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Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory
syndrome coronavirus 2. Millions of people have fallen sick, and some have died due to this affliction
that has spread across the globe. The current pandemic has disrupted normal day-to-day human life,
causing a profound social and economic burden. Vaccination is an important control measure that
could significantly reduce the incidence of cases and mortality if properly and efficiently distributed. In
this work, an age-structured model of COVID-19 transmission, incorporating an unreported infectious
compartment, is developed. Three age groups are considered, namely: young (0-19 years), adult (20-64
years), and elderly (65+ years). The transmission and reporting rates are determined for each group
by utilizing the number of COVID-19 cases in the National Capital Region in the Philippines. Optimal
control theory is employed to identify the best vaccine allocation to different age groups. Further, three
different vaccination periods are considered to reflect phases of vaccination priority groups: the first,
second, and third account for the inoculation of the elderly, adult and elderly, and all three age groups,
respectively. This study could guide in making informed decisions in mitigating a population-structured
disease transmission under limited resources.

Keywords: COVID-19, mathematical modeling, aged-structured model, optimal control theory, vac-
cination

1 Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease due to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Two years have passed since the World Health Organization characterized
the COVID-19 outbreak as a pandemic [11], with over 468 million confirmed cases and just over 6 million
reported deaths globally at the time of writing [10]. Its emergence has disrupted not only public health
but also the global economy. Unfortunately, with the highly contagious Omicron variant driving the
current increase of reported cases around the world [10], this pandemic is still not over.

To analyze the transmission dynamics of this infectious disease, mathematical modeling has exten-
sively been used and has played an essential role in predicting, assessing, and controlling outbreaks
[44]. Numerous compartmental epidemiological models, such as SIR (susceptible-infectious-recovered),
SIRS (susceptible-infectious-recovered-susceptible), and SEIR (susceptible-exposed-infectious-recovered)
models, have been developed in the past decades, to represent the transmission of infectious diseases
[16, 17, 25, 32]. Moreover, to properly identify interventions that can prevent outbreaks, one needs to
take into account the social structure and mixing patterns, which vary across countries in different stages
of development and with different demographics, in the epidemic model [39]. In the Philippines, early
studies on COVID-19 revealed that while only eight percent of the population are in the age group 60
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and over, they account for the majority of all COVID-19 deaths so far; and while individuals below age
60 dominate the reported cases, they account for only a third of total deaths [2, 12,43].

Vaccine is a biological preparation that stimulates one’s immune response against a particular disease.
Vaccine administration known as vaccination is an effective method designed to prevent an infectious
disease [5]. To reduce the risk of contracting COVID-19, several vaccines have been approved worldwide
for public use [1]. However, due to global demand and limited supply of vaccines against the virus, analysis
of priority in the vaccine roll-out is vital.

Several studies use optimal control theory to investigate compartmental models in epidemiology. In
particular, Gaff and Schaefer (2009) focused on finding the optimal response balancing vaccination and
treatment strategies that will minimize the number of infected individuals with variations of standard SIR,
SIRS, and SEIR epidemiological models [24]. In addition, Hansen and Day (2011) extended their work
on the optimal control of a basic SIR epidemic model and obtained policies for an isolation-only model,
a vaccination-only model, and a combined isolation–vaccination model [26]. For the COVID-19-specific
study, Kantner and Koprucki (2020) provided a study for the epidemics with purely non-pharmaceutical
interventions based on an extended SEIR model and optimal control theory [29]. Moreover, Djidjou-
Demasse et al. (2020) investigated optimal COVID-19 epidemic control via social distancing and lockdown
measures until the deployment of vaccines [20]. Additionally, Obsu and Balcha (2020) used optimal
control to minimize the number of exposed and infected populations that took into account the cost of
implementation [36]. In the Philippine setting, Estadilla et al. (2021) considered the impact of vaccine
supplies and delays on the optimal control of the COVID-19 pandemic [23]. Furthermore, Olivares and
Staffetti (2021) considered optimal control to suggest a suitable schedule for vaccination and testing
policies to control the spread of COVID-19 [37]. Finally, age-structured non-pharmaceutical interventions
for optimal control of the COVID-19 epidemic were established by Richard et al. in the Burkina-Faso,
France, and Vietnam settings [42].

In this work, we focus on the National Capital Region (NCR), which is the most densely populated
region and the center of the economy of the Philippines [8]. Our study generally aims to develop an age-
structured model that could describe the spread of COVID-19 in the NCR and identify effective control
strategies based on optimal control theory. Specifically, this work aims to consider a dynamic model
incorporating the effects of age-dependent susceptibility to COVID-19 infection in the NCR; obtain time-
dependent optimal vaccination policies based on priority groups in different periods of vaccine roll-out; and
assess the corresponding allocation of vaccines to each group. To the best of our knowledge, this is the first
study that applies optimal control theory to a COVID-19 age-structured model in the Philippines. Since
testing and contact tracing of suspected COVID-19 cases in the Philippines were lagging [27], our model
incorporates possible unreporting in the different age groups. The capacity of daily vaccine administration
is also considered to identify the prioritization of vaccination in different age groups so that the number
of infections is minimized.

2 Methodology

2.1 Age-Structured Model

In this work, a modified deterministic SEIR compartmental framework is used to model the progression
of COVID-19 in the National Capital Region (NCR), Philippines. We consider the total population (N)
as a sum of the four epidemiological classes: susceptibles (S), exposed (E), infected (I), and recovered
(R). Individuals from the susceptible population can be exposed to the disease from interaction with
infected individuals at a transmission rate λ. Upon acquiring infection, they move to the exposed class

and stay in this stage for an average period of
1

α
, where α is the latency rate. In our model, we assume

that the incubation period, which is the time period from acquiring the virus until developing symptoms,
has the same duration as the latent period, the period from acquiring the virus until becoming infectious
[13,15,31,33,40]. After this period, the infection worsens, the exposed individual develops infectivity, and
is then moved to the infectious class.

