool, Birmingham, Manchester, Nottingham, Bristol, Leeds and Sheffield. Although 88 
dynamics were highly-consistent in the pre-vaccine era, the introduction of measles vaccination 89 
in 1968 led to reduction in both epidemic size and regularity. 90 

 91 

Figure 1: Long-term dynamics of measles in London. Bi-week incidence of measles cases in 92 
London (1944-94) and time series of vaccination. Following the widespread vaccination in the 93 
late 60s, the epidemics shifted from highly regular cycles to largely irregular dynamics. 94 

We fit both the LASSO model and the TSIR model (see Models and Methods) to the measles 95 
epidemics in those major cities in the pre-vaccination era, using the data from 1944-51 for model 96 
training. We illustrate our findings by comparing two approaches in predicting epidemics in 97 
London. Figure 2 and Figure S1 shows that the TSIR model can predict the epidemic reasonably 98 
accurately in short to medium-term. In particular, while both approaches are able to capture the 99 
trends of the epidemic trajectories, their accuracy generally decline from 8-biweeks in the future. 100 
Although direct inference of a single location (e.g., London) is relatively straightforward in the 101 
TSIR framework, incorporating incidence from multiple locations is challenging 9,17.  The 102 
LASSO model, when incorporating all the available incidence data from the major cities, is able 103 
to achieve similar performance (Figure S3 also shows that TSIR clearly outperforms LASSO 104 
when only London data is used for model training). 105 
 106 
Birth rate is an important variable for mechanistic models including the TSIR model as it 107 
governs the rate of the replenishment of susceptible population (see also Models and Methods). 108 
One common feature of the E&W dataset is an observed bifurcation from annual to 109 
predominantly biennial dynamics due to the "Baby Boom" in the late 40s. The impact of this 110 
demographic shift was particularly strong; dynamics remained biennial until the transient post-111 
vaccination era starting in the late 60s. We found that the LASSO model forecasts identified and 112 
captured the bifurcation reasonably well (Figure 3). Interestingly, we find that the ability of 113 
LASSO in predicting the bifurcation remains very similar even without the knowledge of births, 114 
the primary causal driver of this dynamic perturbation (Figure S2). By heuristically deriving the 115 
connections between TSIR and LASSO (see Models and Methods), we show that the impacts of 116 
births and susceptibles may have been implicitly incorporated by the LASSO. 117 

Turning to the post-1968 vaccine era, both approaches appear to be able to predict highly 118 
irregular epidemic trajectories in the short-term among the highly vaccinated populations, but 119 
struggle beyond 4-biweek ahead predictions (Figure 4). 120 
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 121 

Figure 2: Out of sample predictions for measles in London. A subset of 1 to 52𝑡ℎ-biweek ahead 122 
out-of-sample (i.e., period excluding data in the training set) predictions from our LASSO model 123 
and the TSIR model, for pre-vaccination measles epidemics in London from 1944-64. For 𝑘𝑡ℎ-124 
step ahead predictions, the incidence at a particular time point 𝑡 was predicted using the LASSO 125 
model or TSIR model conditional on observations up between time 𝑡 − 𝑘 − 𝑡𝑙𝑎𝑔 and  𝑡 − 𝑘 126 

where we use 𝑡𝑙𝑎𝑔 = 130 (see Models and Methods). Data between 1944-51 (from 8 places 127 

whose average population sizes are greater than the critical community size 300,000) are used 128 
to train a model. Dots indicate the observed incidences. (a) Comparisons of predicted epidemic 129 
trajectories; (b) Comparisons of the mean absolute prediction error 19 in ratio (i.e., the absolute 130 
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difference between the predicted and observed value divided by the observed value); (c) 131 
Comparisons of the trends (summarized by the correlation) between the predicted and observed 132 
trajectories. Although predictions made by the TSIR appear to be more volatile, performance of 133 
the two approaches are comparable and they both show the general trend of decreasing 134 
performance as steps increases. 135 
 136 
 137 
 138 

