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Abstract  

Circulating polyunsaturated and monounsaturated fatty acid (PUFA and MUFA) levels, whose 
imbalances co-occur with human metabolic diseases, have strong heritable components. We 
performed the largest genome-wide association study (GWAS) to-date on fourteen PUFA and 
MUFA phenotypes, measured by nuclear magnetic resonance in plasma. We identified 612 
significant loci-phenotype associations (115 unique loci; P < 1.678*10-8) in a European cohort 
from UK Biobank (UKB-EUR; n=101,729). Replication of five phenotypes (omega-3, omega-6, 
DHA, LA, MUFAs) was conducted in two external European studies: FinMetSeq (n=8,751) and 
a meta-analysis by Kettunnen et al. (n=3,644-13,544). Meta-analysis of these three studies 
yielded 254 significant loci-phenotype associations (109 unique loci; P < 2.439*10-8); we 
identified 87 novel loci, 51 of which were replicated. A transcriptome-wide association study of 
the UKB-EUR cohort revealed an additional twelve novel loci. This study improves our 
understanding of the genetic architecture of unsaturated fatty acids, and can inform future gene-
based dietary interventions. 
 
 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.27.22275343doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.05.27.22275343
http://creativecommons.org/licenses/by-nd/4.0/


 2

Acknowledgements 

Research reported in this publication was supported by the National Institute of General 
Medical Sciences of the National Institute of Health under award numbers T32GM007103 (MF) 
and R35GM143060 (KY). The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health. 
 
Special thanks to the UGA GACRC staff for facilitating our data analyses. 
 
Competing interests 

We have no conflicts of interest to disclose. 
 
 
 
Author contributions 

KY conceived and supervised the study. KY and MF designed the analyses. MF led the data 
analyses, with assistance from YS and HX. MF, KY, and JTB. interpreted the results. MF and 
KY wrote the manuscript. MF created data visualizations. All authors reviewed, revised, and 
approved the final paper.  
 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.27.22275343doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.27.22275343
http://creativecommons.org/licenses/by-nd/4.0/


 3

Introduction 

Polyunsaturated fatty acids (PUFAs) are dietary fats containing two to six double bonds 

along linear carbon chains from 14 to 22 carbons in length. Imbalance of tissue PUFAs are 

involved in the pathophysiology of a broad array of diseases, including cardiovascular disease, 

cancer, depression, and dementia [1-3]. Omega-3 long-chain PUFAs (n-3 LCPUFAs) have been 

consistently shown to improve aspects of metabolic syndrome that are related to cardiovascular 

disease and obesity-related risk factors such as insulin resistance, hypertension, and dyslipidemia 

[1, 4, 5], while omega-6 (n-6) LCPUFAs have been associated with both positive and negative 

health outcomes [6]. Excess n-6 linoleic acid (LA) suppresses tissue and circulating n-3 

LCPUFAs, due to common enzymes operating on both PUFA families; balance in dietary n-6 

and n-3 is necessary to avoid suppression of the functional n-3 LCPUFAs, EPA and DHA [7]. 

Modest overall dietary PUFAs and an n-6/n-3 ratio up to 4/1 have been recommended, while the 

typical industrialized diet has a ratio of 15/1 or more [8, 9]. 

Dietary PUFA intake strongly influences circulating fatty acid levels [10]. Heritability 

analyses in twin studies and large cohorts have indicated that substantial genetic components 

contribute to determining circulating PUFA levels [11-13]. Genome-wide association studies 

(GWASs) have identified 37 unique genomic loci related to PUFAs and monounsaturated fatty 

acids (MUFAs; Supplementary Table 1). However, they collectively only explain a small 

fraction of the phenotypic variance [12, 14], suggesting more loci may be found in large-sample 

GWAS.  High-throughput nuclear magnetic resonance spectroscopy (NMR) enables rapid large-

scale quantification of metabolic biomarkers [15]. The UK Biobank (UKB) has recently released 

NMR data of plasma fatty acid levels for over 110,000 participants, presenting an opportunity to 

identify novel genetic loci for PUFA levels. 
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 Here, we perform a linear mixed model (LMM) GWAS to identify the genetic variants 

associated with the fourteen available NMR-derived plasma unsaturated fatty acid phenotypes in 

UKB participants: n-3 LCPUFAs, n-6 LCPUFAs, docosahexaenoic acid (DHA), linoleic acid 

(LA), total PUFAs, total MUFAs, the percentages of each of these fatty acid groups per the total 

amount of fatty acids, as well as the ratios of n-6/n-3 and PUFA/MUFA. (These PUFA- and 

MUFA-related phenotypes are collectively referred to as “PUFA traits” for simplicity’s sake.) 

Our discovery cohort consists of UKB participants with NMR PUFA trait data, who were 

determined to be genetically European (EUR) by the Pan-UK Biobank project (n=101,729) [16]. 

Additional multi-ancestry analyses were performed in Central and South Asian (CSA), East 

Asian (EAS), and African (AFR) UKB participants (n=4,400). Two EUR studies were used in 

our replication and meta-analysis of the UKB-EUR cohort: the Finnish Metabolic Sequencing 

(FinMetSeq) study [11], which itself consists of exome sequencing derived from two cohorts, 

FINRISK [17] and Metabolic Syndrome in Men (METSIM) [18], and a meta-analysis of 14 

genotyped datasets derived from ten EUR studies by Kettunnen et al. [14] (n=8,751 and 3,644-

13,544, respectively).  
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Methods 

Ethics 

Participant data use was approved by UK Biobank (UKB; Project ID 48818). UKB 

participants have consented to and authorized the use of their medical and genetic data for use in 

research studies. This research was performed on a University of Georgia (UGA) data server 

using strict data protection protocols and two-factor authentication. The UGA Institutional 

Review Board (IRB) approved the use of human subject data in this study. Additional datasets 

use publicly available summary statistics from previous GWAS; approval was not required. 

Participants 

The full UKB cohort consists of > 500,000 volunteer participants between ages 40 and 70 

that were recruited between 2006 and 2010 in England, Scotland, and Wales. Approximately 

120,000 participants had metabolic traits measured using NMR between June 2019 and April 

2020, from plasma samples taken at recruitment. Participants were removed on the following 

criteria: withdrawn consent, mismatches between self-reported and genetic sex, poor quality 

genotyping as flagged by UKB, sex chromosome aneuploidy, or poor-quality NMR 

measurement flagged by UKB. After quality control (QC) and stratification by ancestry using 

Pan UKBB designations [16], counts of participants included in our analyses were: 101,729 

European (EUR); 1,564 African (AFR); 2,203 Central South Asian (CSA); and 633 East Asian 

(EAS). UKB participant characteristics can be found in Supplementary Table 2.  