In this model, the infectious class is subdivided into two. First, the reported subclass Ir is composed
of individuals who are tested and recorded as virus-positive with reporting rate ρ. The second is the
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Figure 1: Schematic diagram of the COVID-19 disease transmission model. Compartments in the model
are classified into distinct epidemiological classes: Susceptible (S), Exposed (E), Reported Infectious (Ir),
Unreported Infectious (Iu), and Recovered R. Each compartment is then stratified into three age groups:
Young (0-19), Adult (20-64), and Elderly (65+). The subscript i denotes a particular age group.

unreported subclass Iu, which considers infectious individuals who are not reported due to the absence
of testing brought about by socio-economic burden, under-reporting, and/or misreporting. Taking into
account the possible transmission contributions of these two subclasses, we consider the force of infec-

tion λ = β
Ir + σIu

N
, where β is the transmission rate and σ is a multiplicative factor denoting relative

infectiousness of Iu. Note that Iu includes both asymptomatic and symptomatic infectious individuals
who are not in quarantine or isolation. After being infectious, an individual may either progress to the
recovered class with a recovery rate γ, or die due to the disease with a disease-induced death rate µ. The
model limits the progression of the disease to a single infection, i.e., recovered individuals are no longer
infectious and are immune to reinfection.

It has been observed that COVID-19 cases and risk severity increases with age [19,21]. Since population
structure plays a significant role on the disease transmission dynamics [14], each epidemiological class is
further divided into three age groups: young (0-19 years), adult (20-64 years), and elderly (65+ years). The
grouping is consequential to the following protocols implemented by the Philippine government during the
community quarantine placed into effect since March 2020: (1) the group of individuals below 20 years
old is comprised mainly of students whose social mixing is impacted by the suspension of face-to-face
classes, (2) the majority of the individuals aged 20-64 years old are considered as the working population
who are authorized to attend to the basic needs of their families, and (3) the persons who are 65 years
old and older are prohibited to go out of their residences, except for unavoidable circumstances [6].

A contact matrix C = (Cij) denoting the interactions between an age group i with other age groups
j is incorporated to account for the effect of mixing patterns in the disease transmission [39–41]. Using
this, we modify the force of infection λi for a susceptible individual in age group i as follows

λi = βi

3∑
j=1

Cij

Irj + σjI
u
j

Nj
, (2.1)

where βi is the transmission rate of age group i, the notations Irj , I
u
j , Nj are the reported infectious,

unreported infectious, and total population of age group j, respectively, σj is a multiplicative factor
relative to the transmission contribution of Iuj in group j, and i, j = 1, 2, 3, correspond to each age group.
Figure 1 schematically depicts the disease progression for an age group i.

The disease transmission dynamics can be described by the following set of coupled ordinary differential
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Table 2.1: Parameters and initial values for the different age groups.

Parameter Unit
Age Groups

Source
Young (0-19) Adult (20-64) Elderly (65+)

transmission rate (β) 1/day 0.0056 0.0115 0.0284 estimated
factor of unreported transmission (σ) dimensionless 2 2 2 assumed
latency rate (α) 1/day 0.20 0.20 0.20 assumed
reporting rate (ρ) dimensionless 0.2240 0.7011 0.9980 estimated
death rate (µ) 1/day 0.0476 0.050 0.0476 [3]
recovery rate (γ) 1/day 0.0282 0.0305 0.0333 [3]
initial susceptible population (S0) people 5,073,679 8,147,853 539,190 computed
initial exposed population (E0) people 1,845 2,957 196 computed
initial reported infectious population (Ir0) people 30 328 42 [3]
initial unreported infectious population (Iu0 ) people 286 177 0 computed
initial recovered population (R0) people 78,193 108,425 9,237 [3]
initial deceased population (D0) people 1,511 2,095 179 [3]
total population (N0) people 5,155,544 8,261,835 548,844 [8]

equations

dSi
dt

= −λiSi,

dEi

dt
= λiSi − αiEi,

dIri
dt

= ρiαiEi − µiI
r
i − γiI

r
i ,

dIui
dt

= (1− ρi)αiEi − µiI
u
i − γiI

u
i ,

dRi

dt
= γi (I

r
i + Iui ) ,

(2.2)

where λi is the force of infection, αi is the latency rate, ρi is the reporting rate, µi is the death rate, and
γi is the recovery rate, for a particular age group i. Table 2.1 lists the set of parameters, their descriptions
and units, including initial values for the state variables of the three different age groups.

2.2 Data Acquisition

Age-specific case numbers compiled and reported by the Department of Health (DOH) in the Philippines
are used in this study. Information from January 1, 2021 until February 28, 2021, on the incidence cases
for young, adult, and elderly groups are extracted from the DOH Data Drop [3].