 139 

Figure 3: Power spectra of the out of sample predictions for measles in London using the LASSO 140 
model. Here we use data between 1944-46 data to train the LASSO models. LASSO successfully 141 
captures both measles periodicity and bifurcation timing (1950). For each figure, red indicates 142 
regions of identified periodicity. Black contours indicate 95% confidence intervals. Notably, the 143 
LASSO model captures the 1950 bifurcation from annual to biennial dynamics starting in 1950. 144 
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 145 

Figure 4: 1 to 8𝑡ℎ-biweek ahead out-of-sample predictions from our LASSO model and the TSIR 146 
model, for measles epidemics in London during the vaccination era from 1985-94. Data between 147 
1970-80 (from 8 places whose average population sizes are greater than the critical community 148 
size 300,000) are used to train a LASSO model. Note that here we do not compare the prediction 149 
error via a ratio (see Figure 2) because observed incidences (the denominator) are often zero in 150 
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the time period. 151 
 152 

Forecasting pre-vaccination measles outbreaks in the US 153 

In the previous section we illustrated how both the TSIR and the LASSO model can successfully 154 
capture key traits (e.g., epidemic size and periodicity) of the observed E&W time series data. 155 
However, a rich analytical literature has illustrated the relative dynamic stability of the E&W 156 
data (i.e., Lyapunov Exponent < 0) 8,9. We now turn our attention to a set of incidence data 157 
corresponding to more challenging chaotic dynamics (i.e., Lyapunov Exponent > 0). One such 158 
source of data comes from the United States. In contrast to E&W, the US city pre-vaccination 159 
measles data exhibit signatures of deterministic chaos11. Here, we examine the comparative 160 
ability for our LASSO model to predict chaotic dynamics. Fitting both models to the US data, we 161 
found the LASSO model may outperform the TSIR model’s ability to capture both the amplitude 162 
and trend for the outbreak in New York (Figure 5). Similar results can be found for other US 163 
major cities (Figure S4). 164 
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 165 

Figure 5: Short-term predictability for irregular dynamics. 1 to 8𝑡ℎ-biweek ahead out-of-sample 166 
predictions from our LASSO model and the TSIR model, for measles epidemics in New York from 167 
1932-45. Data between 1932-40 (from 7 major cities which also have non-missing incidence 168 
data during this period) are used to train the LASSO.  169 
 170 
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Reconstructing the TSIR mechanism via the LASSO model 172 
 173 
Our E&W results show that our LASSO model may reconstruct/rediscover some of the 174 
underlying assumptions in the TSIR model. The TSIR model (see also Models and Methods) 175 
assumes that the mean incidence at time t is governed by the product of incidence and 𝑆𝑡−1 the 176 
number of susceptibles at the previous time step, i.e., 177 

𝐸(𝐼𝑡) = 𝛽𝑡𝐼𝑡−1
𝛼 𝑆𝑡−1, 178 

where 𝛽𝑡 is a seasonally repeating contact rate with 26 biweekly points per year. The exponent 𝛼  179 
of the TSIR model captures heterogeneities in mixing, which is typically slightly less than 1 180 
(e.g., 0.98). This formulation implies that 𝐼𝑡 is expected to be largely positively associated with 181 
𝐼𝑡−1, and less so with 𝐼𝑡−𝑘 for 𝑘 > 1 (as larger 𝐼𝑡−𝑘 in general lead to larger degree of susceptible 182 
depletion and hence smaller 𝑆𝑡−1). Secondly, 𝐼𝑡 and 𝐼𝑡−𝑛×26 is also expected to have a positive 183 
association due the seasonality assumption embedded in 𝛽𝑡. Our LASSO model estimates appear 184 
to be able to largely capture these trends (i.e., susceptible depletion and seasonality) implied by 185 
the TSIR model (Figure 6). In particular, and our associated LASSO coefficient (of incidence at 186 
the 1-biweek lag) is quantitatively capturing the exponent 𝛼  in the TSIR model (Figure 6a). We 187 
provide additional insights in the Models and Methods regarding how the LASSO model and the 188 
TSIR model are interconnected. 189 