For replication and meta-analysis, we included two external EUR studies. First, the 

Finnish Metabolic Sequencing (FinMetSeq) study [11], which consists of a combination of 

FINRISK and METSIM cohorts. METSIM participants were 10,197 men from Kuopio, Eastern 

Finland, aged 45 to 73 years during initial examinations from 2005 to 2010. FINRISK 
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participants were recruited every five years from 1972 to 2012, and consisted of random 

population samples of men and women aged 30-59 years; FinMetSeq uses 10,192 participants 

from 1992-2007 FINRISK surveys who had a residence in northeastern Finland. Of the 

approximately 19,000 participants in FinMetSeq, 8,751 had NMR metabolomics data available 

for the fatty acid phenotypes of interest. Pregnant women, type 1 and 2 diabetics, and those 

fasting less than eight hours were excluded from this cohort. 

We also utilized a meta-analysis consisting of fourteen genotyped datasets derived from 

ten EUR studies performed by Kettunnen et al. in 2016 [14] in our replication and meta-analysis. 

The number of participants contributed by the Kettunnen et al. summary statistics in this analysis 

ranges from 3,644-13,544 participants (from six to ten studies), depending on the variant; this 

participant range is consistent across the five traits meta-analyzed. There is an overlap of 225 

participants between the FinMetSeq and Kettunnen et al. cohorts, which we determined would 

not affect type I error in a meaningful way [19].  

Fatty acid phenotypes 

UKB EDTA (ethylenediaminetetraacetic acid) plasma samples were taken at the baseline 

recruitment timepoint and measured between June 2019 and April 2020 by the metabolic 

biomarker profiling platform of Nightingale Health Ltd., as described previously [20, 21]. We 

analyzed fourteen quantitative PUFA and MUFA phenotypes in UKB cohorts, specifically, n-3 

LCPUFAs, n-6 LCPUFAs, docosahexaenoic acid (DHA), linoleic acid (LA), total PUFAs, and 

total monounsaturated fatty acids (MUFAs), all reported in mmol/L, the percentages of n-3 

LCPUFAs, n-6 LCPUFAs, DHA, LA, MUFAs, and PUFAs out of the total amount of fatty 

acids, as well as n-6/n-3 ratio, and PUFA/MUFA ratio. (These PUFA- and MUFA-related 

phenotypes are collectively referred to as “PUFA traits” for simplicity’s sake.)  We regressed all  
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PUFA traits on selected covariates in each model (described below) and applied rank-based 

inverse normal transformation to the residuals for use in all analyses [22]; this was consistent 

with transformations performed in our external GWAS replication studies. 

Genotype data 

Genotype data was initially QCed and imputed with Haplotype Reference Consortium 

(HRC) and 1000 Genomes variants by UKB (v3) as previously described [23]. For discovery 

analyses, we excluded variants with imputation quality score < 0.3, minor allele frequency 

(MAF) < 0.1%, missing genotype per individual > 5%, missing genotype per variant > 2%, or 

Hardy-Weinberg equilibrium (HWE) P < 1×10-8. After quality control, a total of 15,587,898 

variants among 101,729 participants were included in the UKB-EUR discovery cohort. QC and 

genotype file format conversions were performed using PLINK2 alpha-v2.3 [24, 25]. All 

genomic positions in this study refer to the Genome Reference Consortium Human Build 37 

(GRCh37), also known as hg19. 

A pruned set of variants 

A pruned set of variants were inputted as PLINK-format genotypes to BOLT-LMM for 

model-fitting in the UKB-EUR discovery GWAS [26]. After filtering for only participants 

included in this analysis, the exclusion criteria for variants in the pruned set were imputation 

quality score < 0.8, MAF < 1%, missing genotype per variant > 1%, or Hardy-Weinberg 

equilibrium (HWE) P < 1×10-8. A hard-call threshold of 0.1 was applied to the remaining 

variants. The lactase locus on chromosome 2, the major histocompatibility complex (MHC) on 

chromosome 6, and inversions on chromosomes 8 and 17 were excluded. Linkage disequilibrium 

(LD) pruning was performed at r2 = 0.2, (plink2 --indep-pairwise 50 5 0.2). After pruning, 

821,405 variants remained. 
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Discovery model selection 

Two sensitivity models were used in this analysis. Model 1 (M1) included the covariates 

sex, age, age2, genotyping array, and assessment center. Model 2 (M2) included the M1 

covariates, plus body mass index (BMI), lipid medication usage, and socioeconomic status as 

measured by Townsend deprivation index (Supplementary Table 2). Additionally, the first 

twenty principal components for study participants were included as covariates in both models as 

calculated by PLINK2 (randomized algorithm) [24, 25]. For meta-analysis cohorts, FinMetSeq 

summary statistics as provided were adjusted by age, age2, sex, cohort year, BMI, sex hormones, 

and lipid medications. Kettunnen et al. adjusted for sex, age and ten genetic principal 

components in their analyses. We compared our summary statistics from M1 and M2 with the 

publicly available results from OpenGWAS (batch met-d) [27], as well as to each other, using 

Spearman’s rank correlation. 

Identification of significant GWAS signals 

BOLT-LMM v2.3.6 [26] was used to perform linear mixed-effects model association 

analyses on fourteen PUFA traits in the UKB-EUR discovery cohort. The provided 1000G 

European LD scores [28] were used to calibrate the BOLT-LMM statistic. Covariates and pruned 

variant sets were included as described above. Non-infinitesimal BOLT-LMM P-values 

(P_BOLT_LMM) were used in all reporting and downstream analyses. Because these PUFA 

traits were highly correlated, we calculated the effective number of traits to use for Bonferroni 

multiple testing correction. Eigenvalues (�� for the fourteen PUFA traits were used to calculate 

the number of effective traits as: �∑ ����
��� ��

∑ �����
���

�   = 2.98 [29]. The threshold of P < (5*10-8 

/2.98) = 1.678 *10-8 was used to designate significant variant-trait associations. 
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Transcriptome-wide association analysis 

Transcriptome-wide association analysis (TWAS) was performed on UKB-EUR 

discovery cohort summary statistics using S-PrediXcan [30]. This method used Genotype-Tissue 

Expression (GTEx) v8 [31] expression quantitative trait loci (eQTL) data across 49 available 

tissues. Summary statistics were harmonized and imputed to GTEx models. A total of 601,176 

gene-tissue pairs were analyzed across fourteen PUFA traits, using a Bonferroni corrected 

significance threshold of P�<�2.791*10-8 (0.05/(601,176*2.98)). S-MultiXcan was used to 

integrate tissue-level associations and improve association detection. The cutoff condition 

number of eigenvalues was set to 30 for truncating singular-value decomposition components. S-

MultiXcan was run across 21,846 genes, using a Bonferroni corrected significance threshold of P 

< 7.68 *10-7 (0.05/(21,846*2.98)). 

 
Replication studies   

Variant-trait associations from the discovery UKB-EUR cohort for five traits were sent to 

replication and meta-analysis steps: omega-3 fatty acids (n-3 LCPUFAs), omega-6 fatty acids (n-

6 LCPUFAs), docosahexaenoic acid (DHA), linoleic acid (LA), and total monounsaturated fatty 

acids (MUFAs). Summary statistics were obtained from the publicly available Finnish Metabolic 

Sequencing (FinMetSeq) study [11] and the meta-analysis of 10 studies by Kettunen et al. [14]. 

