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Abstract

Numerous studies have suggested the use of early warning signals (EWSs) of critical
transitions to overcome challenges of identifying tipping points in complex natural
systems. However, the real-time application of EWSs has often been overlooked; many
studies show the presence of EWSs but do not detect when the trend becomes
significant. Knowing if the signal can be detected early enough is of critical importance
for the applicability of EWSs. Detection methods which present this analysis are sparse
and are often developed anew for each individual study. Here, we provide a summary
and validation of a range of currently available detection methods developed from
EWSs. We include an additional constraint, which requires multiple time-series points
to satisfy the algorithms’ conditions before a detection of an approaching critical
transition can be flagged. We apply this procedure to a simulated study of an infectious
disease system undergoing disease elimination. For each detection algorithm we select
the hyper-parameter which minimises classification errors using receiver operating
characteristic (ROC) analysis. We consider the effect of time-series length on these
results, finding that all algorithms become less accurate as the amount of data decreases.
We compare EWS detection methods with alternate algorithms found from the
change-point analysis literature and assess the suitability of using change-point analysis
to detect abrupt changes in a system’s steady state.

Introduction 1

Many attempts have been made to identify indicators of critical transitions in real 2

systems. For infectious disease systems, criticality typically occurs when the basic 3

reproduction number equals 1. Research has shown that infectious disease systems 4

undergo the phenomenon of Critical Slowing Down (CSD) when the basic reproduction 5

number, R0, crosses through the critical transition at R0 = 1 [1–3], reviewed in [4]. 6

CSD describes the changes in the statistical properties of time-series data as a system 7

approaches a critical transition, such as increased autocorrelation, variance and 8

magnitude of fluctuations, due to the system’s slow recovery from perturbations as its 9

dominant eigenvalue approaches zero. These statistical trends in time-series data serve 10

as early warning signals (EWSs) of critical transitions. EWSs can be generated in 11

real-time from time-series data and offer a computationally inexpensive technique for 12

monitoring the progress towards elimination. Moreover EWSs are model-independent, 13

in that they do not rely on empirically fitted models, and can be used to investigate 14
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approaching critical transitions in a wide range of real-world systems from ecological 15

collapses [5–8] to climatic shifts [9–12]. 16

The implementation of EWSs on empirical data will often use Kendall’s τ statistic 17

to indicate the presence of a critical transition [1, 2, 13], researchers have reported that 18

the observed trend of an EWS matches prior beliefs about when a bifurcation occurred 19

in the system. However, research addressing when the trend of an EWS became 20

significant, which we refer to as the “time-of-detection”, is limited. Reporting the time 21

when an EWS gives a notable signal of an upcoming bifurcation will allow 22

policy-makers to assess when a disease is close enough to elimination to die out without 23

further intervention, thus prompting the end of a control campaign. The more advanced 24

the warning, the more valuable EWSs will be in practice. 25

The field of change-point analysis is closely linked to the field of EWSs. 26

Change-point analysis relates to identifying when the probability distribution of a 27

time-series changes. Change-point analysis is used to identify when any abrupt change 28

occurs and provides methods designed to detect the timing of such event(s). The first 29

work in change-point analysis was in the 1950’s [14,15], motivated by designing a 30

method to automatically detect failures for quality control in manufacturing. This is a 31

classical problem for detecting abrupt changes in the statistical behaviour of an 32

observed signal, with extensive applications to climate modelling [16], network 33

security [17] and fraud detection [18]. It is broken into two types of change-point 34

analysis: offline, when the full data are available and we aim for the most accurate 35

detection of the change-point; and online, for real-time monitoring of change-points. 36

EWSs attempt to infer a single change point, where the system is undergoing a 37

bifurcation, using signatures of the CSD phenomenon [10,19]. Manifestations of CSD 38

include changes in the variance and autocorrelation of the fluctuations of time-series 39

data as the system approaches a critical transition. Moreover, change-point analysis can 40

detect changes in the variance or correlation, by monitoring the probability distribution 41

describing the time-series data and predicting the most likely timepoint where the 42

change occurs. Thus change-point analysis can be used find when a change in an EWS 43

can be detected rather than detecting the transition itself. 44

These two areas, although studying related questions, have little overlap in the 45

literature. In some cases change-point analysis has been dismissed in the field of EWSs 46

as it does not offer an advanced detection of a bifurcation [20]. However, the offline 47

approach still offers the potential for predicting when a system underwent a bifurcation, 48

which many in the field of EWSs desire. Offline change-point methods can be used to 49

test the performance of EWS based techniques [21–23] and can provide an upper limit 50

to the diagnostic performance expected of a real-time detection method. 51

The only study which proposes using EWSs within a change-point framework is 52

Carpenter et al., [24] who implement an online change-point analysis (called Quickest 53

Detection) by detecting the statistical signatures of CSD. The Quickest Detection 54

method calculates the likelihood ratio for each data point and the ratio is updated as 55

each data point becomes available, this is known as the Shiryaev–Roberts (SR) 56

Procedure [25,26]. To be implemented it requires the users to specify two probability 57

distributions which describe the data pre- and post-critical transition, as well as 58

specifying the detection threshold [27]. Establishing suitable choices for probability 59

distributions and threshold criterion can influence the result of the time-of-detection, 60

limiting the generality of the method [24]. Unkel et al., [28] reviewed the use of the 61

Shiryaev–Roberts procedure for the early detection of disease outbreaks. In this work, 62

they were interested in methods which could detect “outbreaks of concern”, rather than 63

methods which detect when a disease crossed through the critical transition at R0 = 1. 64

In particular, we are interested if similar statistical methods can be used for the early 65

detection of disease elimination by considering the generalised behaviour of dynamical 66

May 25, 2022 2/26

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.27.22275693doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.27.22275693
http://creativecommons.org/licenses/by/4.0/


systems on the approach to a critical transition. 67

We compare a simple offline change-point analysis approach using the maximum 68

likelihood estimation with the Quickest Detection method and with three other methods 69

found in the EWS literature. We combine knowledge of CSD with change-point analysis, 70

to find the first time an upcoming bifurcation can be detected, applied to an infectious 71

disease system approaching elimination. In particular, the three methods we evaluate 72

for detecting a critical transition using EWSs are: 73

1. Exceeding two standard-deviations (known as 2-sigma). Drake & 74

Griffen [29] proposed that an EWS, or composite of EWSs, is significant if it 75

exceeds its long-run mean plus two long-run standard-deviations. The 76

time-of-detection is given by the first time the EWS exceeds this threshold. 77

2. The time changing p-value score of Kendall’s τ statistic. Harris et al. [30], 78

evaluate the significance (p-value) of Kendall’s τ score of an EWS by using a 79

bootstrapping method to create a null distribution. This procedure is applied to 80

increasing lengths of data segments from the start of the time-series up to the 81

critical transition and the time-of-detection is inferred from the first time the 82

p-value drops below 0.01. 83

3. Logistic composite measure. Brett & Rohani [31], consider a weighted sum of 84

EWSs, where the weights are assigned using logistic regression. This composite 85

measure is said to be significant if it exceeds a threshold which is identified by 86

minimising classification errors. The time-of-detection is given by the first time 87

when the logistic measure exceeds the threshold. 88

Each method is designed for real-time implementation (e.g. an “online” framework), 89

where the EWSs are updated as new data are observed and a detection is triggered 90

when the threshold criteria is exceeded. These methods have previously been applied to 91

empirical studies, where the time of the critical transition was known and thus they 92

could report the “lead-time” of each EWS. The “lead-time” gives an indication of how 93

early on (prior to the transition) a change in the system could be anticipated, 94

quantifying the power of EWSs of critical transitions. 95

Evaluating the available methods found in the literature is needed to understand 96

whether there is a high false alarm rate, which would limit the potential for integrating 97

EWSs with public health systems. For disease elimination, it is crucial that features of 98