 190 

 191 

Figure 6: Coefficients associated with lagged incidences in the LASSO model (Equation 4 in 192 
Models and Methods), from fitting the one-step ahead model to the pre-vaccination E&W data. 193 
Only non-zero LASSO coefficients are shown for clarity. The estimated LASSO model resembles 194 
and discovers the TSIR model. (a) Coefficient for the most recent lagged incidence is 195 
significantly larger (and positive) and most of the coefficients within one year (26 biweeks) are 196 
negative, which is consistent with the TSIR assumptions; moreover, the coefficient of the most 197 
recent lag is also quantitatively consistent with the value of the exponent parameter (slightly less 198 
than 1) in the TSIR model. (b) Coefficients at 2 and 3-year lags are significantly larger (and 199 
positive) compared to coefficients at other lags, consistent with the seasonality assumption of the 200 
TSIR model. Coefficient at 1-year does not appear to have a positive association, possibly 201 
because it is counterbalanced by the effect of susceptible depletion. Lagged incidences beyond 3 202 
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 10 

years do not appear to have systematic positive associations.  203 
 204 

Discussion 205 

Transmission of infectious diseases at the population-level is characterized by inherent, and often 206 
complex, non-linear dynamics that are driven by intrinsic and extrinsic factors such as infectivity 207 
of pathogens, human behaviors and public health interventions, notably variable contact patterns 208 
and vaccinations among host populations, and even environmental factors. Mechanistic and 209 
semi-mechanistic models provide biologically plausible and directly interpretable frameworks 210 
for modeling such complex dynamics. In contrast, machine learning approaches primarily focus 211 
on identifying patterns within the data to improve prediction and forecasting; they include no 212 
specific mechanistic framing, and often lack biological interpretability. While machine learning 213 
approaches have shown success in forecasting complex epidemiological systems (e.g., dengue 5), 214 
comprehensive and long-term data for these pathogen-human interactions are often lacking, 215 
making detailed methodological comparisons challenging. Here, we leverage unique time-series 216 
data and a large body of work on semi-mechanistic modeling to develop a full comparison 217 
between these approaches using measles as a test case. 218 

Our results indicate that a LASSO-based machine learning model can efficiently leverage the 219 
detailed historical measles incidence data from multiple locations in E&W to achieve short to 220 
medium-term forecasting accuracy that is comparable to one of the mostly commonly used 221 
mechanistic model for measles (the TSIR model). Interestingly, our results show that the LASSO 222 
model performs similarly even without the knowledge of births that are required by the TSIR 223 
model. This suggests that the correlation/dependence structure between birth and incidence can 224 
be “absorbed” by a parsimonious LASSO model that only considers historical incidence to infer 225 
changes in temporal patterns without explicit knowledge of the cause of these changes (e.g., 226 
here, the impact of births on the underlying susceptible population size). As a result, the LASSO 227 
model appears to be able to capture the bifurcation in dynamics in 1950, one of the key 228 
properties of the measles outbreaks in E&W, without requiring the data driving the change in 229 
pattern. We do, however, find that the LASSO forecasts are comparable to those from TSIR only 230 
when all data from the major cities are used for model training (Figure S3). Moreover, while 231 
both the LASSO model and the TSIR model do not work well for the highly chaotic dynamics 232 
beyond short-term prediction, the LASSO approach may outperform TSIR in the scenarios with 233 
a mixture of seasonal and mildly chaotic dynamics (as observed in historical outbreaks in the 234 
major cities of US 11). Finally, our results also show that the LASSO model can 235 
reconstruct/discover the mechanistic assumptions of the TSIR model (Figure 6).  236 