The study considers only the National Capital Region (NCR) as the area of interest due to its soaring
number of cases, its high mobility and population density, and most importantly, its significant share
of the vaccine allocation. The daily incidence cases for the three different age groups considered are
shown in Figure 2(A-C). The biggest share of reported cases is among the adult group with 82.80%,
followed by the young group with 9.27%, while the elderly group had the least contribution of only 7.93%
of the total cumulative cases since January 1, 2021, as depicted in Figure 2(D). An increasing trend of
cumulative cases can also be observed across the three age groups. Note that the adult group constitutes
the biggest population share of about 59.16%, and the relative population shares of young and elderly
groups are, 36.91% and 3.93%, respectively. However, in terms of infection rate, the elderly group has
the highest susceptibility to infection with 3.4%, followed by the adult and young groups, with 2.3% and
0.3%, respectively (refer to Figure 2(E)).

2.3 Contact Matrices

Transmission of an infectious disease such as COVID-19 is influenced by the social structure involving
person-to-person interactions which vary by age and locations – at home, at the workplace, at school, or
in the community [33, 41]. Our model considers the effect and contribution of the various social mixing
in these different locations.
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Figure 2: (A-C) Daily reported cases for young (blue), adult (red), and elderly (yellow) group with the
corresponding 7-day moving average (black curve). (D) Cumulative cases for the three different age groups
from January 1 to February 28, 2021. Adult group comprises the bulk of COVID-19 cases. (E) Infection
rate for elderly, adult, and young populations based on cumulative cases until February 28, 2021. The
elderly group shows the highest susceptibility to infection.

Matrices for household (Dh), workplace (Dw), school (Ds), and community (Dc) contact can be
obtained from [41] and are shown in Figure 3. The data consists of four 16 × 16 matrices binned in 15
five-year age levels (0− 4, 5− 9, ..., 70− 74) and a single age group with ages 75 and above. The total of
the four matrices when added can represent the whole contact matrix D = (Dkl), i.e.,

Dkl = Dh
kl +Dw

kl +Ds
kl +Dc

kl.

The matrix entries Dkl show a pre-pandemic view of the number of contacts in the kth age group of a
certain jth age group population in the Philippines.

We reduce the size of these matrices from 16 × 16 to a mere 3 × 3 corresponding to our clumped
age groups which are denoted by C = (Cij). The process is detailed in Appendix A. Additionally, this
3 × 3 total contact matrix C = (Cij) can be rewritten accordingly based on [30] to integrate the non-
pharmaceutical interventions during the pandemic, i.e.,

Cij = vhCh
ij + vwCw

ij + vsCs
ij + vcCc

ij , i, j = 1, 2, 3,

where the coefficients vh, vw, vs, and vc correspond to the implemented contact interventions in house-
holds, workplaces, schools, and communities, respectively. Note that these equate to one if no intervention
is implemented, and equate to zero if interactions in such location are entirely halted. One obvious value
is vs = 0 for schools have been closed since the start of the community quarantine. We assign vh = 1 since
household members are maintained to be close contacts. On the other hand, the regulated workforce and
community interactions can be assumed to be at 50% or vw = vc = 0.50. Applying these coefficients, we
get the contact matrices in Figure 4.

The final contact matrix C = (Cij) is shown in the left of Figure 4. For the young compartment, the
first row of the contact matrix is [C1J ] = [4.086, 4.135, 0.261] where J = 1, 2, 3. Even with the interventions
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Figure 3: Baseline contact matrices in the Philippines during pre-COVID-19 pandemic showing strong
interactions within the same age group in different locations. Figure is reproduced from [41]. For visual-
ization, the shown matrices D† are flipped upside down, i.e., D† = JD where J is the backward identity.

Figure 4: Assumed mitigated 3× 3 contact matrices in the Philippines considering the young, adult, and
elderly population groups in total, household, workplace, school, and community context. For visualiza-
tion, the shown matrices C† are flipped upside down, i.e., C† = JC where J is the backward identity.

brought about by government policies such as the closure of schools, this row contains high values due
to continuous contact among the juvenile population in households and communities. As for adults, we
have the second row [C2J ] = [2.000, 5.888, 0.200] where J = 1, 2, 3. For this age group, close contacts are
largely observed in the workplace and communities, even though only 50% of the population is allowed to
interact. On the other hand, the elderly population has the least contact with all age groups, including
itself, as seen in row [C3J ] = [0.902, 2.145, 0.372] where J = 1, 2, 3. This can be attributed to prohibitions
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of elderly citizens from activities beyond their homes.

2.4 Parameter Estimation

We used the population projection of DOH for 2021 as the initial population for the system (i.e.,
N0 = 13, 966, 223). This can be divided accordingly into the young (N1,0 = 5, 155, 544), adult (N2,0 =
8, 261, 835), and elderly (N3,0 = 548, 844) compartments using the available population fractions data.
The remaining initial values for the compartments are seen in Table 2.1.

From Table 2.1, the total E0 is approximated from the result of the 2020 COVID-19 model [22]. On
the other hand, the initial reported infectious Ir0, deceased D0, and recovered R0 populations are derived
from the tallied data in [3] and divided according to the size of the age groups. The initial unreported
compartment is approximated as Iu0 = (1 − ρ)αE0, immediately after parameter estimation. As for the
initial susceptible population S0, it can be calculated as S0 = N0 − (E0 + Ir0 + Iu0 +R0 +D0).

The multiplicative factor σ for unreported infections is held at 2 for all age groups. This presumes that
undetected infectious interactions are twice those of the detected. The latency rate α is assumed to be
1/5, corresponding to 5 days of disease progression from infection to the infectious state. The death rate µ
and recovery rate γ are calculated from the data in [3] since dates of confirmation, death, and recovery are
available. Lastly, the transmission rate β and reporting rate ρ will be identified via parameter estimation.

The process of parameter estimation aims to identify selected parameters as a result of minimizing an
objective function. In this paper, we use the sum of the squared difference between the selected data and
the solution of the model as the objective function to identify the transmission rate β and reporting rate
ρ of each age group.