Discovery cohort variants were considered replicated in these external cohorts on a per-variant 

basis at P < 0.05.  
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Meta-analysis 

Meta-analyses were performed using the METAL [32] software using the STDERR 

scheme, which weights effect size estimates using the inverse of the corresponding standard 

errors. The meta-analysis of this study consists of the three EUR cohorts: UKB-EUR+ 

FinMetSeq+ Kettunen et al. datasets (N=114,470 to 124,370). MungeSumstats [33] was used in 

pre-processing to harmonize effect alleles from separate cohorts to the reference genome. UKB-

EUR was used to estimate the number of effective traits for the three EUR meta-analysis cohorts. 

Number of effective traits was calculated from phenotype eigenvalues as 2.05 using the formula 

shown above, and the multiple-testing corrected threshold of P < (5*10-8 /2.05) = 2.439 *10-8 

was used to designate significant meta-analysis variant-trait associations. 

 

Heritability and LD score regression 

Restricted maximum likelihood (REML) estimates for genetic correlation and multi-trait 

heritability were calculated using BOLT-REML [26]. The six phenotypes measured in absolute 

concentration units (mmol/L) from the discovery UKB-EUR cohort (n-3, n-6, DHA, LA, 

PUFAs, MUFAs) were inputted with the covariates age, age2, sex, assessment center, genotype 

batch, and the first twenty PCs.  The provided 1000G European LD scores [28] were used to 

calibrate the BOLT statistic. The refinement step was skipped (--remlNoRefine) to increase 

computational efficiency. 

LD score regression (LDSC) [34] was used to calculate non-partitioned LD Score 

regression, SNP-based h2, and genomic control (lambda). The 1000 Genomes European set was 

used as the LD reference panel [28]. MungeSumstats [33] was used to harmonize alleles and 

convert summary statistics to LDSC format for this and subsequent steps. Additionally, pairwise 
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genetic correlations between PUFA traits were computed with summary statistics using LDSC 

[35]. 

Identifying genetic loci 

Lead variants for each independent genomic risk loci were defined in the discovery 

(UKB-EUR) and meta-analysis cohorts (UKB-EUR + Kettunen et al. + FinMetSeq) by inputting 

summary statistics to FUMA web server [36]. The UKB release2b 10k European set was used as 

the LD reference panel. The maximum P-value cutoff was set to 0.05, and a first threshold 

of r2 ≥ 0.6 and second threshold of r2 ≥ 0.1 were used to define loci and lead SNPs. SNPs not 

available in the GWAS input but contained in the reference panel were included. The maximum 

distance between LD blocks to merge into a locus was < 250 Kb. P-values were set with a lower 

cap of P = 1e-300 to resolve FUMA processing errors related to minimum Python float size 

limit. Variants from meta-analysis were annotated to genes with SNP2GENE using positional 

mapping (maximum distance 10 Kb), eQTL mapping from GTEx v8 liver tissue, and chromatin 

interaction mapping using built-in data from Hi-C (GSE87112) liver tissue. All other FUMA 

mapping settings were kept as default. 

Identifying novel loci 

A table of previously reported (“known”) PUFA- and MUFA- associated lead variants 

was prepared from full summary statistics (where available) and significance tables found within 

previous PUFA-GWAS publications (Supplementary Table 1). All reported genomic coordinates 

were set to hg19 using liftOver [37]. Genomic risk loci coordinates were identified in each study 

by P-values of reported variants using FUMA (setting LD reference by ancestry of study, 

otherwise default settings). These loci were then grouped together within a ± 500 Kb window 

when checking for novelty of our results, regardless of the ancestry of the study cohorts. Trait 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.27.22275343doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.27.22275343
http://creativecommons.org/licenses/by-nd/4.0/


 12

names were harmonized across studies. LDtrait of the LDlinkR tools [38] was used to cross-

check our novelty table and no additional “known” loci were found with this method. 

 
Multi-ancestry replication in non-EUR UKB Cohorts 

GCTA-MLMA [39, 40] was used to perform mixed-model GWAS analyses in the 

smaller UKB African (AFR), Central/South Asian (CSA), and East Asian (EAS) cohorts 

(Supplementary Tables 2, 14). A genetic relatedness matrix was generated for each population 

using GCTA-GRM [39, 41]. Covariates used in these models were age, age2, sex, and the first 

ten principal components. Genotype removal parameters were imputation quality score < 0.3, 

MAF < 1 %, missing genotype per individual > 5 %, missing genotype per variant > 5%, or 

Hardy-Weinberg equilibrium (HWE) P < 1×10-8.  

 

Gene sets and pathway analysis  

FUMA GENE2FUNC [36] was performed on genes mapped from SNP2GENE using 

parameters described above including all background gene-sets in hypergeometric tests, and 

using expression data from all GTEx v8 datasets. Benjamini-Hochberg (FDR) was used as the 

gene set enrichment multiple test correction method. Gene Ontology (GO) was used to 

categorize sets of genes in downstream analyses [42]. 

 

Conditional and joint association analysis 

Conditional and joint association analysis (COJO) with stepwise model selection to 

identify conditionally independent variants was performed with GCTA-COJO (--cojo-slct) [43] 

for discovery and meta-analysis summary statistics. A random set of 20,000 unrelated EUR UKB 

participants were used as the LD reference (--bfile). Variants with MAF < 1% were removed. 
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COJO was run per chromosome with P-value settings based on effective trait Bonferroni 

correction, using default settings for collinearity and window size. For METAL meta-analysis 

summary statistics, SE values inputted to COJO were re-calculated based on beta and P-values to 

ensure accuracy of GCTA-COJO output. 

 

Visualizing results 

CMplot [44] was used to generate the circular Manhattan plot in Figure 2. The qqman R 

package [45] was used to generate standard Manhattan and QQ plots in Supplementary Figure 4. 

S-MultiXcan Manhattan plots in Supplementary Figure 5 generated using the Manhattan R 

package [46]. Regional Manhattan plots in Supplementary Figure 9 were generated in FUMA 

[36]. Bar plots and scatterplots were generated using ggplot2 [47] in R v4.1.0. Correlation plot 

was generated using corrplot [48].  

 
 
 
 
 
 
 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.27.22275343doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.27.22275343
http://creativecommons.org/licenses/by-nd/4.0/


 14

Results 

Discovery analysis 

We performed a GWAS of NMR-measured PUFA traits in European (EUR) individuals.  

Our three-stage discovery, replication, and meta-analysis approach is shown in Figure 1. First, 

we performed a GWAS discovery analysis in UK Biobank (UKB). After applying quality 

control, the UKB-EUR discovery cohort (UKB-EUR) was composed of 101,729 participants 

with NMR data who were designated as genetically EUR by the Pan UKBB project [16]. Mean 

age of participants was 56.8 yr old and 45.98% were male (full participant characteristics found 

in Supplementary Table 2, Supplementary Figure 1). All subsequent analyses of PUFA traits 

used rank-based inverse normal transformed values. Two covariate sensitivity models were 

evaluated. Model 1 included the covariates sex, age, age2, genotyping array, and assessment 

center, while Model 2 additionally included BMI, lipid medication usage, and socioeconomic 

status. No residual confounding was observed with either model. The P-values were highly 

correlated between the two models and also with the summary statistics released on OpenGWAS 

(batch met-d) [27], derived from a generalized GWAS of all metabolic traits in the metabolomics 

panel (Supplementary Table 3). The range of LDSC intercepts is 1.00 - 1.041 for Model 1 and 

0.99 - 1.045 for Model 2 (Supplementary Table 4).  The statistical significance in Model 2 was 

always comparable to or more significant than that of Model 1 and OpenGWAS (Supplementary 

Figure 2); we infer this is because the inclusion of relevant covariates reduces residual variability 

and enhances the statistical power for variant discovery [49]. The primary results in the main text 

are therefore based on Model 2.   