EWSs are not detected in data that are not undergoing a bifurcation, as this may lead 99

to disease controls being incorrectly lifted. Therefore a highly specific method is 100

essential. However, it is not necessary to have a large lead-time; instead of being used to 101

prevent a critical transition, EWSs could be used to confirm the path to elimination. In 102

contrast, for disease emergence, it is preferred to identify all possible cases which could 103

lead to an epidemic or pandemic even if they are incorrect (i.e. high sensitivity) and 104

ideally a method which gives a large lead-time so that there is enough time for control 105

measures to be implemented and alter the course of the disease. 106

We evaluate each method on the same simulated epidemiological time-series data, for 107

synthetic data that are: (1) at steady state and unchanging, (2) approaching disease 108

elimination but levels off just before and (3) undergoing disease elimination. The first 109

two data types represent two different null datasets, where we do not want to identify a 110

bifurcation, with the second null dataset being more realistic. The purpose of this study 111

is to validate each detection method and compare their performance. Some of the 112

methods we consider were initially presented for climate or ecological data and thus 113

have previously been implemented on large datasets that are rarely available in 114

epidemiology. A key limitation with informing disease elimination with empirical 115

datasets is to understand how EWSs behave in data poor settings and address their 116
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suitability under these circumstances. Therefore, we test each method for different 117

lengths of time-series data, to provide quantitative evidence for which method performs 118

best for varying amounts of data. 119

The 2-sigma method has been previously adapted by Clements et al., who found 120

that by monitoring when two consecutive timepoints crossed the threshold (rather than 121

1), the frequency of false positive detections significantly decreased from 13% to 7% [32]. 122

We extend the idea of a consecutive point strategy to all of the online detection 123

methods we consider. We present a receiver operating characteristic (ROC) analysis to 124

evaluate the “best” number of consecutive points, which we define as the number of 125

consecutive points which minimises the classification error. We validate each method 126

using a single point and measure the increased sensitivity and specificity when a 127

constraint on the number of consecutive points is considered. Using the consecutive 128

signal approach, we compare the first time disease elimination can be detected and the 129

lead-time for each detection method and discuss the suitability of detecting disease 130

elimination with these methods. 131

Methodology 132

Below we describe the three EWS based methods in detail, followed by the two 133

change-point analysis based methods (summarised graphically in Fig. 1-4). The colours 134

used in Fig. 1-4 highlight similarities between the different methods. Red shaded boxes 135

describe the input of the time-series data; green shaded boxes describe the calculation of 136

a composition of EWSs (if applicable) and blue shaded boxes present the calculation of 137

the time-of-detection for each methodology. In addition, we have provided open-source 138

Python code located at https://github.com/ersouthall/Time-of-detection, 139

which can be used to implement the detection algorithms found in this section and 140

reproduce all results in this paper. 141

Normalised Composite (2-sigma threshold) 142

Drake & Griffen first introduced the idea of anticipating a bifurcation with EWSs using 143

a detection-based method [29]. They discussed taking a composition of normalised 144

EWSs and detecting a critical transition when the composition crossed two 145

standard-deviations (2σ). This method was initially applied in an experimental study, 146

to detect the onset of environmental deterioration and offered a 110 day lead-time of the 147

bifurcation [29]. Since, it has been implemented to a number of systems to detect: 148

population collapse [33], recovery of a ecosystem [32] and the emergence of 149

COVID-19 [34], although it has not been formally tested with a simulated control 150

environment [35]. 151

The 2-sigma method works by monitoring the long-run mean of a single EWS or a 152

composition of multiple statistics. If a time-series is not going through a bifurcation, its 153

value tends to revert to its long-run mean and properties of the time-series are not 154

affected by the change in time [36]. Conversely, a non-stationary time-series (e.g. a 155

time-series that is going through a bifurcation) does not tend to return to its long-run 156

mean value and hence, its mean, variance and covariance will change over time. The 157

2-sigma method utilises this property of the long-run mean and defines the 158

time-of-detection as the first timepoint when the EWS exceeds its long-run mean plus 159

two times its long-run standard deviation. 160

In order to take the composition of multiple different EWSs, which might have 161

different magnitudes, each EWS is standardised before calculating the sum Ct (Fig. 1). 162

In particular, two different approaches are presented for standardising the time-series, 163

depending on whether a control study exists (which is unlikely for epidemiological data). 164
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Early Warning

Signal

statistic of

observed data

{xt}t∈[1,T ]

Control exists: standardised
mean difference between
EWS of control (xC

t ) and
EWS of observed (xO

t ).

st =
xC
t −xO

t

std({xC
i |i∈[1,t]}

⋃
{xO

i |i∈[1,t]})

No control exists: At every
timepoint subtract the long-
run mean of the EWS and
divide by its long-run std

st =
xt−mean({xi}i∈[1,t])

std({xi}i∈[1,t])

For each
EWS i,

Ct =∑
i((−1)⊮s

(i)
t )

k where k = min({t :

|Ct −mean({Ci}i∈[1,t])|
> 2std({Ci}i∈[1,t])}

Step 1:
Standardisation

Step 2:
Composition

Step 3:
Time-of-detection

Fig 1. Flow diagram of the 2-sigma threshold method with the indicator
extension from [33] (step 2, indicator function) – multiply the standardised EWS by -1
if the indicator is expected to decrease prior to the critical transition.

An adaptation of the methodology was included in [33] using an indicator function 165

which depends on the time-series trend of each EWS. In this research, taking the 166

negation of EWSs which are expected to decline prior to the tipping point was found to 167

result in a more robust method than taking the positive summation of all EWSs [33, 37]. 168

The trend of an EWS can depend on the type of data used [3] and hence it is important 169

to first analyse each complex system analytically to determine the trend of each EWS, 170

before applying the indicator adaption. 171

Changing p-value 172

A detection method based on significance testing of EWSs has been presented by Harris 173

et al. [30]. In this work, the performance of EWSs are assessed in relation to their 174

p-value score and the authors propose calculating a time-series of the changing p-value 175

score for each EWS. This research highlights the issue of estimating the null distribution 176

(in order to find the p-value) without access to replications. Here, a bootstrapping 177

technique is proposed, which preserves the original features of the observed data and 178

can be used to create the null distribution. However, the use of statistical tests and the 179

misinterpretation of p-values have been previously criticised [4, 38]; and other 180

approaches have been proposed for estimating the null distribution. 181

The method in Fig. 2 tries to infer if a system is going through a critical transition 182

using a single EWS, by evaluating the p-value of Kendall’s τ score. As a system 183

approaches a critical transition, Kendall’s τ score of some EWSs are close to the 184

extremities (e.g. Kendall’s τ score is near 1 for CV and near -1 for variance, prior to 185

disease elimination for EWSs calculated on incidence data [3]). This method is 186

conditional on the null hypothesis, which states that there is no statistically significant 187

relationship between Kendall’s τ score and whether the data are undergoing a 188
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Early Warning

Signal

statistic of

observed data

{xt}t∈[1,T ]

10,000

bootstraps

{x(i)
t }t∈[1,T ],

i ∈ [1, 10000]

Kendall’s τ

scores {τ (i)
m }

for each

{x(i)
t }t∈[1,m],

i ∈ [1, 10000]

Kendall’s
τ score τm

calculated on
{xt}t∈[1,m],

m≤ T

p-value pm of
statistic τm

Repeat Step
2 & 3 by
increasing
m to get
{pm, pm+1,
..., pT }

k where k =

min({t|pt < 0.01})

Step 1:
Bootstrap

Step 2:
Kendall’s τ score

Step 3:
p-values

Step 4:
Time-of-detection

Fig 2. Flow diagram of the changing p-value detection method

bifurcation. The p-value is the probability of observing a more extreme Kendall’s τ 189

score, conditional on the null hypothesis being true. For each bootstrapped time-series, 190