The data used are the daily reported cases from [3] during the dates of January 1 until February 28,
2021, dubbed the pre-vaccination period. For the objective function, we use the following three arbitrary
differential equations

dIr,newi

dt
= ρiαiEi, (2.3)

where Ir,newi denotes the cumulative new reported cases for age group i. The differences of these solutions
are the reported daily new cases. To incorporate the probable late reporting of cases, we consider the 7-day
moving average as the base data. A derivative-free simplex method is used which is capable of constrained
and multivariate optimization. Latin hypercube sampling [28,35] is also done to better sample the initial
guesses of the method.

Upon choosing the best fit among the estimated parameters, bootstrapping [18] is performed by redoing
the parameter estimation multiple times with the best model fit as the data used including Poisson noise.
By increasing the number of realizations, the estimated parameters may change and a confidence interval
will be determined.

2.5 Optimal Control Problem

For the control problem in this study, we pay particular attention to vaccination efforts. Three controls
are considered, each of which corresponds to the vaccination efforts for each age group. Specifically,
the controls u1(t), u2(t), u3(t) denote the vaccination effort for the young, adult, and elderly age group,
respectively. Incorporating these controls in Model (2.2) yields the following disease-controlled model

dSi
dt

= −λiSi − θiuiSi,

dEi

dt
= λiSi − αiEi,

dIri
dt

= ρiαiEi − µiI
r
i − γiI

r
i ,

dIui
dt

= (1− ρi)αiEi − µiI
u
i − γiI

u
i ,

dRi

dt
= γi (I

r
i + Iui ) + θiuiSi,

(2.4)
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Table 3.1: Best parameter estimates for the transmission and reporting rates using the least-squares
method, and the mean and median of the 1000 re-estimates in bootstrapping

Parameter
Bootstrap Results

Young (0-19) Adult (20-64) Elderly (65+)
Initial Mean Median Initial Mean Median Initial Mean Median

transmission rate (β) 0.0057 0.0057 0.0056 0.0115 0.0115 0.0115 0.0278 0.0288 0.0284
reporting rate (ρ) 0.2238 0.2236 0.2240 0.7006 0.7014 0.7011 1.000 0.9606 0.9980

where θi denote vaccine efficacy for age group i. Note that an assumption of this system is that only
susceptible individuals are candidates for vaccination. Here, the Pontryagin Maximum Principle (PMP)
is employed to formulate the optimal control problem [34].

The objective is to minimize the number of infected individuals in Iri and I
u
i across different age groups

with minimum vaccination administrative cost. This yields the following objective functional

J
(
u1(t), u2(t), u3(t)

)
=

∫ tf

t0

3∑
i=1

(
Iri (t) + Iui (t) +

Bi

2
u2i (t)

)
dt, (2.5)

where [t0, tf ] refers to the period of vaccination effort, and for i = 1, 2, 3, Bi’s are weight constants
representing the costs required to administer the corresponding control measures. Note that the controls
are expressed as quadratic functions to take into account the nonlinear costs for the implementation of
each control. Utilizing PMP leads to minimizing the objective functional in Equation (2.5) subject to the
constraints given by Model (2.4).

We want to identify the optimal controls u∗1(t), u
∗
2(t), and u

∗
3(t) such that

J
(
u∗1(t), u

∗
2(t), u

∗
3(t)

)
= min

U
J
(
u1(t), u2(t), u3(t)

)
, (2.6)

where
U =

{
ui ∈ L 2(t0, tf ) | ai ≤ ui ≤ bi, i = 1, 2, 3

}
. (2.7)

The upper (bi) and lower (ai) bounds for each control represent the maximum and minimum implemen-
tation efforts, respectively. If ui = 0, then it suggests that no vaccination effort is employed, while ui = 1
denotes that maximum effort is exerted for vaccine administration in the corresponding age group i. A
theorem stating the existence of the optimal controls and corresponding states is given in Appendix B.

3 Results and Discussion

3.1 Estimated Transmission and Reporting Rates

To complete the parameters in Table 2.1, we use parameter estimation using new cases from January 1 up
to February 28, 2021, to get the transmission and reporting rates for each of the three age groups. Figure
5 shows the best fit of the model compared to the data on cumulative cases for the young, adult, and
elderly groups. From the parameter bootstrapping, the 95% confidence interval is also shown as bands
around the best model fit. We close up as well on the cumulative data and model solution at the endpoint
on February 28, 2021.

Meanwhile, the estimated parameters and their mean and median values from the 1000 bootstrap
realizations are presented in Table 3.1 and shown as distributions in Figure 6. Transmission is highest
among the elderly with β3 = 0.0288 and least among the young age group with β1 = 0.0057. The mean
reporting rate for the young, adult, and elderly are 22.36%, 70.14%, and 96.06%, respectively. Since the
elderly are more likely to experience severe symptoms than the younger age groups, then we observe a
higher reporting rate in the elderly group. Meanwhile, there is possible under-reporting in children and
teenagers since testing resources are primarily given to priority groups such as front-line workers and
symptomatic patients.
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Figure 5: Comparison between raw data (black dots), 7-day moving average data (black line), and model
output with 95% confidence interval for young (blue), adult (red), and elderly (yellow) compartments
for cumulative data. Close-up (violet) of the cumulative data on the last day, February 28, 2021, is also
shown for comparison between the data and the model.