A total of 15,578,593 variants were tested for associations with all fourteen available 

PUFA traits in discovery analysis (Supplementary Table 5). Linear mixed model GWAS found a 
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total of 146,982 significant associations (35,869 unique variants across traits; Supplementary 

Table 5) at a significance threshold corrected for the effective number of traits (P < 1.678*10-8). 

Conditional and joint analysis (COJO) identified 711 independent significant associations in this 

cohort (328 unique across traits; Supplementary Tables 5 and 6). We grouped significant 

associations into LD blocks and merged loci < 250Kb apart; this yielded 612 genomic risk loci 

(115 unique loci across traits; Supplementary Table 7).  

 
Replication and meta-analysis 

Replication of discovery cohort GWAS associations utilized two external EUR PUFA-

GWAS studies: FinMetSeq and Kettunen et al. (Supplementary Table 13). These studies 

contained five out of the fourteen traits analyzed in the discovery stage. After munging the three 

EUR studies to ensure high quality alleles and to harmonize alleles to the reference genome, ~8.7 

million variants overlapped between Kettunen et al. and UKB-EUR; 209,509 variants 

overlapped between FinMetSeq and UKB-EUR. Across the five available phenotypes, there 

were 19,929 UKB-EUR associations (8,543 unique variants) replicated at P < 0.05  in one of the 

two external EUR studies. Of these, 615 associations (266 unique variants) were replicated in 

both studies (Supplementary Table 13).  

We also performed replication analyses across UKB multi-ancestry groups with adequate 

sample sizes, to evaluate the reproducibility of associations found in the UKB-EUR cohort. No 

significant phenotypic differences were found between UKB ancestry groups in any of fourteen 

PUFA traits (Supplementary Table 2, Supplementary Figure 1). Counts of UKB-EUR 

associations replicated (P < 0.05) were: UKB-AFR 5,327 (2,358 unique variants), UKB-CSA 

16,560 (5,179 unique variants), and UKB-EAS 5,466 (2,113 unique variants) (Supplementary 

Table 14). Out of the 612 significant loci for UKB-EUR associations, 170 were replicated in ≥ 1 
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UKB multi ancestry group (Supplementary Table 14). Despite having a smaller sample size, 

UKB-EAS had more replicated UKB-EUR loci than UKB-AFR (46 vs. 31). 

Meta-analysis was performed on variants which appeared in at least two EUR studies; a 

total of ~10,200,000 variants were tested. Across the five PUFA traits there were 38,344 

significant associations (P < 2.439*10-8; 17,301 unique variants; Supplementary Table 15). 

LDSC intercepts for the five meta-analyzed traits ranged from 1.013 (SE = 0.0079) for DHA to 

1.04 (0.011) for MUFAs, indicating that there was no inflation or residual confounding 

(Supplementary Table 16). Conditional and joint analysis revealed 402 independent significant 

variants (258 unique; Supplementary Table 17). Of these 402 significant COJO associations, 265 

were replicated in at least one external EUR study (P < 0.05). When grouping all significant 

meta-analysis variants into loci, we found 254 significant loci (109 unique; Supplementary table 

18). Of the 254 grouped meta-analysis loci, 171 were replicated in at least one external EUR 

study (Supplementary Table 18). The loci identified across phenotypes from COJO independent 

variants and FUMA were nearly identical. Four loci found in FUMA were not in COJO, and a 

separate four loci found in COJO were not in FUMA. 

We searched the literature and found 210 previously reported PUFA and MUFA GWAS 

associations (106 unique variants, 37 loci based on 1Mb grouping; Supplementary Table 1). We 

compared these known loci with our significant meta-analysis loci; of the 254 meta-analysis loci, 

173 were novel (87 unique across phenotypes), and 102 of these novel loci were replicated in at 

least one external EUR study (51 unique). 
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Notable associated genes 

Among the 109 unique genomic loci identified in our meta-analysis of five traits, thirteen 

loci were associated with all five traits (Figure 2, Supplementary Table S18), nine of which have 

been previously identified. These spanned genes that are well-known in lipid metabolism, 

including the apolipoprotein gene clusters at chr11q23 (i.e., APOA5, APOA4, APOC3, and 

APOA1) and chr19q13 (i.e., APOE, APOC1, APOC4, and APOC2), APOB, LDL receptor 

adaptor protein 1 (LDLRAP1), LDL receptor (LDLR), lipase C (LIPC), and lysophosphatidic acid 

receptor 2 (LPAR2). Another notable gene is glucokinase regulator (GCKR), which has been 

previously associated with DPA and palmitoleic acid [50-52]. Of the four novel loci associated 

with all five traits, the locus of chr18q21 covers a candidate gene of lipase G (LIPG). The 

candidate genes at loci chr1p13 and chr8q24 include PSRC1, SORT1, TRIB1, and SQLE. Both 

PSRC1 and TRIB1 have been previously associated with familial hypercholesterolemia [53].  

SQLE encodes squalene epoxidase, a rate-limiting enzyme catalyzing the first oxygenation step 

in sterol biosynthesis.  

When considering omega-3, DHA, omega-6, and LA, there are three loci associated with 

all these four traits, located at chr2q21 (the LCT locus), chr4q13, and chr7p22; all three loci are 

novel. The chr4q13 encompasses multiple members of the UDP-glycosyltransferase family (i.e., 

UGT2B17; UGT2B10; UGT2B11; UGT2A1; UGT2A2; and UGT2A1), which play important 

roles in the bile acid (BA) detoxification by catalyzing the glucuronidation of BA substrates and 

impact dietary lipids absorption [54]. One candidate gene at chr7p22 is CYP2W1, a member of 

the cytochrome P450 superfamily, which encodes monooxygenases and oxidizes steroids, fatty 

acids, and xenobiotics [55].  
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Nine genomic loci are only associated with omega-3, DHA, or both, eight of which are 

novel. The known locus has at least two candidate genes, choline kinase alpha (CHKA) and 

carnitine palmitoyltransferase 1A (CPT1A). CHKA encodes the initial enzyme to catalyze the 

phosphorylation of ethanolamine in the CDP-choline pathway for phosphatidylcholine 

biosynthesis. CPT1A catalyzes the transfer of the acyl group of LCPUFA-CoA conjugates onto 

carnitine, enabling the mitochondrial update of LCPUFAs and the subsequent beta-oxidation. 