Our results are consistent with recent work which shows that the TSIR model may be discovered 237 
by some partially-mechanistic machine learning approaches that consider higher orders of 238 
polynomial terms for transmission dynamics 14. Compared to their work, our work focuses on 239 
out-of-sample prediction (as opposed to focusing on “discovery”). Also, while these approaches 240 
require the knowledge of susceptible population (via some pre-processing procedures leveraging 241 
TSIR), we do not require reconstructed susceptible population, creating a more explicit test of 242 
fully statistical approaches. The effect of susceptible depletion seems to be implicitly captured by 243 
the non-positive LASSO coefficient values associated with the more recent lags within the 244 
previous year (see Figure 6a and Models and Methods). This feature is likely to explain why the 245 
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LASSO model may perform reasonably well despite lacking explicit knowledge of 246 
births/susceptibles. 247 

This analysis represents an initial step and there are several clear directions for future work: 248 
while we compared one of the most successful mechanistic models for measles (the TSIR) with a 249 
commonly used machine learning approach (the LASSO), other machine learning approaches 250 
(e.g., neural-network based models) may yield different results. In particular, recent theoretical 251 
work 20–22 has demonstrated excellent predictability for simulated deterministic chaotic systems 252 
using a network-based machine learning approach ( “reservoir computing”). Such variants could 253 
also be extended to and tested on the stochastic measles outbreaks that we consider. Despite this, 254 
it is worth noting that the LASSO approach is relatively interpretable compared to many other 255 
machine learning approaches, and thus seems a sensible starting point here. Finally, while our 256 
preliminary simulation studies (Figure S5) further illustrate the predictive power of the LASSO 257 
model for measles epidemics, more extensive simulation studies including the investigations of 258 
explicitly leveraging spatial information of the epidemics may be considered for future 259 
directions. These investigations may shed light on, for example, how machine learning 260 
approaches may best complement mechanistic models for modelling less populated places whose 261 
dynamics are known to be more stochastically-driven. 262 

Models and Methods 263 

A mechanistic modelling approach: the TSIR model 264 

We model the local measles dynamics using the time-series-Susceptible-Infected-Recovered 265 
(TSIR) framework. Balancing births against disease transmission, the TSIR equations are given 266 
as 267 

𝐸(𝐼𝑡+1) = 𝛽𝑡+1 × 𝐼𝑡
𝛼 × 𝑆𝑡      (1) 268 

and 269 

𝑆𝑡+1 = 𝐵𝑡+1 + 𝑆𝑡 − 𝐼𝑡+1     (2), 270 

Where 𝐼𝑡 and 𝑆𝑡 are the number of incident and susceptible individuals in a given biweek t, and 271 
𝐵𝑡 refers to the number of births in a given biweek, 𝛽𝑡 is a seasonally repeating contact rate with 272 
26 values per year, and the exponent 𝛼  (typically slightly less than 1) captures heterogeneities in 273 
mixing that were not explicitly modelled by the seasonality 23,2414,15 and the effects of 274 
discretization of the underlying continuous time process. The TSIR estimates obtained in this 275 
manuscript used the recently developed tsiR package 25. Specifically, in our analysis, 𝛼 is fixed 276 
to be 0.98 26 and a Gaussian process regression is performed between cumulative cases and 277 
cumulative births. Parameter estimates were obtained for each location for each time period of 278 
interest. A more extensive description of the TSIR fitting process in terms of theory and 279 
implementation can be found in 23,25. 280 

A Machine learning approach: the LASSO model 281 

We consider modelling incidence 𝑘-step ahead of time 𝑡 for place 𝑖 (i.e., 𝐼𝑖,𝑡+𝑘) as a linear 282 
combination of log-transformed historical local incidence and births. Specifically, we consider 283 
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 12 