Kendall’s τ score is calculated to create a null distribution of scores, which can be used 191

to evaluate the p-value of Kendall’s τ score of the observed time-series. 192

The methodology is implemented on a subsample {xt}t∈[1,m],m < T of the observed 193

time-series. The length of time-series used to calculate the p-value is increased (i.e. by 194

increasing m), to create a time-series of p-values, where each p-value is calculated with 195

more complete information of the entire time-series {xt}t∈[1,T ]. The point at which the 196

p-value crosses below 0.01, is recorded as the time-of-detection. 197

Logistic Transform Risk 198

Clements et al., [39] reviewed the use of multivariate statistics in EWS literature and 199

noted that a more sophisticated analysis, such as the use of machine learning algorithms 200

with composite statistics would be an obvious expansion. This was subsequently 201

explored by Brett & Rohani [31]. They computed a logistic regression of a weighted 202

sum of EWSs, where the weights were determined using a lasso regression with a cross 203

validation technique. 204

This method can be implemented on a single EWS or on a composition of multiple 205

EWSs. A supervised machine learning algorithm is implemented (outlined in the 206

pre-steps in Fig. 3) on simulated data to train the algorithm’s parameters. In particular, 207

simulations are run under two scenarios: a fixed system (controlled environment) and a 208

system undergoing a bifurcation (changing environment). These simulations are then 209

labelled as controlled and changing; and the logistic transform method can be tested on 210

its ability to correctly classify the simulations. In particular, for each EWS i, a binary 211

logistic regression with lasso regression (l1−penalty) is used to get the optimum weights 212

w
(i)
t and the intercept w0, where the training data are used for refining the weights and 213

training the algorithm. This assumes that the timepoints for each EWS time-series is an 214

independent data point and assigns equal importance to all data points when fitting the 215

logistic regression. 216

A logistic transformation of a weighted composition of EWSs, Dt, is considered and 217

the time-of-detection is inferred when Dt > c, where c is the detection threshold. The 218

value of c is also found using a supervised learning technique, by computing the ROC 219
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5,000

simulations

of controlled

environment

and 5,000 of

a bifurcation

changing

environment

Calculate the

EWS for each

simulation

Logistic regression

(l1−penalty) to get

weights w
(i)
t for each

EWS (i) and intercept

w0, by optimising

the classification

of controlled and

changing environments

Find c by minimising

the classification

error (between Dt of

controlled and Dt of

changing environments)

using the ROC curve

Early Warning

Signal

statistic of

observed data

{xt}t∈[1,T ]

For each EWS i,

Ct =∑
i(w

(i)
t x

(i)
t −w0)

Dt =
[1 + exp(−Ct)]

−1,

Dt ∈ [0, 1]

k where k =

min({t|Dt > c})

Pre-step 2:
Calculate EWS

Pre-step 1:
Stochastic
Simulations

Pre-step 3:
Calculate Weights

Pre-step 4:
Detection Threshold

Step 1:
Composition

Step 2:
Logistic Transform

Step 3:
Time-of-detection

Fig 3. Flow diagram of the logistic transform detection threshold method

curves and evaluating the value of c which minimises the false positive rate and 220

maximises the true positive rate. Once the value of c is chosen during training, it is 221

then used with the observed data (step 1 to 3 in Fig. 3). 222

We adapt the logistic regression method to use normalised training data rather than 223

raw data. We find that when testing the logistic transform method with data from 224

different settings, such as with a lower population size or a smaller initial number of 225

infections, the weights are not appropriately scaled for the testing data. Instead, we 226

normalise the training data using a z-score standardisation of EWSs, equivalent to 227

Drake & Griffen’s long-run standardisation (see Fig. 1). A standardisation of EWSs 228

allows the weights to be independent of the data scale and greatly improves the 229

generality of the logistic transform method. 230

We generate the training dataset using the same SIS dynamics as the test dataset 231

(described in Supplementary Methods S1). While, Brett & Rohani implemented their 232

method for disease emergence [31], they demonstrated that the same weights could be 233

used for the emergence of pertussis, mumps and even plague. Here, by evaluating the 234

obtained weights with a training dataset which has the same SIS dynamics as the 235

testing dataset, we are assessing the best predictive performance of the logistic classifier. 236

We only train the classifier using data of length 100, which assumes that the weights 237

will be independent of sampling or length of the time-series. Additionally, we calculate 238

the EWSs using a moving window of 50 timepoints for the training dataset and 30 for 239

the testing dataset, to reduce overfitting. 240

Our training data consists of 10,000 Gillespie simulations of incidence data; 241

comprising of 5,000 simulations of a disease approaching elimination (bifurcation 242

changing environment, named Ext) and 5,000 simulations of a disease at the endemic 243

steady state (controlled environment, named Fix). We implement the logistic method 244

using the EWSs: autocorrelation lag-1; autocovariance; standard deviation; skewness; 245

kurtosis; coefficient of variation and index of dispersion. We reduce the total number of 246

combinations of these seven EWSs from 127 to 17, by removing combinations of EWSs 247

where the predicted coefficients are zero and by only considering combinations of EWSs 248

which achieved an AUC ≥ 0.6 with the training data. The weights of each EWS depend 249
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on the combination of EWSs, but in general the autocovariance and the standard 250

deviation are negative; while AC(1), skewness, kurtosis and coefficient of variation are 251

positive. The index of dispersion was the only EWS to sometimes be negative and at 252

other times be positive. 253

Change-point Analysis Methods 254

Maximum Likelihood Estimation 255

Maximum likelihood estimation (MLE) was first proposed by R. A. Fisher in 1922 [40]; 256

it is a popular method for approximating unknown parameter values that describe or fit 257

to some observed data. It works by assigning a likelihood L(Θ|X) distribution, 258

describing the probability of the parameters of the system being Θ giving the data, X. 259

The MLE approach can also be used to find the optimal timepoint for when the 260

probability distribution describing the data changes. Analytically, it has been shown 261

that the fluctuations about the steady state can be described with a Gaussian 262

distribution with a mean of zero and a variance [1, 3]; thus we use the Gaussian 263

distribution as the likelihood for the MLE method. We aim to find the optimal 264

timepoint in the data describing when the variance of the fluctuations changes. Under 265

this framework, the data prior to change point, τ , is described by a Gaussian 266

distribution with variance σ2
1 such that xi ∼ N (0, σ2

1) for i = 1, ..., τ and after the 267

change point the underlying probability distribution has a variance σ2
2 e.g. 268

xi ∼ N (0, σ2
2) for i = τ + 1, ..., T . Our null hypothesis assumes that the two variances 269

(and distributions) are equal, σ2
1 = σ2

2 and the alternative hypothesis is that a single 270

change point τ exists such that σ1 ̸= σ2. 271

Therefore the null hypothesis (H0) is given by,

log(LH0) = log(ΠT
i=1p(xi|Θ0)),

= −1

2
log(2π)− T log(σ1)−

T∑
i=1

(xi)
2

2σ2
1

,

dim(Θ0) = 1,

and the alternate hypothesis (H1),

log(LH1) = log(ΠT
i=1p(xi|Θ1)),

= −1

2
log(2π)− τ log(σ1)− (T − τ)log(σ2)−

τ∑
i=1

(xi)
2

2σ2
1

−
T∑

i=τ+1

(xi)
2

2σ2
2

,

τ̂ = argmax1≤τ≤T (log(LH1
(τ)))

dim(Θ1) = 3.