One novel locus at chr10q23 has a cluster of genes in the cytochrome P450 superfamily (i.e., 

CYP2C18, CYP2C19, CYP2C9, and CYP2C8). Another notable novel locus at chr11q24 has a 

candidate gene of ST3GAL4, which is involved in the terminal sialylation of glycolipids. There 

are 35 loci associated with only omega-6, LA, or both; 33 of these are novel. Multiple novel 

candidate genes are implicated in lipid metabolism, such as LDL receptor related protein 2 

(LRP2), NPC1 like intracellular cholesterol transporter 1 (NPC1L1), scavenger receptor class B 

member 1 (SCARB1), phospholipase C gamma 1 (PLCG1), and lipin 3 (LPIN3). Three additional 

novel loci carry cytochrome P450 genes, including chr2q33 (CYP20A1), chr8q12 (CYP7A1), and 

chr19q13 (CYP2A6). Another two notable candidate genes are arachidonate 5-lipoxygenase 

(ALOX5) and peroxisome proliferator activated receptor delta (PPARD).  

The two key sets of genes which catalyze LCPUFA biosynthesis are fatty acid desaturase 

(FADS) and elongase protein family genes (ELOVL) [7]. We have re-confirmed the primary 

importance of FADS genes in n-3 LCPUFA genetics, as these genes had the most significant P-

values in our meta-analysis at lead SNPs rs174528 (DHA, P < 1E-300; MAF = 0.39) and 

rs509360 (omega-3, P < 1E-300; MAF =0.33). Both of these variants were mapped to FADS1, 

FADS2, and FADS3. The most significant independent association in COJO analysis, however, 

was rs964184 (ZPR1; p-value from joint analysis (pJ) = 6.08E-207) with MUFAs. ZPR1 and 
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rs964184 have been repeatedly associated with PUFA and MUFA traits in previous GWAS 

(Supplementary Table 1). Of the seven ELOVL genes, only ELOVL2 (chr6:10,980,992-

11,044,547) has been associated with PUFAs in previous GWAS studies, specifically with 

omega-3s: DHA, eicosapentaenoic acid (EPA), and cis-7,10,13,16,19-docosapentaenoic acid 

(DPA) (Supplementary Table 1, locus 13). We found an association in UKB-EUR with the 

ELOVL2 locus surpassing the suggestive significance threshold (P < 5e-05) for DHA 

(rs9380082, P=2.6e-05), but did not find this locus associated at genome-wide significance. 

However, we did find a novel, non-replicated association with MUFAs to total fatty acids 

percentage at ELOVL6. The lead variant rs189866430 (T>A; chr4:110,578,226; MAFUKB-EUR = 

0.01) is ~389Kbp downstream from ELOVL6. This association is consistent with previous 

findings that demonstrate the role of ELOVL6 gene product in elongating MUFAs [56]. 

ACSL6 is part of the Acyl-CoA synthetase (ACS) family of enzymes which catalyze the 

formation of acyl-CoAs from free fatty acids [57]. We identified two novel and externally 

replicated associations (Supplementary Table 18): omega-3 fatty acids with rs273913 (T>C; 

MAFEUR-meta-analysis = 0.3867; locus start=chr5:131,407,493; Supplementary Figure 9a), and DHA 

with rs166635 (G>A; MAFEUR-meta-analysis = 0.3079; locus start=chr5:131,590,114; Supplementary 

Figure 9b), that are ~60Kbp and ~242Kbp upstream from the ACSL6 gene (chr5:131,142,683-

131,347,936; reverse strand). It should be noted with regard to novelty, this locus was previously 

associated with arachidonic acid at rs274559 by Guan et al. [6], but their P-value at 3.81e-06 did 

not reach genome-wide significance. ACSL6 expression has been previously linked to DHA 

enrichment in the brain. Our finding of significant associations with only omega-3 and DHA, not 

omega-6, LA, or MUFAs, is consistent with previous reports [58, 59]. 
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Heritability and genetic correlation 

In the fourteen phenotypes tested in the discovery cohort, Linkage Disequilibrium Score 

(LDSC) found h2 ranged from 0.12 (SE = 0.018) for LA percentage to 0.20 (0.032) for MUFA 

percentage (Supplementary Table 4). Using individual-level genotype data in the discovery 

cohort, BOLT-REML found h2 of six PUFA traits measured in absolute concentration units 

(omega-3, omega-6, DHA, LA, PUFAs, MUFAs) to range from 0.16 (0.0065) for LA to 0.22 

(0.0066) for MUFAs (Supplementary Table 8). The lower range of LDSC when compared to 

BOLT-REML is consistent with our expectation that LDSC reports the lower bound of 

heritability estimates. LDSC-estimated h2 was similar in meta-analysis, ranging from 0.12 

(0.022) for DHA to 0.16 (0.023) for MUFAs (Supplementary Table 16).  

We evaluated the shared genetic basis across PUFA traits using genetic correlations (��). 

For the fourteen phenotypes in the discovery analysis, the levels of phenotypic (��) and genetic 

correlations are broadly consistent across all 91 trait-pairs, with slightly stronger genetic 

correlations (linear regression β = 1.089; P < 2.2e-16; Supplementary Figure 3; Supplementary 

Table 4). Among the 78 trait-pairs that have both nominally significant phenotypic and genetic 

correlations (P < 0.05), 57 have stronger correlations at the genetic level (binomial test p = 

2.79e-5). Of note, the genetic correlations between the absolute concentrations and their relative 

percentages of total fatty acids are not always high, ranging from 0.89 for MUFAs, 0.84 for 

omega-3, 0.73 for DHA, -0.56 for omega-6, -0.32 for PUFAs, to 0.017 for LA. These medium to 

low genetic correlations emphasize the need to perform separate GWAS for absolute 

concentrations and relative percentages. Moreover, the correlation between omega-3 and omega-

6 is medium with the absolute concentrations (�� � 0.67; ��� � 0.45), and is low with the relative 
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percentages (�� � �0.11; ��� � �0.12), indicating that there is substantial unique genetic basis 

for either trait.  

 
Transcriptome-wide association analyses 

S-PrediXcan was used to integrate GTEx (v8) eQTL (expression quantitative trait loci) 

data from 49 tissues and UKB-EUR cohort GWAS summary statistics to identify genes whose 

expression is associated with PUFA traits. Across fourteen PUFA phenotypes in the discovery 

analysis, 24,666 Bonferroni-corrected significant gene-trait associations comprised of 527 

unique genes were identified (Supplementary Table 10). We then used S-MultiXcan to find joint 

effects of gene expression correlation across tissues. We found 2,818 associations (601 unique 

genes), of which 392 unique genes have not been in previous PUFA GWAS and are thus 

considered as novel for PUFA traits (Supplementary Tables 11, 12).  