𝑙𝑜𝑔 (E(𝐼𝑖,𝑡+𝑘)) = 𝜂 + ∑ 𝜓𝐽

𝑇𝑙𝑎𝑔

𝐽=1

× 𝑙𝑜𝑔(𝐼𝑖,𝑡−𝐽 + 1) + 𝛾 × 𝑙𝑜𝑔 (𝐵‾ 𝑖,(𝑡−𝑇𝑙𝑎𝑔):𝑡 + 1)    (4) 284 

where 𝐵‾𝑖,𝑡−𝑇𝑙𝑎𝑔:𝑡 denotes the average of births of the previous 𝑇𝑙𝑎𝑔 biweeks. We consider bi-285 

weekly data and two-year forecasting windows 𝑘 = 0,1, … ,52 and 𝑇𝑙𝑎𝑔 = 130. A separate 286 

model is fitted for each forecast window 𝑘, using Least Absolute Shrinkage and Selection 287 
Operator (LASSO) regression 27. LASSO is a machine learning technique that simultaneously 288 
performs estimations of the regression coefficients 𝛉 = (𝜂, 𝜓1, … , 𝜓𝑇𝑙𝑎𝑔

, 𝛾) and variable 289 

selection by shrinking some of the smallest estimated coefficients towards zero. LASSO holds 290 
the property of variable selection as it allows a coefficient to be shrunk to exactly zero. 291 
Compared to the traditional regression technique the Least Squares Estimates (LSE), this 292 
shrinkage process has the effect of significantly reducing variance of model prediction and is the 293 
key for improving model fit. We also consider a LASSO model without explicit inclusion of the 294 
births (the last term in Equation 4). 295 

In particular, LASSO estimates 𝛉̂ are the values of coefficients that minimize an objective 296 
function 297 

∑ (𝑦𝑖,𝑡+𝑘 − 𝜂 − ∑ 𝜃𝑘

𝑝

𝑘=1

× 𝑥𝑡,𝑘)

2𝑛

𝑡=1

+ 𝜆 × ∑ |

𝑝

𝑘=1

𝜃𝑘|        (5) 298 

where 𝑦𝑖,𝑡+𝑘 is the response variable, 𝑝 = 2 × 𝑇𝑙𝑎𝑔 and 𝑛 is the number of observations. Note 299 

that for clarity we have used 𝜃𝑘 to denote the 𝑘𝑡ℎ coefficient in 𝛉 (not including the intercept 𝜂) 300 
and 𝑥𝑡,𝑘 to denote the covariate associated with it. The penalty term 𝜆 × ∑ |𝑝

𝑘=1 𝜃𝑘| serves as the 301 
machinery to allow shrinkage of the coefficient estimates, i.e., the larger the value of 𝜆, the 302 
greater the effect of shrinkage. Shrinkage significantly reduces variances of predictions, but at 303 
the cost of slight increase in bias − and tuning of 𝜆 is critical for achieving an ‘optimum’ (often 304 
measured by the test mean squared error) among this bias-variance trade-off. We used ten-fold 305 
cross-validation to identify the optimal value of 𝜆.  306 

Reconstructing the TSIR mechanism via the LASSO model 307 

In this section, we provide additional insights into how our LASSO model can 308 
reconstruct/discover a TSIR model. Taking the log of both sides of TSIR model (Equation 1), we 309 
have 310 
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 13 

𝑙𝑜𝑔(𝐼𝑡+1) = 𝑙𝑜𝑔(𝛽𝑡+1) + 𝛼 × 𝑙𝑜𝑔(𝐼𝑡) + 𝑙𝑜𝑔(𝑆𝑡)

= 𝑙𝑜𝑔(𝛽𝑡+1) + 𝛼 × 𝑙𝑜𝑔(𝐼𝑡) + 𝑙𝑜𝑔{∑(

𝑡−1

𝑘=1

𝐵𝑘 − 𝐼𝑘)} (assuming 𝑆1 = 0)