3.2 Optimal Vaccination Strategies

The main strategy used in this study is adding vaccination efforts according to the age-dependent vaccine
prioritization imposed by the government. We use optimal controls for each age group to represent this
pharmaceutical intervention. These optimal vaccination strategies are obtained by solving Model (2.4)
with vaccine efficacy set to θi = 90% for all age groups, i = 1, 2, 3, and with weight parameters B1 = 10−6,
B2 = 10−6, and B3 = 10−5, shown in Table 3.2.

Time Period Age Group
Minimum daily Maximum daily Weight
vaccination rate vaccination rate parameter

Period 1
(March 1 - June 6, 2021)

0-19 0 0 10−6

20-64 0 0 10−6

65+ 0.001 0.01 10−5

Period 2
(June 7 - October 14, 2021)

0-19 0 0 10−6

20-64 0.001 0.01 10−6

65+ 0.001 0.03 10−5

Period 3
(October 15, 2021 - February 28, 2022)

0-19 0.001 0.1 10−6

20-64 0.001 0.1 10−6

65+ 0.001 0.1 10−5

Table 3.2: Values used for the numerical simulations of the optimal control problem for each time period
and specific to each age group.
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Figure 6: Histogram of parameter estimates for each age group after 1000 realizations from bootstrapping
with their respective mean (red, dashed) and median (black, solid) values.

A one-year period from March 1, 2021, the official starting date of vaccination in the Philippines, is
chosen as the time window for the optimal vaccination strategies. We divide this vaccination period into
three: first, March 1, 2021, to June 6, 2021, where the vaccine inoculation is only administered to the
elderly [9]; second, June 7, 2021, to October 14, 2021, where the adult population, most of whom are in
the working class, started to be inoculated [4]; and last, October 15, 2021, to February 28, 2022, where
the young population was allowed to be vaccinated [7].

Furthermore, we assume that once vaccination becomes available to a particular age group, the max-
imum vaccination rate for the first period of implementation is low due to the adjustments in implemen-
tation, and speeds up in the next vaccination period. It is also assumed that in the third period, vaccine
supply is sufficient so that all control parameters for vaccination can be increased to 0.1. Specifically, for
the elderly population, the maximum vaccination rate in the first period is set at 0.01, increased to 0.03
in the second period, and increased further in the third period to 0.1. For the adult population, it is set
at zero in the first period as no vaccination is available yet, then it is set at 0.01 in the second period,
and then increased to 0.1 in the third period. Lastly, for the young population, the maximum vaccination
rate is set at zero in the first two periods and is increased to 0.1 in the last period. Once vaccination
becomes available to a certain age group, implementation is continuous even if they are not the priority
group. Then, the lower bounds for the vaccination efforts are all set at a relatively lower value of 0.001.
These additional values used for the optimal control problem are summarized in Table 3.2.

Figure 7 shows the optimal vaccination strategy obtained for all the age groups. The daily scheduled
vaccination effort for the elderly (u3) shall be maintained at the upper bound for Periods 1 and 2. In
particular, the optimal control chooses the maximum vaccination effort to prevent the elderly and the
adult groups from getting infected. It suggests that efficient and effective implementation of vaccine
administration, exhausting all possible limited resources. In Period 3, more vaccine supply is available,
vaccine administration is easier, and vaccination hesitancy is lower than the previous periods. However,
the results depict that the vaccination efforts for all the groups should be at the maximum for the first
few months and must be sustained for the adult and young groups throughout the considered inoculation
duration. It is more likely that the target number of elderly to be inoculated is achieved around the
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Figure 7: Control profiles for the vaccination of the elderly, adult, and young populations for Period 1
(March 1, 2021 - June 6, 2021), Period 2 (June 7, 2021 - October 14, 2021), and Period 3 (October 15,
2021 - February 28, 2022).

midway of Period 3. Thus, the control effort for the elderly can be decreased and then re-allocated to the
other groups.

For the daily scheduled vaccination effort for the adults (u2), once they are allowed to be vaccinated
(from June onward), a maximum daily vaccination effort shall be scheduled in Period 2. The maximum
effort shall remain for Period 3 until before the end of February when vaccination can be lowered.

Finally, the daily scheduled vaccination effort for the younger population (u1) shall also be at maxi-
mum, once they are allowed to be vaccinated (from October 15 onward). Vaccination can be decreased
towards the end of February, a little later than the lowering of efforts for the adult population. Generally,
throughout the course of the first two periods, in order to reach optimal results, the vaccination efforts
must be set to the maximum value. For the third period, the control efforts can be lowered towards
the end with a relatively earlier lowering of vaccination efforts for the elderly population which can be
attributed to their comparatively smaller population.

Figure 8 shows that without intervention, the projected number of daily infected cases can reach
up to 21, 208 for the elderly population, 317, 640 for the adult population, and 128, 509 for the young
population. Meanwhile, the optimal vaccination strategies result in a significant decrease in the number
of infected individuals across all age groups. The controls result in a peak of 63, 753 cases for the adult
age group, 28, 177 for the young age group, and 1, 537 for the elderly age group. It can also be observed
that even without vaccination in the period June to October, the age group 0− 19 exhibits a significant
decrease in the infected population. This means that the vaccination of the adult and elderly populations
have a great impact on reducing the number of infections in the younger population. It is observed from
Figure 8 (left panel) that the number of daily incidence cases does not decrease immediately within the
initial phase of vaccination roll-out, e.g., first and second period for elderly and adult, respectively. This
can be attributed to the delayed immunization effect of the vaccines. Though the young individuals are
vaccinated in the third period, the incidence cases are already decreasing due to the vaccination of elderly
and adult population in the previous periods.