We require the variance to satisfy σ1 ≥ σ2 ≥ 0 for incidence-type data (e.g. the 272

variance of the fluctuations is decreasing and positive, as demonstrated analytically 273

in [3]) and σ2 ≥ σ1 ≥ 0 for prevalence-type data (e.g. the variance is increasing, see [3]). 274

Compared to the other detection algorithms we analyse, the MLE technique is 275

performed on the entire time-series, rather than in real-time. Additionally, this method 276

does not consider that the variance may be changing gradually and so it is perhaps 277

more useful for examining if a bifurcation has already occurred in the system, rather 278

than anticipating a future bifurcation. The change-point detection is based on the 279

likelihood ratio procedure using model selection penalties. Hypothesis testing is 280

performed with the likelihood ratio test, D = −2log(
LH0

LH1
(τ̂) ) and a penalty criteria, to 281
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decide whether the change-point τ is significant or not. If the null hypothesis is rejected 282

then the value of τ̂ is accepted. In the hypothesis testing, we compare the likelihood of 283

Θ ∈ Θ0 with Θ ∈ Θ1 and often the model selection criteria depends on the property 284

k = dim(Θ1)− dim(Θ0) = 2. Different penalty criteria can be considered to decide 285

where to reject the hypothesis and usually the null hypothesis is rejected when D > λ, 286

where λ can be defined as: 287

• No model selection: Accept all, λ = 0, 288

• Hannan-Quinn information criterion (see [41]): λ = 2klog(log(T )), 289

• Akaike information criterion (AIC) (see [42]): λ = 2k = 4, 290

• Wilks’ Theorem (see [43]): At the 5% level, λ = χ2
k(0.95) ≈ 7.38, 291

• Bayesian information criterion (BIC) (see [44]): λ = klog(T ), 292

• Modified BIC (MBIC) (see [45]): λ = log(T ) + log(τ) + log(T − τ + 1). 293

Without model selection, the null hypothesis will always be rejected, thus when 294

implementing the MLE approach on a stationary time-series the percentage of false 295

alarms will be 100%. As λ is increased, the specificity of the algorithm will increase, 296

although the sensitivity could decrease. Hannan-Quinn and the two BIC criteria depend 297

on the length of the time-series T , and for the lengths we examine, the criteria for 298

Hannan-Quinn is always lower than AIC (λ < 4). The BIC criteria is sometimes lower 299

than Wilks’ Theorem ( e.g. at T = 20) and other times greater and the MBIC criteria 300

will always be the greatest unless the value of τ = 0. An important property of the 301

MLE states that limn→∞E(Θ̂) = Θ, which implies that as the number of samples are 302

increased, the estimated parameter values are closer to the truth. Thus, we expect the 303

MLE to be more robust for longer lengths of time-series data. 304

Quickest Detection 305

User input distributions

f (pre- bifurcation),

g (post- bifurcation)

and detection threshold

A. Can use MLE as a

pre-processing technique

with simulated data

to find f and g.

Detrend the

observed data

{xt}t∈[1,T ]

For each new data

point xi, calculate

Ri = (1 + Ri−1)Λi,

where Λi = g(xi)
f(xi)

k where

k = min({t| Rt > A})

Pre-step 1:
User-input parameters

Step 1:
Update S-R statistic

Step 2:
Time-of-detection

Fig 4. Flow diagram of the Quickest Detection method

Quickest detection is an online approach which assumes that the time-series 306

{x1, x2, ..., xT } is drawn from a probability distribution f(xi) for observation xi and 307

that after a signal is detected, the time-series is described by the probability distribution 308

g(xi) (see schematic 4). A detection is triggered when the likelihood ratio of g(xi) and 309

f(xi) exceeds the threshold A. The likelihood ratio, also known as the Shiryaev–Roberts 310

(SR) Procedure (see [25]), is given by the recursive relation Rn = (1 +Rn−1)Λn, R0 = 0, 311

where Λn = g(xn)
f(xn)

. Like the EWS based methods for time-of-detection, the quickest 312

detection method is updated every time a new data point arrives, making it suitable to 313

be an automated process. The change point τ , is the first time when Rτ > A. 314
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The quickest detection method requires the user to choose useful distributions for f, g 315

as well as the value of A. The threshold, A, can be described at the expected number of 316

time steps to a false positive given a tolerance to false alarms. The method can be 317

sensitive to the choice of f , g and A. Carpenter et al. [24], suggest fitting a Normal 318

distribution f to the first 50 timepoints of the time-series and then describing g with a 319

Normal distribution with a larger mean and variance, chosen from tests on simulated 320

time-series. By implementing the MLE method first, distributions for f(x) and g(x) can 321

be found using the entire time-series of a single simulated training dataset and then the 322

quickest detection method can be tested in real-time on the testing datasets. 323

Evaluating Detection methods 324

To compare each method, we assess its ability to detect a signal of an approaching 325

disease elimination critical transition and examine how early the critical transition can 326

be detected. We also assess each method’s ability to not detect any critical transition in 327

a disease process where a transition is not present. We use the same Gillespie 328

simulation study of incidence data from Southall et al. [3] (further details are provided 329

in Supplementary Methods S1), involving 500 simulations of the SIS model going 330

through a bifurcation (i.e. going extinct, named Ext), 500 simulations of the SIS model 331

at steady state (named Fix) and 500 simulations of the SIS model which have the same 332

initial dynamics at Ext however do not reach elimination (i.e. not going extinct, named 333

NExt). The data and code used to run these simulations can be found at 334

https://github.com/ersouthall/Time-of-detection. 335

We evaluate each detection method using the same testing data of Ext, Fix and 336

NExt simulations. We sample the original time-series (of length 500) and consider how 337

the detection methods perform for different lengths of available data. In particular, we 338

consider four different lengths of time-series: 20 timepoints, 50 timepoints, 100 339

timepoints and 250 timepoints. The study is designed so that the bifurcation should 340

occur at 80%× length(time-series) and we measure the lead-time between a detected 341

signal and this timepoint. 342

Sensitivity, specificity and the power metric 343

We compare the sensitivity and specificity of each method and between EWSs. The
power metric [46] combines the score of sensitivity and specificity into a single
performance measure and can be used to evaluate the predictive power of each method
for each EWS. The power metric is defined as,

PM(x) = TPR(x)− FPR(x) ∈ [−1, 1],

where x represents a detection method and TPR is the true positive rate (e.g. out of 344

the 500 simulations of Ext, the proportion which detect a critical transition) and FPR 345

is the false positive rate. A score closest to 1 is the best and a score close to -1 is the 346

worst. Using the power metric allows us to rank indicators and composition of 347

indicators by maximising both sensitivity and specificity. 348

As we are considering two null datasets (Fix and NExt data), we define the false
positive rate of Fix simulations as FPR1 and of NExt simulations as FPR2. Similarly,
the true negative rate (TNR) is given as TNR1 and TNR2 respectively. To account for
two null datasets, we adjust the power metric giving,

PM(x) = 2TPR(x)− FPR1(x)− FPR2(x) ∈ [−2, 2].
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Extension: consecutive timepoints 349

In each method discussed above, the time-of-detection is given by the first timepoint 350

when the metric considered exceeds the defined threshold. We modify this definition, by 351

taking the time-of-detection to be the first time when multiple consecutive points are 352

above the threshold. This constraint removes scenarios when an anomalous timepoint, 353

or isolated timepoints, are observed above the threshold but the majority lie below. As 354

a system approaches a critical transition, we expect the number of consecutive points 355

above the threshold to increase, which would more likely reflect a critical transition. 356

Using multiple consecutive timepoints will also help to highlight denser regions which lie 357

above the threshold, thus giving a stronger confidence of the lead-time. 358

A consecutive signal approach has previously been suggested with the 2-sigma 359

composite method and evidence showed that using only two consecutive points is 360

sufficient for reducing the number of false identifications [32,37]. However, an analysis 361

on the “best” number of consecutive points has not been conducted. In particular, the 362

most suitable number of consecutive points may depend on the length of the time-series; 363

the EWSs considered; the time-series data available (e.g. incidence or prevalence); the 364

system’s dynamics (e.g. rate of elimination) and the detection method used. 365

We extend the proposal of using multiple consecutive points to examine the optimal 366

number of consecutive points, which we find by minimising classification errors for each 367

detection method. We examine the consecutive signal approach for all methods which 368

use a threshold: 2-sigma composite, changing p-value, logistic transform and quickest 369

detection. Error rates can be visualised by ROC curves [47]. ROC curves are 370

constructed by measuring the sensitivity and specificity of each EWS at different 371

threshold values. To minimise classification errors, we present discrete ROC curves for 372

each EWS and find the threshold (number of consecutive points) which maximises the 373

power metric from these curves. The performance of each detection algorithm is 374

measured by the area under the curve (AUC) of the ROC curve. An AUC score of 1 375

will indicate that the algorithm correctly detected an EWS in all Ext simulations, and 376

that there was also perfect specificity (no false detections were reported in the null 377

datasets). We study the ratio of consecutive points of the dataset and whether there is 378

a general trend in the best number of consecutive points by percentage of the 379

time-series length. In particular, we consider if any significant issues arise when 380

implementing the methods on shorter time-series. 381

Results 382

In Fig. 5, we demonstrate how the online detection methods (2-sigma, changing p-value, 383

logistic transform and quickest detection) work for a single time-series. Each detection 384

method was initially proposed in the literature as detecting a transition when a single 385

time-point exceeded the threshold (given by a single bold marker). In the example 386

shown in Fig. 5, all methods result in some false alarms, whereby the null datasets, Fix 387

and NExt, are shown to trigger a detection (green and purple bold markers respectively). 388