Since there was a high degree of overlap between TWAS and GWAS results, we 

searched for novel gene-trait associations in S-MultiXcan that had not been found in our 

discovery or meta-analysis GWAS analyses. We found 55 genes, spanning 12 loci, that were 

novel and identified exclusively in TWAS. Many of these genes (44) are found in a cluster at 

6p21. These 44 genes are significantly enriched for immune system process (GO: GO:0002376; 

17 genes; FDR = 7.41E-04) and regulation of immune system process (GO:0002682; 17 genes; 

FDR = 2.09E-06). Three other genes from the 55 novel genes, F2 (MUFAs), WDR81 (LA), and 

PTK2 (PUFAs), are involved in the regulation of lipid kinase activity (GO:0043550).  
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Gene set enrichment analysis 

MAGMA tissue expression analysis for sets of positionally mapped genes from each of 

the five meta-analyzed PUFA traits revealed that liver was exclusively the significantly enriched 

tissue type (Supplementary Figure 6). Because of this, we sent genes mapped from GTEx liver 

eQTLs and HiC liver chromatin data, in addition to positionally mapped genes, to GENE2FUNC 

for gene set enrichment (Supplementary Table 19).  

Across the five traits, the most significant gene sets in the categories of Curated gene set, 

Positional gene set, Gene Ontology (GO): Biological process, GO: Cellular component, GO: 

Molecular function, Cancer modules, Canonical pathways, Computational gene sets, KEGG 

pathways, and TF targets, were all driven by genes in the major histocompatibility complex 

(MHC). The MHC region is the most polymorphic in the human genome, associated with the 

most disease traits, and determining causal variants in this region is highly prone to confounding 

[60]. After MHC, the next most significant positional gene set in all five PUFA traits 

corresponds to rs1260326 in GCKR; this gene locus has been identified in several published 

PUFA GWAS analyses (Supplementary Table 1). In the gene sets defined by GWAS catalog, the 

most significant enrichments are in genes that have previously been associated with blood lipids, 

including total cholesterol, LDL cholesterol, and triglycerides. 

To identify new relationships between novel genes associated with PUFA traits and 

previously reported traits in GWAS Catalog, we stratified GENE2FUNC output based on 

novelty (Supplementary Table 20). The second most significant gene set enrichment of non-lipid 

GWAS catalog traits for omega-3s and DHA (after “Handedness”) was “Alcohol use disorder 

(total score)” (Omega-3: adjPnovel = 5.95E-10, adjPknown = 0.0052, adjPall = 3.38E-09; DHA: 

adjPnovel = 1.57E-10, adjPknown=0.075, adjPall = 1.73E-10; Supplementary Figure 8). Alcohol-
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related traits have been experimentally linked to PUFAs in multiple studies [61-65] (more in 

discussion). 
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Discussion 

Here we report the largest GWAS to-date of PUFA and MUFA phenotypes in Europeans 

(EUR; NEUR=114,133 to 124,024), including fourteen traits in the discovery analysis, five of 

which were replicated and meta-analyzed in external EUR cohorts. The discovery cohort, UK 

Biobank (UKB), is the largest publicly available human dataset with measures of these traits in 

genotyped participants (NUKB-EUR=101,729 after QC). We have identified 51 novel and replicated 

loci, as well as 36 loci that were not replicated, but have not been reported in previous GWAS 

studies (Supplementary Tables 1, 18). Considering that only 37 genomic risk loci were 

previously reported in relation to these traits, this study greatly increases our scope of 

understanding the genetic architecture of PUFAs and MUFAs. Of the 37 previously reported 

loci, we have replicated 23 loci in our discovery analysis (UKB-EUR) and 22 loci in our EUR 

meta-analysis (Supplementary Table 1). 

In our follow-up analysis of genes mapped to novel and known loci in the meta-analysis, 

we found a notable difference in P-values and proportion of gene set enrichment for the GWAS 

catalog trait “alcohol use disorder (total score)” (AUD) (Supplementary Table 20, 

Supplementary Figure 8). Across the phenotypes omega-3, omega-6, DHA, and LA, there are 

two novel clusters of PUFA-gene associations that have previously been associated with AUD. 

These genes are PLEKHM1, CRHR1, SPPL2C, MAPT, STH, and KANSL1, NSF, and WNT3 at 

chr17q21.31, mapped to omega-3 and DHA; and FUT2, MAMSTR, RASIP1, and IZUMO1 at 

chr19q13.33, mapped to omega-6 and LA. The inversion at chr17q21.31 has recently been 

associated with alcohol intake in a GWAS of ~127,000 European participants from the Million 

Veterans Program cohort [61]. The association of the gene cluster at chr19q13.33 with AUD was 

reported as a novel association in an analysis of ~435,000 European participants of UKB [62]. 
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In addition to the shared genetic variants between PUFAs and AUD, such as variants in 

SNX17 and GCKR, variability in PUFA levels has been associated directly with AUD. The 

direction of causality between these traits has not been clearly disentangled. DHA has a 

neuroprotective effect against binge alcohol drinking, and is depleted with alcohol exposure [66]. 

In the opposite causal direction, high alcohol consumption was associated with lower fatty acid 

intake measured by 24 hour recall in the 2001-2002 National Health and Nutrition Examination 

Survey in 4,168 adults [63]. Omega-3 deficiencies are associated with bipolar disorder [67], 

which can lead to higher cravings for alcohol. Additionally, alcohol abuse has been characterized 

by an increase in oleic acid / LA ratio and Teubert et al. demonstrated a shift back to higher LA 

during alcohol detoxification in a small study of 45 alcoholic patients [65]. Overall, the data on 

this topic are sparse, and more research should be done to elucidate this relationship. 

Along with our novel findings, our study has several limitations. First, the PUFA traits 

that we were able to investigate are limited to those reported by UKB.  We cannot resolve, for 

instance, differences in specific PUFAs that are often reported with higher resolution metabolite 

analyses, such as the difference in effects associated with DHA and other omega-3s, notably 

eicosapentaenoic acid (EPA). Second, UKB is known to have volunteer bias, which can skew 

results, as has previously been shown [68]. 

Next, it is unfortunate that our analysis is mostly limited to determining the genetic 

associations of PUFA and MUFA traits in EUR populations. We recognize that an overwhelming 

number of genomic analyses to date have been conducted on EUR populations [69], to the 

detriment of understanding other ancestry groups. Further, our replication analysis shows that of 

115 discovery loci in UKB-EUR, only 47 were replicated at P < 0.05 in one or more of the AFR, 

CSA, or EAS multi-ancestry groups. While power calculation shows that the difference was 
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mainly driven by small sample sizes of non-EUR samples, it is possible that there is a distinct set 

of variants associated with PUFA traits in non-EUR groups. We hope that the results of this 

study can be meta-analyzed with ancestrally diverse participant groups in future analyses. 

Another limitation is possibly introduced by the quantification of PUFA and MUFA traits 

in our three meta-analyzed studies using nuclear magnetic resonance spectroscopy (NMR). NMR 

has pros and cons as compared to the gold standard methods for quantitative fatty acid analysis, 

specifically high-resolution capillary gas chromatography coupled to flame ionization detection 

(FID) or mass spectrometry (GC-MS), or alternatively, single-stage mass spectrometry (LC-MS) 

[70]. First, the speed and cost advantages of NMR over GC or MS are advantageous in biobank-

scale sample quantification [20]. NMR is also a non-destructive technique, meaning samples can 

be stored and re-measured in the future. However, NMR is of reduced sensitivity and selectivity 

compared to GC-based techniques. GC resolves all fatty acids at nanogram levels, compared to 

NMR which operates at minimum on milligram scale [71]. GC-MS is also able to perform more 

selective, targeted analyses, and accurately separate analytes, whereas NMR is limited in 

resolution and inherently will produce confounding overlapping signals, particularly in complex 

mixtures [71]. Nevertheless, as discussed above, our most significant results are congruent with 

biochemical expectations and with previous GWAS studies, including those studies which used 

MS-based quantification (Supplementary Table 1). This adds confidence to the usage of NMR 

quantification methods and strengthens our novel findings. 