Figure 9 shows a comparison of the infected populations with and without control. Even with control,
the largest contributor to the total infections is the adult age group which is followed by the young
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Figure 8: Total daily active cases without (dashed) and with (solid) optimal control strategies for both
reported and unreported compartments for young, adult, and elderly populations.

Figure 9: Upper panel shows the cumulative new reported COVID-19 cases without control (left panel,
dashed) and with control (right panel, solid) for the young (blue), adult (red), and elderly (yellow).
Lower panel depicts the cumulative cases at the end of each vaccination period and their respective
percent decreases.

population and then the elderly population. This is intuitive since the adult population comprises the
bulk of the total population, and also the most mobile and interacting group. The inoculation of the
elderly population during the first period led to a decrease in cumulative cases for all age groups, ranging
from 41% for the young, 43% for the adult, and 49% for the elderly. When adults were allowed to get
vaccines during the second period, a massive decrease in infections can be seen from uncontrolled to the

Page 12 of 19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.27.22275675doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.27.22275675
http://creativecommons.org/licenses/by-nc-nd/4.0/


controlled system. The percent decreases are 397% for the elderly, 251% for the adult, and 254% for the
young. However, inoculation for the young population in the third vaccination period decreased this even
further wherein a 392% drop can be observed for the young, 440% for the adult, and 897% for the elderly.

4 Conclusion

In this paper, we developed an age-structured compartmental model for COVID-19 with an unreported
infectious class. The epidemiological compartments are divided into three groups: young (0-19 years),
adult (20-64 years), and elderly (65+ years), according to vaccine prioritization. We denote these groups
by i = 1, 2, and 3, respectively.

A contact matrix is used to incorporate the interaction among individuals across various age groups.
Specifically, each entry of the matrix takes into account the contributions from the number of daily
contacts between the considered age group i with other age groups j in household, workplace, school, and
community. Furthermore, we introduced the force of infection denoted by λi for a susceptible individual
for the ith age group. It is composed of two factors. The first one is the transmission rate for this
particular age group. The second one is the sum of the product of the associated entry of the contact
matrix and the proportion of the infected cases over all three age groups j = 1, 2, 3, for the given specific
age group i. Moreover, the unreported cases are multiplied by a factor denoted by σi, which is the relative
contribution to transmission of the unreported class for the associated age group.

Most of the model parameters are obtained from the literature or aggregated from available data.
Reporting and transmission rates are estimated because they are country/region-specific and are not
readily available. Estimation was performed using a least-squares formulation by fitting the model to the
cumulative case data. Results show that both reporting and transmission rates are higher in the older age
group. Our simulation suggests that thousands of cases in young and adult populations were undetected.
Uncertainty analysis showed the reliability of the estimates.

Given the limited availability and administration of the vaccines in the first half of the year 2021,
we analyzed the effect of age-targeted vaccine distribution by comparing the model output when no
intervention is imposed, against the output when vaccination is introduced in the model. The results
of the numerical simulations for the controls show that efforts from the government in implementing its
vaccination drive in the country should always be at maximum until towards the end of the last period
when vaccination can be lowered initially for the elderly population first, then for the adult population,
and lastly, for the young population. Moreover, implementing the vaccine strategies as early as possible
can reduce the cumulative reported cases in the young, adult, and elderly population by 392%, 440%, and
897%, respectively. The results from the optimal control problem can be attributed to the proportion of
each age group to the total population, the transmission rate specific to each age group, and the order of
prioritization in vaccination.

Our model took into account age structure and unreporting. The model was applied when the vac-
cination program started, assuming that one vaccine dose can already provide immunity. Further model
iterations are needed to include the impact of the succeeding shots and the effect of waning immunity. At
the beginning of the vaccination period, only one variant was dominant in the Philippines so variants were
also not incorporated into the model. Nevertheless, integrating these into the model is an exciting re-
search direction, but would require other vaccination and breakthrough infection data and would demand
a separate study. Ultimately, the aim of this study is to guide the policymakers in crafting strategies
that can mitigate the spread of an infectious disease considering age-dependent transmission and limited
vaccine supply. Although the model is tested using Philippine data, the model is general enough that it
can be applied to other regions with similar situations.
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Appendix A. Computation of the 3× 3 Contact Matrices

The four 16× 16 pre-pandemic contact matrices for different interactions and their total can be reduced
to a size that clumps together the five-year age levels into three main age groups for the young, adult,
and elderly populations. Let C be the corresponding 3× 3 total contact matrix from D. The superscripts
also follow for reduced contact matrices for different interactions, e.g., Ch is the reduced Dh.

The young age group contains ages from 0 to 19 that correspond to the first four age levels. The adult
age group covers the most age levels which are from 20 to 64. Lastly, ages 65 and above will be classified
under the elderly age group. From here, we can determine sets containing the indices of each of these age
groups, i.e.,

X1 = {1, 2, 3, 4}, X2 = {5, 6, 7, 8, 9, 10, 11, 12, 13}, and X3 = {14, 15, 16},

where X1 is for the young age group, X2 is for the adult age group, and X3 is for the elderly age group.
This can be observed on Table .1.

Using the latest available data for the National Capital Region from the Philippine Statistics Authority
[8], we can create a 16×1 vector d = (dk) that contains the population fraction dk of each of the age level
k for D. We determine its elements by dividing the age group population over the total population. The
values of population fraction dk for k = 1, 2, . . . , 16 are shown in Table .1.
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Table .1: Age groups and their respective population fractions based on the 2015 NCR Population.