However, for the Fix data these are sparse (e.g for the 2-sigma method Fig. 5(a)) and 389

for the NExt data these are often in small clusters (e.g. for the 2-sigma and logistic 390

composite method Fig. 5(a,c)). This supports the use of requiring multiple consecutive 391

points to exceed the threshold, in order to trigger a detection. For a time-series which is 392

undergoing disease elimination (Ext data, blue line), the concentration of detected 393

points increases on the approach to the transition, until all points exceed the threshold. 394

By implementing a consecutive point strategy, it will result in a later time-of-detection 395

(smaller lead-time), since the earlier detected points (Ext data, blue) which exceeded 396

the threshold will no longer satisfy the additional consecutive point threshold. Thus, 397
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(a) 2-sigma composite (CV)
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(c) Logistic composite (index of dispersion)
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(d) Quickest Detection

0 20 40 60 80 100
Time

30

20

10

0

10

20

30

Sh
iry

ae
v

Ro
be

rts
 P

ro
ce

du
re

Fig 5. Comparison of detection methods: For an incidence time-series of length
100, each detection method is demonstrated on a single time-series of Ext data (blue
line), Fix data (green line) and NExt data (purple line). The detection method
considered: (a) 2-sigma composite framework: shown for a single EWS (CV), (b)
Kendall’s τ p-value methodology: shown for a single EWS (CV), (c) the logistic
composite methodology: shown for a single weighted EWS (InD) and (d) the quickest
detection approach: shown with σ1 = 34, σ2 = 2.4 and A = log(T ). Each detection
method was initially described by detecting a critical transition when the statistic
crosses the relative threshold; this is shown in these figures using bold markers. Blue
markers highlight true classification and green or purple markers indicate false
classification.
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when determining how many consecutive points are sufficient, there is a trade off 398

between whether a high specificity is necessary or a longer lead-time. 399

The exception is the changing p-value method, where nearly all 500 simulation sets 400

exhibited a very high false detection rate with the NExt data (Fig. 5(b)). This method 401

uses Kendall’s τ score and previous work by Dessavre et al. has reported the poor 402

predictive power when classifying Ext simulations from NExt simulations using 403

Kendall’s τ score [48]. In some cases, we find that when implementing the changing 404

p-value method, the NExt data exceeded the threshold earlier and with more dense 405

regions of detected points than the Ext data. 406

Clement et al., [33] recommended the use of two consecutive points with the 2-sigma 407

method. However, we observe that in this example (Fig. 5(a)) a two consecutive point 408

constraint is not sufficient to remove the isolated cluster of falsely detected NExt data 409

points (purple bold markers). However, a two consecutive point constraint will remove 410

all the anomalous detection points from the Fix data (green bold markers). Hence, by 411

implementing the 2-sigma method on a more realistic null dataset of declining incidence, 412

we find that a stricter number of consecutive points are needed. We propose to 413

implement a similar consecutive point approach with the other online detection methods 414

(Fig. 5(b-d)) and use ROC analysis to find the optimal number of consecutive points. 415

The power metric measures the difference between true positives and false positives 416

(so that higher values represent a better ratio of true positives to false positives). We 417

expect the power metric to initially increase as the number of consecutive points 418

increases, as this will reflect a reduction in the number of false positive detected points 419

without influencing the true positive rate. In Fig. 6, we present the results from our 420

power metric analysis applied to multiple EWSs (full list of EWSs can be found in 421

Supplementary Methods S2) for a time-series of length 100 and we investigate how the 422

power metric changes when the number of consecutive points are increased from one 423

(Fig. 6). In the Supporting Information we include the power metric analysis for 424

time-series of length 20, 50 and 250 in Fig. S1. In Fig. 6 and Fig. S1, we show that in 425

general the performance of all online detection methods improve with the consecutive 426

points. The quickest detection method is the best method for maximising the power 427

metric for all time-series lengths and is the only method to return a reasonable power 428

metric score when a single consecutive point is used (left most column in Fig. 6(a-d)). 429

In general, a suitable detection threshold A for the quickest detection method can be 430

described as A = log(T ), where T is the length of the time-series. 431

Although the quickest detection method performs best when comparing the power 432

metric, we show that when only the first 80% of the time-series is analysed (i.e. data 433

prior to the critical transition at t∗ = 80) the power metric drops and the quickest 434

detection method is no longer suitable (Fig. 7(b)). The power metric reduces for all 435

detection methods when only considering data up to the bifurcation point (see Fig. S2), 436

however this is the most severe for the quickest detection. This implies that the 437

time-of-detection for the quickest detection method is delayed (post bifurcation) for 438

nearly all 500 simulation sets and that the method is detecting disease elimination 439

rather than an advanced indication that R0 is crossing through 1 due to a change in the 440

variance. As such, there is little lead-time with this method, as it does not provide an 441

early signal of the bifurcation. In comparison, the 2-sigma method also worsens 442

(although more mildly) suggesting that the time-of-detection for some simulations occur 443

after the bifurcation point. The logistic composite is the least impacted, implying that 444

the logistic composite method gives the largest lead-time. In particular, with the 445

2-sigma method, we find that the composite CV+Va has a fairly strong power metric, 446

although it is not as robust at CV (Fig. 6(a)), however when using just 80% of the 447

time-series, CV+Va outperforms the other composites (Fig. 7(a)). This is due to the 448

composite, CV+Va, obtaining the lowest FPR1 score. As, NExt and Ext data are the 449
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(d) Quickest Detection
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Fig 6. Power Metric Analysis: For a time-series of length T = 100, the power
metric is calculated as 2TPR− FPR1 − FPR2 ∈ [−2, 2] for each statistic. The power
metric results are shown for each online detection method considered: (a) 2-sigma
composite, (b) Kendall’s τ p-value, (c) the logistic composite and (d) the quickest
detection approach. Each detection method was initially described when the number of
consecutive points was one (left column in all panels). Each figure demonstrates how the
power metric changes when a stricter constraint on the number of consecutive points are
required to cross the threshold before the detection is triggered. A list of EWSs and
their acronyms used in this figure can be found in Supplementary Methods S2
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same up to t = 74, all composites struggle to minimise FPR2 prior to t = 80 and thus 450

the power metric presented in Fig. 7 is driven by the FPR1 score. 451

(a) 2-sigma
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(b) Quickest Detection
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Fig 7. Power metric for time-series data up to the bifurcation point. For a
time-series of length 100 and bifurcation occurring at t∗ = 80, the total power metric
(2TPR− FPR1 − FPR2), is calculated over the time-series data up to the bifurcation.
Results are shown for each detection method considered: (a, 2-sigma composite) and (d,
quickest detection). A list of EWSs and their acronyms used in this figure can be found
in Supplementary Methods S2

The power metric can also be used to identify the worst statistics (score ≤ 0) and 452

this information can be summarised by measuring the AUC score, as shown in Fig. 8. 453