Finally, as with any GWAS, associations are candidates for mechanistic processes that, 

when altered, will have a reproducible influence on traits and ultimately human health. 

Replication of the associations and detailed investigation in experimental models and in human 

randomized control trials are required to lead to clinical and precision nutrition applications. This 
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study adds to a growing body of genomics literature that may help realize these applications in 

relation to PUFA and MUFA traits  [72].  

 

 

Data availability 

Full GWAS summary statistics can be found on GWAS Catalog, using the accession codes 
provided in Supplementary Table 21. Scripts for this analysis can be found at 
https://github.com/michaelofrancis/PUFA_GWAS.  
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Figure / Table captions 

Main Figures 

Figure 1. Overview of analyses. Fourteen PUFA traits were analyzed in the UK Biobank 
(UKB) European discovery cohort. Significant associations were sent to replication for five traits 
available in external European cohorts FinMetSeq and Kettunnen et al. These three studies were 
meta-analyzed, resulting in 22,334 significant and replicated associations across the 5 traits, 
comprised of 51 unique, novel, significant replicated loci. Replication was also performed in 
UKB multi-ancestry cohorts. Additional software analyses are shown in blue. FUMA: functional 
mapping and association; COJO: conditional and joint analyses; LDSC: linkage disequilibrium 
score regression; TWAS: transcriptome-wide association analysis. 
 
Figure 2. Circular Manhattan plot of five meta-analyzed PUFA traits. Plots show the −log10 
P-values of variant-based GWAS of PUFA traits. Red triangles designate the lead variant of a 
novel locus associated with the trait in our analysis. Red dotted lines at P < 2.439*10-8 indicate 
the genome-wide significance threshold Bonferroni corrected for number of effective traits. 
Alternating color shades within each trait ring designate breaks between chromosomes. Genes 
corresponding to loci with P < 1e-20 are labeled. All P-values are restrained to an upper limit of 
1e-100 for visualization. Rings from outer to inner: omega-3 fatty acids, docosahexaenoic acid, 
omega-6 fatty acids, linoleic acid, and monounsaturated fatty acids. 
 
Supplementary Figures 

S1. Participant characteristics for PUFA traits of four ancestries in UK Biobank. These 
plots correspond to the values in S2 Table. (A) Mean and standard deviation (sd) of PUFA traits 
measured in absolute concentration units (mmol/L). (B) Left: average percentage and sd of each 
trait per total amount of fatty acids. Right: Ratio of a:b and sd of these values. 
 
S2. Correlation plot comparing P-values of our Models 1 and 2 versus OpenGWAS. These 
P-values were compared because of different QC and model covariate selection procedures. 
Each dot represents one variant in the UK Biobank. Spearman’s Rho (R) and correlation P-
values shown.  
 
S3. Genetic and phenotypic correlations between fourteen UK Biobank PUFA traits. Above 
diagonal (circles) are genetic correlations between traits calculated from UKB GWAS summary 
statistics using LDSC. Below diagonal (squares) are phenotypic correlations by Pearson 
correlation coefficient. Color and shape size correspond to direction and strength of correlation. 
 
S4. Manhattan and QQ plots of UK Biobank discovery (EUR) dataset. Left: Manhattan plot 
showing the −log10 P-values across 22 chromosomes for associations in each of fourteen PUFA 
traits in the UK Biobank European discovery cohort. Red line at 1.678*10-8 shows genome-wide 
significance threshold Bonferroni corrected for number of effective traits. Right: Quantile-
quantile (QQ) plots showing observed versus expected distributions of association P-values for 
each trait. 
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S5. SMultiXcan results from UK Biobank discovery (EUR) summary statistics. Manhattan 
plots showing −log10 P-values of significant associations between gene expression levels and 
fourteen PUFA traits in the UKB-EUR cohort. The red line is the Bonferonni corrected 
significance threshold at P < 7.68 *10-7. The most significant genes for each 5Mb window of 
significant associations are labeled. Alternating color shades designate breaks between 
chromosomes. 
 
S6. MAGMA tissue expression analysis for meta-analyzed phenotypes in European 
cohorts. Significant tissue-expression specificity by tissue type for five meta-analyzed PUFA 
traits in meta-analysis of UKB-EUR, FinMetSeq, and Kettunnen et al. studies. Analysis and plots 
performed by MAGMA as implemented in the FUMA software. Liver is the only significant 
tissue type identified in the five meta-analyzed traits. 
 
S7. Manhattan and QQ plots of three UK Biobank multi-ancestry cohorts. Manhattan plots 
showing the −log10 P-values across 22 chromosomes for associations in each of fourteen PUFA 
traits in three UK Biobank multi-ancestry cohorts: African (AFR); Central and South Asian 
(CSA); and East Asian (EAS). Red line at P < 1.678*10-8 shows genome-wide significance 
threshold Bonferroni corrected for number of effective traits. Right: Quantile-quantile (QQ) plots 
showing observed versus expected distributions of association P-values for each trait. 
 
S8. Enrichment of gene sets for “alcohol use disorder (total score).” Enrichment −log10 
(adjP)-values of gene sets with GWAS catalog reported genes associated with “Alcohol use 
disorder (total score).” Genes in query gene sets mapped from significant meta-analysis PUFA 
trait variant associations by position, GTEx liver eQTLs, and HiC liver chromatin data using 
GENE2FUNC implemented by FUMA.  
 
 
S9. LocusZoom regional Manhattan plots. ACLS6 novel nearby associations with omega-3 
fatty acids (rs273913, top) and DHA (rs166635, bottom). 
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Supplementary Tables 

S1. Known PUFA loci. Previously reported PUFA- and MUFA-associated lead variants. Each 
row represents a genomic risk locus identified by inputting summary statistics from previous 
publications into FUMA SNP2GENE. Phenotype abbreviations: AA: arachidonic acid; AdrA: 
adrenic acid; ALA: alpha-linolenic acid; DGLA: dihomo-gamma-linolenic acid; DHA: 
docosahexaenoic acid; DPA: cis-7,10,13,16,19-docosapentaenoic acid; DPAn6: cis-4,7,10,13,16-
docosapentaenoic acid; EDA: eicosadienoic acid; EPA: eicosapentaenoic acid; FAw3: omega-3 
fatty acids; FAw6: omega-6 fatty acids; FAw67: omega-6 and -7 fatty acids; GLA: gamma-
linolenic acid; LA: linoleic acid; MUFA: monounsaturated fatty acids; OA: oleic acid; otPUFA: 
polyunsaturated fatty acids (other than 18:2); POA: palmitoleic acid; PUFA: polyunsaturated 
fatty acids. 
 