Age group Index (i) Ages Population per age group Population fraction (di)

Young

1 0-4 1200443 0.093221978
2 5-9 1163719 0.090370128
3 10-14 1135592 0.088185889
4 15-19 1253803 0.097365719

Adult

5 20-24 1349005 0.104758756
6 25-29 1265102 0.098243158
7 30-34 1104618 0.085780562
8 35-39 963867 0.074850358
9 40-44 817789 0.063506479
10 45-49 712253 0.055310942
11 50-54 591442 0.045929206
12 55-59 468406 0.036374683
13 60-64 345164 0.026804164

Elderly
14 65-69 223238 0.017335840
15 70-74 122964 0.009548931
16 75+ 159848 0.012413206

Total 12877253 1

Figure 10: The obtained 3×3 contact matrices considering the young, adult, and elderly population groups
in total, household, workplace, school, and community context. For visualization, the shown matrices C†

are flipped upside down, i.e., C† = JC where J is the backward identity.

The formula of obtaining C = (Cij) is

Cij =

∑
k∈Xi

∑
l∈Xj

Dkldk∑
k∈Xi

dk
(.1)

where i, j ∈ {1, 2, 3} correspond to the young, adult, and elderly populations, respectively.
For example, if we want to get C13 from the total contact matrix D, which is the contact value of

the young population relative to the elderly population, we consider the indices i ∈ X1 and j ∈ X3. The
denominator simply adds up the population fraction of the young population to get 0.3959. Meanwhile,
the numerator considers the values for the 4 × 3 submatrix of D with row indices from X1 and column
indices from X3. Each row is summed and multiplied by its respective population fraction. For this
example, we will get the numerator as 0.2110. Hence, the value of C13 is 0.533. This can be observed as
the C†

31 of the first matrix plot in Figure 10.

Appendix B. Existence of Optimal Control and Adjoint Equations

Theorem .1. There exist optimal control u = [u∗1(t), u
∗
2(t), u

∗
3(t)] and corresponding optimal state

X(t) =
(
S∗
i (t), E

∗
i (t), I

r∗
i (t), Iu∗i (t), R∗

i (t)
)
for i = 1, 2, 3, which minimize the objective functional (2.5)
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over all controls in (2.7). Given this optimal pair of solution (u,X), there exist adjoint functions ψk,
k = 1, 2, . . . , 15 such that for the Hamiltonian given by

H =
3∑

i=1

(
Ir,i(t) + Iu,i(t) +

Bi

2
u2i (t)

)
+ ψ1(−λ1S1 − θ1u1S1) + ψ2(λ1S1 − α1E1)

+ ψ3(ρ1α1E1 − µ1Ir,1) + ψ4((1− ρ1)α1E1 − µ1Iu,1 − γ1Iu,1) + ψ5(γ1(Ir,1 + Iu,1) + θ1u1S1)

+ ψ6(−λ2S2 − θ2u
∗
2S2) + ψ7(λ2S2 − α2E2) + ψ8(ρ2α2E2 − µ2Ir,2)

+ ψ9((1− ρ2)α2E2 − µ2Iu,2 − γ2Iu,2) + ψ10(γ2(Ir,2 + Iu,2) + θ2u
∗
2S2) + ψ11(−λ3S3 − θ3u

∗
3S3)

+ ψ12(λ3S3 − α3E3) + ψ13(ρ3α3E3 − µ3Ir,3)

+ ψ14((1− ρ3)α3E3 − µ3Iu,3 − γ3Iu,3) + ψ15(γ3(Ir,3 + Iu,3) + θ3u
∗
3S3),

we have

ψ′
1(t) =

(
λ1 +

∂λ1
∂S1

S∗
1

)
(ψ1 − ψ2) + θ1ψ1u

∗
1 +

∂λ2
∂S1

S∗
2(ψ6 − ψ7) +

∂λ3
∂S1

S∗
3(ψ11 − ψ12)− θ1u

∗
1ψ5

ψ′
2(t) =

∂λ1
∂E1

S∗
1(ψ1 − ψ2) + α1ψ2 − ρ1α1ψ3 − (1− ρ1)α1ψ4 +

∂λ2
∂E1

S∗
2(ψ6 − ψ7) +

∂λ3
∂E1

S∗
3(ψ11 − ψ12)

ψ′
3(t) = −1 +

∂λ1
∂Ir,1

S∗
1(ψ1 − ψ2) + (µ1 + γ1)ψ3 − γ1ψ5 +

∂λ2
∂Ir,1

S∗
2(ψ6 − ψ7) +

∂λ3
∂Ir,1

S∗
3(ψ11 − ψ12)

ψ′
4(t) = −1 +

∂λ1
∂Iu,1

S∗
1(ψ1 − ψ2) + (µ1 + γ1)ψ4 − γ1ψ5 +

∂λ2
∂Iu,1

S∗
2(ψ6 − ψ7) +

∂λ3
∂Iu,1

S∗
3(ψ11 − ψ12)

ψ′
5(t) =

∂λ1
∂R1

S∗
1(ψ1 − ψ2)

ψ′
6(t) =

(
λ2 +

∂λ2
∂S2

S∗
2

)
(ψ6 − ψ7) + θ2ψ6u

∗
2 +

∂λ1
∂S2

S∗
1(ψ1 − ψ2) +

∂λ3
∂S2

S∗
3(ψ11 − ψ12)− θ2u

∗
2ψ10

ψ′
7(t) =

∂λ2
∂E2

S∗
2(ψ6 − ψ7) + α2ψ7 − ρ2α2ψ8 − (1− ρ2)α2ψ9 +

∂λ1
∂E2

S∗
1(ψ1 − ψ2) +

∂λ3
∂E2

S∗
3(ψ11 − ψ12)