In Fig. 8, we illustrate the AUC describing the classification errors between Ext and Fix 454

data (lower triangles) and for classification errors between Ext and NExt data (upper 455

triangles). The AUC is calculated from ROC curves which illustrate how the sensitivity 456

and specificity changes as the number of consecutive points above the threshold are 457

varied. The optimal number of consecutive points can be found by selecting the best 458

possible cut-off value from the ROC curves (i.e. the cut-off value which assigns the 459

ROC curve point in the upper left corner). This is shown for a range of time-series 460

lengths (time-series of lengths: 250, 100, 50 and 20) which we generate by sampling the 461

incidence time-series data at different frequencies. We find that combinations of AC(1), 462

decay time and variance perform poorly for all time-series lengths with the 2-sigma 463

method (Fig. 8(a)). This is reflected with an AUC score near 0.5, describing a random 464

classification between Ext simulations and the null datasets. A similar behaviour is 465

observed when considering AC(1) and decay time with the changing p-value method 466

(Fig. 8(b)) and combinations of AC(1) and autocovariance with the logistic composite 467

method (Fig. 8(c)). 468

An ideal detection method and EWS, would have a robust AUC score (AUC ≥ 0.75) 469

using both null datasets. In Fig. 8 this would correspond to blue shading in both the 470

lower and upper triangles, which can be found for the quickest detection method 471

(Fig. 8(d)) for all values of A, except for the shortest time-series, where it only holds for 472

2.5 ≤ A ≤ 4.5. Whereas, Kendall’s τ changing p-value is not a suitable method, as the 473

AUC with NExt simulations is near 0.5 for all EWSs and all time-series lengths. For the 474

2-sigma method, the best combination of EWSs is CV which has an AUC score of 475

(AUCFix, AUCNExt) ≥ (0.99, 0.77) for all time-series lengths. In general, for the 476
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(b) Kendall’s τ p-value
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(c) Logistic composite
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(d) Quickest detection
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Fig 8. ROC Curve analysis (AUC): For each detection method, ROC curves are
calculated for each EWS by recording the TPR and FPR scores for each constraint on
the number of consecutive points required to exceed the detection threshold. The AUC
of the ROC curve results are shown for: (a, 2-sigma method); (b, Kendall’s τ method);
(c, logistic composite method) and (d, quickest detection method), indicating the
predictive performance of each EWS for different length time-series considered (lengths:
250, 100, 50 and 20). Each heatmap shows the ROC curve analysis for the TPR given
by disease elimination simulations and the FPR given by two different null models. The
bottom triangles show the steady state null model (Fix) and the top triangles show
decreasing incidence null model (NExt). A list of EWSs and their acronyms used in this
figure can be found in Supplementary Methods S2
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logistic composite method, combinations which contain index of dispersion (InD) 477

perform well and similarly to the 2-sigma method std + CV is a suitable combination. 478

The combination InD + Acov provides the highest AUC score with NExt simulation 479

(AUCFix, AUCNExt) = (0.75, 0.68), although InD gives the highest combined AUC 480

score (AUCFix, AUCNExt) = (0.92, 0.66) — neither combination are robust for 481

time-series length 20. 482

We find the best number of consecutive points for each online detection method and 483

for each EWS and we evaluate this as a percentage of the length of the time-series. This 484

is summarised across all EWSs for each detection method in Fig. S3. In general, we 485

observe that for quickest detection, the best number of consecutive points is less than 486

5% of the time-series and that for both null datasets, quickest detection achieves an 487

AUC ≥ 0.9 except for a time-series of length 20 (Fig. S3(a), 0.55 ≤ AUC ≤ 0.9) – 488

agreeing with Fig. 8 and Fig. 6. Similarly, for the 2-sigma composite method, there is a 489

clear general trend with the best number of consecutive points being between 5− 10% 490

of the time-series; however as found in Fig. 8, the AUC score is less concentrated and 491

some compositions perform poorly. For the logistic method a higher number of 492

consecutive points are optimal, with the general trend suggesting between 10− 25% of 493

the time-series length. However, some composites perform best with over 30%. There is 494

not a general trend across time-series lengths for Kendall’s τ p-value method, with 495

results ranging from 1− 50%. As such, the biggest disadvantage of this method is that a 496

large number of points are required to cross the threshold in order to minimise the 497

classification errors. This is an impractical constraint and limits the potential of this 498

method to be used in real-time. 499

We consider the EWS (or composite of EWSs) which achieves the highest AUC for 500

each method and compute the time-of-detection of each simulation set. We evaluate the 501

time-of-detection using the consecutive points strategy, where we use the best number of 502

consecutive points for each EWS which we found during the ROC analysis. In particular, 503

we examine the CV using 12 consecutive points with the 2-sigma method; the CV using 504

5 consecutive points with Kendall’s τ p-value method; the InD using 21 consecutive 505

points with the logistic composite method and the quickest detection method with 506

A = log(100) ≈ 4.5 using 6 consecutive points. Additionally, we implemented the MLE 507

method, which is a retrospective method and cannot be considered in real-time. 508

We find that with the 2-sigma method, the time-of-detection is on average just after 509

the critical transition (no lead-time), with a mean time-of-detection of 82.2 for the Ext 510

simulations (blue distribution Fig. 9(a)). As we consider a 12 consecutive point strategy, 511

the points above the threshold begin on average at 70.22, thus, if a less strict constraint 512

is used, the time-of-detection will on average be before the critical transition. There are 513

few false detections with the steady state data (8 out of 500, shown in the green 514

distribution) and 107 simulations of NExt data returned a false detection (purple 515

distribution). The false positive rate found with the 2-sigma method is much lower than 516

the high number of false positives returned with the other EWS based methods: 517

Kendall’s τ p-value approach (Fig. 9(b)) and logistic composite (Fig. 9(c)). Although, 518

the logistic method has a fairly predictive performance when tested on the Fix dataset 519

(FPR1 = 0.214), it is worse when tested with the NExt data (FPR2 = 0.672, correctly 520

classifying only 164 simulations). Even so, it does not perform as poorly as Kendall’s τ 521

p-value method, which cannot distinguish the NExt simulations from the Ext 522

simulations (Fig. 9(b)); this approach detected disease elimination in 496 (out of 500) 523

NExt simulations and 497 (out of 500) Ext simulations. 524

The shape of the distribution of detection times is wider for Kendall’s τ p-value and 525

the logistic composite compared to the 2-sigma method; where a narrower distribution 526

suggests a higher confidence in the returned time-of-detection. However, the logistic 527

composite method has a higher sensitivity (blue distribution Fig. 9(c)) and the mean 528
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time-of-detection is before the critical transition (mean 79 with a lead-time of 1 529

timestep). This implies that the Ext simulations started to cross the threshold on 530

average at t = 58 (lead-time of 22 timesteps). This slight lead-time (with constraint) 531

agrees with our findings in Fig. S2(a) where the power metric reduces for InD when 532

only considering the time-series up to the bifurcation. However, for other indicators 533

such as the combination of standard deviation, skewness and CV, the power metric did 534

not decrease and therefore will have a larger lead-time and may be preferred. 535

In contrast, the change-point analysis based methods return a perfect sensitivity 536

(score of 1, Fig. 9(d,e)) and a near perfect specificity for both null datasets. The MLE 537

method with the MBIC penalty is given in Fig. 9(e), we find that the MBIC penalty 538

reduces the largest number of false detections compared to the other penalties 539

considered, shown in Fig. S4. The higher the penalty criteria, the fewer the number of 540

NExt simulations incorrectly classified. The quickest detection approach does not return 541

any false detections, although the time-of-detection with Ext data is on average at 542

t = 95.78. This suggests that the quickest detection method is detecting disease 543

extinction rather than when R0 crosses through 1, agreeing with our analysis of the 544

power metric up to the bifurcation (Fig. 7). Further, only 10 out of 500 Ext simulations 545

gave a time-of-detection before the critical transition for the MLE approach. Although 546

we use change-point analysis to detect when the variance changes (an EWS detection), 547

both MLE and quickest detection signal after the bifurcation, indicating that 548

change-point analysis approaches do not give an early warning of the critical transition. 549

2-sigma
composite

Kendall’s τ
p-value

Logistic
composite

Quickest
Detection MLE

True positive rate
(disease elimination) 0.888 0.994 0.996 1 1
True negative rate 1

(steady state) 0.984 0.852 0.786 1 1
True negative rate 2
(declining incidence) 0.786 0.008 0.328 1 0.88

Table 1. Time-series length 100. Statistic used (number consecutive points used):
2-sigma, CV (12); Kendall’s τ , CV (5); logistic, InD (21); quickest detection,
A = log(100) (13).
Table Notes: The table provides the TPR, TNR1 and TNR2 for the most predictive
statistic and number of consecutive points of each detection method. The best
performing online method is highlighted in violet, the second best in blue and the MLE
(offline method) is highlighted in grey. A result in bold font has a classification rate
≥ 0.75.