S2. Participant characteristics table for UK Biobank cohorts. Phenotype and covariate data 
for UKB cohorts (EUR, AFR, CSA, EAS). Continuous variables are represented as: mean 
(standard deviation). BMI: body mass index. 
 
S3. Comparison of discovery models one and two with each other and with OpenGWAS. 
Compare Spearman correlation coefficient between P-values for variants in UKB-EUR 
discovery analysis M1 and M2, as well as between M1, M2, and OpenGWAS. All correlation 
coefficients were highly significant (P < 2.2e-16). See Supplementary Figure 2 for plots. 
 
S4. LDSC results for discovery cohort. Number of SNPs in Linkage disequilibrium score 
regression (LDSC) analysis, heritability (h2), genomic control (GC; lambda), and LDSC intercept 
for fourteen PUFA traits in models 1 and 2 of discovery UKB-EUR cohort. 
 
S5. Discovery cohort GWAS summary. Number of significant variants, independent 
significant variants (from COJO), and significant loci for each of fourteen PUFA traits tested in 
the UKB-EUR discovery cohort. Novel loci for each trait and unique novel loci are also shown. 
 
S6. Discovery GCTA-COJO results. Conditional and joint (COJO) analysis using summary 
statistics from fourteen PUFA traits in the UKB-EUR discovery cohort. RefA: effect allele; freq: 
frequency of the effect allele in the original data; b: effect size; se: standard error; p: p-value 
from original GWAS; n: estimated effective sample size; freq_geno: frequency of the effect 
allele in the reference sample; bJ: effect size from joint analysis of selected SNPs; bJ_se: 
standard error from joint analysis of selected SNPs; pJ: p-value from joint analysis of selected 
SNPs; LD_r: LD correlation between the SNP i and SNP i + 1 for the SNPs on the list. 
 
S7. Discovery cohort significant loci. FUMA genomic risk loci from UKB-EUR discovery 
cohort summary statistics. Corresponding summary statistics from UKB multi-ancestry African 
(AFR), Central and South Asian (CSA), and East Asian (EAS) cohorts are also provided. 
 
S8. BOLT-REML multi-trait heritability correlations. Output table from BOLT-REML 
multi-trait heritability correlations for the six traits in the discovery UKB-EUR cohort measured 
in absolute concentration units (mmol/L). The diagonal represents heritability explained by 
genotyped SNPs, other values are genetic correlations between traits. 
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S9. Genetic and phenotypic correlations heatmap data. Raw data for correlations heatmap 
Supplementary Figure 3 (upper) and corresponding P-values (lower). Above diagonal are genetic 
correlations calculated using LDSC using UKB GWAS summary statistics. Below diagonal are 
phenotypic correlations by Pearson correlation coefficient. 
 
S10. S-PrediXcan results. Gene-trait associations by tissue type from S-PrediXcan, passing the 
Bonferroni corrected significance threshold P�<� 2.791*10-8 (0.05/(601,176*2.98). Gene: gene 
ID; gene_name: HUGO gene name; Zscore: S-PrediXcan association result for the gene; Pvalue: 
P-value of Zscore; var_g: variance of the gene expression, calculated as W' * G * W (where W is 
the vector of SNP weights in a gene's model, W' is its transpose, and G is the covariance matrix); 
n_snps_used: number of SNPs in the covariance matrix; n_snps_in_model: number of SNPs in 
the model. 
 
S11. S-MultiXcan results. Significant genes across tissue types from S-MultiXcan, passing the 
Bonferroni corrected significance threshold of P < 7.68 *10-7 (0.05/(21,846*2.98). Gene: gene 
ID; gene_name: HUGO gene name; pvalue: significance p-value of S-MultiXcan association; n: 
number of "tissues" available for this gene; n_indep: number of independent components of 
variation kept among the tissues' predictions. (Synthetic independent tissues); p_i_best: best p-
value of single-tissue S-PrediXcan association; t_i_best: name of best single-tissue S-PrediXcan 
association; p_i_worst: worst p-value of single-tissue S-PrediXcan association; t_i_worst: name 
of worst single-tissue S-PrediXcan association. 
 
S12. Summarize S-MultiXcan results. Number of significant associations from S-PrediXcan 
and S-MultiXcan results for fourteen PUFA traits in UKB-EUR discovery cohort. Novelty of 
results also shown. 
 
S13. UKB-EUR external EUR replication. Number of variants in common between UKB-EUR 
discovery cohort and external EUR cohorts FinMetSeq and Kettunnen et al. after munging. 
Counting variants from UKB-EUR that were replicated at P < 0.05. 
 
S14. UKB-EUR multi-ancestry replication. Number of variants in common between UKB-
EUR discovery cohort and UKB multi-ancestry African (AFR), Central and South Asian (CSA), 
and East Asian (EAS) cohorts after QC protocol. Counting variants from UKB-EUR that were 
replicated at P < 0.05. 
 
S15. Meta-analysis summary. Number of significant variants, independent significant variants 
(from COJO), and significant loci for each of five PUFA traits tested in meta-analysis. Novel 
loci for each trait and unique novel loci are also shown. 
 
S16. LDSC results for meta-analysis. Number of SNPs in Linkage disequilibrium score 
regression (LDSC) analysis, heritability (h2), genomic control (GC; lambda), and LDSC intercept 
for five meta-analyzed PUFA traits.  
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S17. Meta-analysis GCTA-COJO results. Conditional and joint (COJO) analysis using 
summary statistics from five meta-analyzed PUFA traits. RefA: effect allele; freq: frequency of 
the effect allele in the original data; b: effect size; se: standard error; p: p-value from original 
GWAS; n: estimated effective sample size; freq_geno: frequency of the effect allele in the 
reference sample; bJ: effect size from joint analysis of selected SNPs; bJ_se: standard error from 
joint analysis of selected SNPs; pJ: p-value from joint analysis of selected SNPs; LD_r: LD 
correlation between the SNP i and SNP i + 1 for the SNPs on the list. 
 
S18. Meta-analysis significant loci. FUMA genomic risk loci from meta-analysis of UKB-EUR, 
FinMetSeq, and Kettunen et al. studies. Corresponding summary statistics from each study are 
also shown. 
 
S19. Gene set enrichment. GWAS Catalog gene set enrichment of PUFA-variant associations 
for five meta-analyzed PUFA traits. Genes in query gene sets mapped from significant meta-
analysis associations by position, GTEx liver eQTLs, and HiC liver chromatin data using 
GENE2FUNC implemented by FUMA.  
 
S20. Gene set enrichment by novelty. GWAS Catalog gene set enrichment, stratified by 
novelty of PUFA-variant associations for five meta-analyzed PUFA traits. Genes in query gene 
sets mapped from significant meta-analysis associations by position, GTEx liver eQTLs, and 
HiC liver chromatin data using GENE2FUNC implemented by FUMA.  
 
S21. GWAS Catalog Accessions. GWAS Catalog accession codes for the full summary 
statistics generated in this study. 
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