= 𝑙𝑜𝑔(𝛽𝑡+1) + 𝛼 × 𝑙𝑜𝑔(𝐼𝑡) + 𝑙𝑜𝑔{∑ 𝐵𝑘

𝑡−1

𝑘=1

− ∑ 𝐼𝑘

𝑡−1

𝑘=1

}

= 𝑙𝑜𝑔(𝛽𝑡+1) + 𝛼 × 𝑙𝑜𝑔(𝐼𝑡) + 𝑙𝑜𝑔{∑ 𝐵𝑘

𝑡−1

𝑘=1

× (1 −
∑ 𝐼𝑘

𝑡−1
𝑘=1

∑ 𝐵𝑘
𝑡−1
𝑘=1

)}

= 𝑙𝑜𝑔(𝛽𝑡+1) + 𝛼 × 𝑙𝑜𝑔(𝐼𝑡) + 𝑙𝑜𝑔{∑ 𝐵𝑘

𝑡−1

𝑘=1

} + 𝑙𝑜𝑔{1 −
∑ 𝐼𝑘

𝑡−1
𝑘=1

∑ 𝐵𝑘
𝑡−1
𝑘=1

}

≈ 𝑙𝑜𝑔(𝛽𝑡+1) + 𝛼 × 𝑙𝑜𝑔(𝐼𝑡) + 𝑙𝑜𝑔{∑ 𝐵𝑘

𝑡−1

𝑘=1

} −
∑ 𝐼𝑘

𝑡−1
𝑘=1

∑ 𝐵𝑘
𝑡−1
𝑘=1

(assuming 𝐼𝑘 is much smaller than 𝐵𝑘)

= 𝑙𝑜𝑔(𝛽𝑡+1) + 𝛼 × 𝑙𝑜𝑔(𝐼𝑡) + 𝑐 × ∑ 𝐼𝑘

𝑡−1

𝑘=1

+ 𝑙𝑜𝑔{∑ 𝐵𝑘

𝑡−1

𝑘=1

}.

 311 

Note that, under the TSIR, we have 𝛼 ≥ 0 (and slightly less than 1) and 𝑐 ≤ 0, which 312 
respectively indicate positive association and negative association of the corresponding lagged 313 
incidence 𝐼𝑘 with the current incidence. The negative association indicated by the parameter 𝑐 314 
may implicitly capture the impact of susceptible depletion. Should the LASSO model (Equation 315 
4) resemble the TSIR, we would expect to see a tendency towards positive coefficients 𝜓𝐽 316 

associated with the most recent lagged incidence (corresponding to the positive 𝛼 value) and 317 
non-positive coefficients at other lagged incidence (corresponding to the non-positive 𝑐 value). 318 
Also note that historical births may be absorbed in the intercept term of the LASSO model. 319 

We stress that we are not aiming to draw close equivalence between the TSIR and our LASSO 320 
model. Instead, this framing aims to provide some insights into the question that how these two 321 
modeling approaches may be interconnected heuristically.  322 
 323 
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Fig. S1: A subset of 1 to 52th-biweek ahead out-of-sample (i.e. period excluding data in the training set) predictions
from our LASSO model and the TSIR model, for pre-vaccination measles epidemics in 8 places whose the average
population sizes are greater than the critical community size 300,000 from 1944-64.
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Fig. S2: Power spectra of the out of sample predictions for measles in London using the LASSO model (without
using birth data in the LASSO model).
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Fig. S3: A subset of 1 to 52th-biweek ahead out-of-sample (i.e. period excluding data in the training set) predictions
from our LASSO model and the TSIR model, for pre-vaccination measles epidemics in London from 1944-64. Data
between 1944-51 (from London only) are used to train the LASSO models.
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Fig. S4: A subset of 1 to 8th-biweek ahead out-of-sample predictions from our LASSO model and the TSIR model,
for measles epidemics in 7 major cities in US from 1932-45. Data between 1932-40 are used to train the LASSO
models.
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Fig. S5: Simulation studies. Our LASSO model is fitted to epidemics generated from a TSIR model. Specifically,
local dynamics are simulated from the estimated TSIR model using the pre-vaccination E&W dataset. Using first
half of the data for training, our LASSO model can reasonably well predict the outbreak trajectory.
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