For the quickest detection method, we define the distributions f and g to be 550

Gaussian and use a mean of zero (since the data are detrended) with the values of σ1 551

and σ2 found using the MLE approach. We estimate σ1 = 34 ≥ 2.4 = σ2 and for this 552

distribution the results of quickest detection are in Fig. 9. However, when implementing 553

the quickest detection method without using MLE to find the parameters, Carpenter et 554

al. [24] suggested using the first 50 time-points of the time-series. We consider the 555

variance of the first 25 time-points for a time-series of length 100 and find the range of 556

estimated σ1’s to be [20.5, 53.4] (from the 500 simulations of Ext). By taking σ2 to be a 557

reduction of σ1, we show in Fig. S5 how the quickest detection method performs for a 558

different distribution. In particular, we find that for σ1 = 40 and σ2 = 10, the 559

time-of-detection is earlier (nearer to the bifurcation), although the number of false 560

positives increases. 561

In Table 1 we summarise the results of Fig. 9 for each time-of-detection method. We 562

also present the sensitivity and specificity of each method when performed on time-series 563
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(a) 2-sigma composite

0 20 40 60 80 100
Time

true positives rate: 0.888
false positives 1 rate: 0.016
false positives 2 rate: 0.214

(b) Kendall’s τ p-value

0 20 40 60 80 100
Time

true positives
rate: 0.994
false positives 1
rate: 0.148
false positives 2
rate: 0.992

(c) Logistic Composite Measure

0 20 40 60 80 100
Time

true positives rate: 0.996
false positives 1 rate: 0.214
false positives 2 rate: 0.672

(d) Quickest Detection

0 20 40 60 80 100
Time

true positives rate: 1.0
false positives 1 rate: 0.0
false positives 2 rate: 0.0

(e) Maximum Likelihood Estimation with
MBIC penalty

0 20 40 60 80 100
Time

true positives rate: 1.0
false positives 1 rate: 0.0
false positives 2 rate: 0.12

Fig 9. Time-of-detection from simulated data: for Ext data (blue boxplots), Fix
data (green boxplots) and NExt data (purple boxplots). For each 500 simulation sets, a
detection is observed following the threshold criteria of each method: (a) 2-sigma
composite with CV and 12 consecutive points; (b) Kendall’s τ p-value with CV and 5
consecutive points; (c) logistic composite with InD and 21 consecutive points; (d)
quickest detection with weights obtained from the MLE method, A = log(100) and 6
consecutive points and (e) MLE with the MBIC penalty criteria. Vertical red dashed
line shows the time of the true bifurcation calculated for disease elimination. A list of
EWSs and their acronyms used in this figure can be found in Supplementary Methods
S2
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data of length: 20 (Table S1); 50 (Table S2) and 250 (Table S3). In particular, bold font 564

in all tables indicates a robust score (TPR, TNR1 or TNR2) which is greater or equal 565

to 0.75. The grey shading indicates that the MLE method is an offline approach, which 566

should be accounted for in the comparison. Violet shading highlights the detection 567

method which has the maximum sensitivity and specificity. In particular, we find that 568

the quickest detection method performs best for all time-series lengths. The blue 569

shading highlights any other suitable method. We find that the 2-sigma method is the 570

only (non change-point analysis) approach that is robust for the detection of disease 571

elimination. In particular, we find that the quickest detection method with different 572

parameter values (Fig. S5) has a lower false positive rate than the EWS based methods 573

for long time-series (lengths 100 and 250), however, for shorter time-series the 2-sigma 574

method achieves the highest sensitivity and specificity. Thus, although the TPR and 575

TNR2 are not robust (≥ 0.75) for the 2-sigma with time-series of length 20, it is the best 576

performing method when the distributions of the quickest detection method are changed. 577

However, we do not find the 2-sigma method to be a suitable approach for long 578

time-series, as the TNR2 is near to 0.5 (false classification for 50% of the simulations). 579

Discussion 580

A challenge of using EWSs to anticipate critical transitions is determining how to infer 581

when an EWS becomes significant and how to measure how early a critical transition 582

can be detected before it is reached. In this paper, we reviewed and validated the use of 583

online detection algorithms from the EWS literature and assessed whether they can be 584

applied to an infectious disease system for the detection of disease elimination. 585

Out of the three EWS based methods which we analysed, two of the methods 586

(2-sigma threshold and changing p-value), had not been previously tested with a 587

controlled environment. Communicating the performance of each algorithm for a 588

controlled environment is clearly important for minimising the number of false 589

detections when applying the algorithm in practice. In particular, many of the EWS 590

based methods demonstrated that disease elimination could be distinguished from a 591

disease at the endemic steady state. However, we found that if an algorithm is only 592

tested on data described by a controlled environment at the steady state it may give a 593

false impression on the reliability of the method. Ideally, online detection methods 594

should not detect a signal in time-series data that have reduced reporting, which can 595

occur if mass screening events stop or if a disease is no longer notifiable, given that this 596

type of data may not be bifurcating. Here, we showed that it is also possible to 597

distinguish disease elimination from a system of declining incidence which does not go 598

through a critical transition. We found that the 2-sigma method was the only method 599

which provided a robust and timely classification with this null dataset, although 600

performance depended on which EWS was used. In particular, the specificity of all 601

detection methods were markedly worse when using a more realistic null dataset. We 602

consistently found that change-point analysis based methods reduced the false positive 603

rate the most for both null datasets. However, we found that change-point analysis 604

based approaches did not provide a lead-time of the critical transition. This work 605

supports the use of change-point analysis to identify when a bifurcation occurred, such 606

as with historical data, although we suggest that they are inappropriate for the 607

detection of disease emergence, whereby a large lead-time is necessary. 608

Since epidemiological datasets are often of low temporal resolution, we considered 609

how the methods performed for shorter time-series datasets. All online detection 610

methods worsened when considering shorter time-series, we found that the specificity of 611

all algorithms worsened when less than 50 data points were used, while the sensitivity 612

could be maintained. Even so, the change-point analysis based methods were still 613
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robust in data poor settings. However, we found that if different input distributions 614

were used with the quickest detection approach, the method was no longer suitable and 615

was outperformed by the 2-sigma method for a time-series of length 20. Thus, a 616

limitation of the quickest detection method is determining suitable distributions which 617

describe the detrended data. 618

We found that the most reliable detections occurred when a consecutive point 619

strategy was included. We demonstrated that by requiring multiple time-series points to 620

be observed above the detection threshold, the performance of all algorithms greatly 621

improved. The majority of false detections with the steady state data were sparse 622

isolated points which crossed the threshold. For the more realistic null dataset, small 623

clusters of points were observed above the threshold. Hence, using a consecutive point 624

strategy would reduce the false positive rate. Here, we examined the number of 625

consecutive points which would be optimal to minimise the classification errors. We 626

noted that by including an additional constraint, the lead-time reduced, as multiple 627

points were required before a detection was alarmed. We found that for some detection 628

methods, a strategy using over 40% of the length of the time-series would be 629

recommended as the best number of consecutive points, thus delaying the first possible 630

time-of-detection by over 40%. Therefore, there is a trade off between whether a high 631

specificity is necessary or a longer lead-time. 632

The advantage of using a combination of multiple EWSs has previously been 633

discussed and the 2-sigma method and logistic composite method used a combination of 634