ψ′
8(t) = −1 +

∂λ2
∂Ir,2

S∗
2(ψ6 − ψ7) + (µ2 + γ2)ψ8 − γ2ψ10 +

∂λ1
∂Ir,2

S∗
1(ψ1 − ψ2) +

∂λ3
∂Ir,2

S∗
3(ψ11 − ψ12) (.2)

ψ′
9(t) = −1 +

∂λ2
∂Iu,2

S∗
2(ψ6 − ψ7) + (µ2 + γ2)ψ9 − γ2ψ10 +

∂λ1
∂Iu,2

S∗
1(ψ1 − ψ2) +

∂λ3
∂Iu,2

S∗
3(ψ11 − ψ12)

ψ′
10(t) =

∂λ2
∂R2

S∗
2(ψ6 − ψ7) +

∂λ1
∂R2

S∗
1(ψ1 − ψ2) +

∂λ3
∂R2

S∗
3(ψ11 − ψ12)

ψ′
11(t) =

(
λ3 +

∂λ3
∂S3

S∗
3

)
(ψ11 − ψ12) + θ3ψ11u

∗
3 +

∂λ1
∂S3

S∗
1(ψ1 − ψ2) +

∂λ2
∂S3

S∗
2(ψ6 − ψ7)− θ3u

∗
3ψ15

ψ′
12(t) =

∂λ3
∂E3

S∗
3(ψ11 − ψ12) + α3ψ12 − ρ3α3ψ13 − (1− ρ3)α3ψ14 +

∂λ1
∂E3

S∗
1(ψ1 − ψ2) +

∂λ2
∂E3

S∗
2(ψ6 − ψ7)

ψ′
13(t) = −1 +

∂λ3
∂Ir,3

S∗
3(ψ11 − ψ12) + (µ3 + γ3)ψ13 − γ3ψ15 +

∂λ1
∂Ir,3

S∗
1(ψ1 − ψ2) +

∂λ2
∂Ir,3

S∗
2(ψ6 − ψ7)

ψ′
14(t) = −1 +

∂λ3
∂Iu,3

S∗
3(ψ11 − ψ12) + (µ3 + γ3)ψ14 − γ3ψ15 +

∂λ1
∂Iu,3

S∗
1(ψ1 − ψ2) +

∂λ2
∂Iu,3

S∗
2(ψ6 − ψ7)

ψ′
15(t) =

∂λ3
∂R3

S∗
3(ψ11 − ψ12) +

∂λ1
∂R3

S∗
1(ψ1 − ψ2) +

∂λ2
∂R3

S∗
2(ψ6 − ψ7),

with transversality conditions
ψk(tf ) = 0, k = 1, 2, . . . , 15.
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Furthermore,

u∗1 = max

{
min

{
θ1S

∗
1(ψ1 − ψ5)

B1
, b1

}
, a1

}
,

u∗2 = max

{
min

{
θ2S

∗
2(ψ6 − ψ10)

B2
, b2

}
, a2

}
, (.3)

u∗3 = max

{
min

{
θ3S

∗
3(ψ11 − ψ15)

B3
, b3

}
, a3

}
.

Proof. The optimal control u = [u∗1(y), u
∗
2(t), u

∗
3(t)] satisfying Equation (2.6) exists due to the convexity

of the integrand in Equation (2.5). We use Pontryagin’s Maximum Principle [38] to obtain the adjoint
equations and transversality conditions. Differentiating the Hamiltonian H with respect to the state
variables gives us the following system of equations:

ψ′
1(t) = − ∂H

∂S1
, ψ′

2(t) = − ∂H

∂E1
, ψ′

3(t) = − ∂H

∂Ir,1
, ψ′

4(t) = − ∂H

∂Iu,1
, ψ′

5(t) = − ∂H

∂R1
, ψ′

6(t) = − ∂H

∂S2
,

ψ′
7(t) = − ∂H

∂E2
, ψ′

8(t) = − ∂H

∂Ir,2
, ψ′

9(t) = − ∂H

∂Iu,2
, ψ′

10(t) = − ∂H

∂R2
, ψ′

11(t) = − ∂H

∂S3
, ψ′

12(t) = − ∂H

∂E3
,

ψ′
13(t) = − ∂H

∂Ir,3
, ψ′

14(t) = − ∂H

∂Iu,3
, ψ′

15(t) = − ∂H

∂R3
,

resulting to System (.2) with ψk(tf ) = 0 for k = 1, 2, · · · , 15.

Moreover, we derive u = [u∗1(t), u
∗
2(t), u

∗
3(t)] on U by solving the optimality conditions

∂H

∂ui
= 0 for

i = 1, 2, 3, i.e.,

∂H

∂u1
= B1u1 − ψ1θ1S1 + ψ5θ1S1 = 0

∂H

∂u2
= B2u2 − ψ6θ2S2 + ψ10θ2S2 = 0

∂H

∂u3
= B3u3 − ψ11θ3S3 + ψ15θ3S3 = 0.

Evaluating at u∗1(t), u
∗
2(t), and u

∗
3(t) on U , we get

u∗1(t) =
θ1S

∗
1(ψ1 − ψ5)

B1

u∗2(t) =
θ2S

∗
2(ψ6 − ψ10)

B2

u∗3(t) =
θ3S

∗
3(ψ11 − ψ15)

B3
,

and by considering the upper (bi) and lower (ai) bounds for each control, we end up with Equations (.3).
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