EWSs. With the 2-sigma method we found that the most reliable indicator was a single 635

indicator (CV), although the EWSs which provided the best lead-time were the 636

combination CV + Va. Similarly, for the logistic method, the most reliable indicator 637

was InD, however again a combination of EWSs provided an earlier detection. 638

Additionally, InD performed best with a large number of consecutive points (around 639

20%) while a combination of EWSs worked well with fewer consecutive points (around 640

5%). A potential improvement for the 2-sigma method would be to include a weighted 641

composition, rather than using an indicator function. We considered using the weights 642

obtained in the logistic regression with the 2-sigma composite method, testing 2.244CV - 643

2.3Va (instead of CV-Va) and our initial findings showed that the TPR improved from 644

0.454 to 1 and the TNR1 from 0.872 to 1 (Fig. 10). However, the TNR2 decreased 645

significantly from 0.87 to 0.084. Thus, further exploration is needed to find suitable 646

weights of EWSs, such that the false positive rate with NExt data is minimised. One 647

potential approach could be to train the logistic classifier using the NExt null dataset 648

rather than the Fix dataset. 649

A limitation of the methods investigated here is whether they are truly 650

model-independent. In particular, for the 2-sigma, Kendall’s τ p-value, quickest 651

detection and MLE methods we used knowledge of the analytical behaviour of variance. 652

We used a negative coefficient, right-tailed p-value and a decreasing σ1 ≥ σ2 constraint, 653

respectively, to inform us that the variance of incidence should decrease on the approach 654

to a critical transition. Even though the logistic composite method required a 655

computationally exhaustive pre-processing element to train the algorithm, it did also 656

obtain a negative coefficient for the variance, agreeing that the EWS decreases. The 657

aim of EWSs is to provide model-independent approaches for informing critical 658

transitions. However, due to discrepancies between systems when implementing these 659

methods, in practice it is necessary to understand the expected behaviour of EWSs first. 660

These results strongly support the use of a consecutive point strategy as suggested 661

by Clements et al. [32, 37]. We found that the original two-consecutive point strategy is 662

insufficient for reducing the false positive rate with a more realistic null dataset. We 663

analysed the best number of consecutive points which would improve the classification 664

of each detection method and compared the reliability and lead-time of each detection 665
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(a) Original: CV-Va

0 20 40 60 80 100
Time

true positives rate: 0.454
false positives 1 rate: 0.128
false positives 2 rate: 0.13

(b) Weighted: 2.244CV - 2.3Va

0 20 40 60 80 100
Time

true positives rate: 1.0
false positives 1 rate: 0.0
false positives 2 rate: 0.916

Fig 10. Weighted composite with the 2-sigma approach: For a time-series of
length 100, the time-of-detection is calculated for the 500 simulations sets. We compare
the composite CV-Va using the 2-sigma method and an 6 consecutive point constraint,
with a weighted composite of the two indicators CV and Va. The weights are
determined using the logistic regression from the logistic composite method, and the
composition 2.244CV - 2.3Va is presented.

method. Our results highlight that the optimal number of consecutive points depends 666

on the EWS considered, the time-series length and the detection method used. We 667

demonstrated that the 2-sigma method is the most robust EWS based detection method 668

and found its strong performance was maintained for different lengths of time-series 669

data. While, for retrospective analyses, we found that the quickest detection method 670

performed better, providing the highest sensitivity and specificity. Further work is 671

needed to address the suitability of the consecutive strategy with the detection of 672

disease emergence and whether any of the detection methods considered will provide a 673

sufficient lead-time with a disease emergence system. Finally, considerations for the 674

operational use of detection algorithms remains an open topic. In particular, integrating 675

EWSs into a decision theory framework to determine how decision makers should 676

interpret the detection of an upcoming disease transition and assign a cost to a false 677

detection of disease elimination. 678

Data availability 679

Data and code to reproduce results are available at 680

https://github.com/ersouthall/Time-of-detection. 681

Supporting information 682

Supplementary Methods S1 Simulation Study This section provides further 683

details on the methods used to generate the synthetic data and the parameter values 684

used in the simulation study (Table S1). 685

Supplementary Methods S2 A description of how EWSs are computed This 686

section provides further details on how EWSs are computed on the time-series data, 687

including a list of EWSs used in this paper (and their acronyms) in Table S2. 688

Fig. S1 Power Metric Analysis: for different time-series lengths considered 689

(lengths: 20, 50, 100 and 250). Each heatmap shows the total power metric 690
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(2TPR− FPR1 − FPR2 ∈ [−2, 2]) for the two null models considered, where TPR is 691

calculated as the proportion of disease elimination simulations which are successfully 692

detected; FPR1 is the proportion of steady state simulations which are incorrectly 693

detected and FPR2 is the proportion of declining incidence (but not bifurcating) 694

simulations which are incorrectly detected. Each group of subplots shows the results for 695

each detection method considered: (a) 2-sigma composite framework, (b) Kendall’s τ 696

p-value methodology, (c) the logistic composite methodology and (d) the quickest 697

detection approach. Each figure demonstrates how the performance of the total power 698

metric changes when stricter constraints on the number of consecutive points required 699

to cross the threshold are applied. 700

Fig. S2 Power metric for time-series data up to the bifurcation point. For 701

a time-series of length 100 and bifurcation occurring at t∗ = 80, the total power metric 702

(2TPR− FPR1 − FPR2), is calculated over the time-series data up to the bifurcation. 703

Results are shown for each detection method considered: (a, Kendall’s τ p-value); (b, 704

logistic composite). 705

Fig. S3 Number of consecutive points: For each detection method, the “best” 706

number of consecutive points are found from the ROC curves by selecting the number of 707

consecutive points which minimises the classification error. Each scatter plot shows the 708

best number of consecutive points as a percentage of the time-series length for each null 709

dataset: triangular markers show NExt results and circular markers show Fix results. 710

Results are shown for time-series of length (a) 20, (b) 50, (c) 100 and (d) 250 and for 711

each online detection method: 2-sigma (blue); Kendall’s τ p-value (orange); logistic 712

(green) and quickest detection (red). 713

Fig. S4 Maximum likelihood estimation with different penalties: For a 714

time-series of length 100, the time-of-detection of Ext data (blue boxplots); Fix data 715

(green boxplot) and NExt data (purple boxplots). For each 500 simulation set, the 716

time-of-detection is calculated using the MLE approach and the alternative hypothesis 717

is accepted following a penalty criteria. Penalty criteria considered: (a) Hannan-Quinn, 718

(b) AIC, (c) Wilk’s Theorem, (d) BIC and (e) MBIC. The TPR, FPR1 and FPR2 are 719

given in the legend. 720

Fig. S5 Quickest detection performance for different distributions f and g. 721

Find σ2
1 as the variance of the first 25 time-points of a time-series of length 100. For our 722

500 simulation sets, we find σ1 ∈ [20.5, 53.4]. In this example, we take σ1 = 40 and 723

σ2 = 10 and use a 6 consecutive points constraint, as before. 724

Table S1 Time-series length 20. Statistic used (number consecutive points used): 725

2-sigma, CV (2); Kendall’s τ , CV (10); logistic, InD (3); quickest detection, A = log(20) 726

(3). 727

Table S2 Time-series length 50. Statistic used (number consecutive points used): 728

2-sigma, CV (7); Kendall’s τ , CV (25); logistic, InD (10); quickest detection, 729

A = log(50) (7). 730

Table S3 Time-series length 250. Statistic used (number consecutive points used): 731

2-sigma, CV (15); Kendall’s τ , CV (74); logistic, InD (49); quickest detection, 732

A = log(250) (33). 733
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