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35 Abstract

36

37 Using data from Ontario Canada, we previously developed machine learning-based algorithms 

38 incorporating newborn screening metabolites to estimate gestational age (GA). The objective of this study 

39 was to evaluate the use of these algorithms in a population of infants born in Siaya county, Kenya.

40 Cord and heel prick samples were collected from newborns in Kenya and metabolic analysis was 

41 carried out by Newborn Screening Ontario in Ottawa, Canada. Postnatal GA estimation models were 

42 developed with data from Ontario with multivariable linear regression using ELASTIC NET regularization. 

43 Model performance was evaluated by applying the models to the data collected from Kenya and comparing 

44 model-derived estimates of GA to reference estimates from early pregnancy ultrasound.

45 Heel prick samples were collected from 1,039 newborns from Kenya. Of these, 8.9% were born 

46 preterm and 8.5% were small for GA. Cord blood samples were also collected from 1,012 newborns. In data 

47 from heel prick samples, our best-performing model estimated GA within 9.5 days overall of reference GA 

48 [mean absolute error (MAE) 1.35 (95% CI 1.27, 1.43)]. In preterm infants and those small for GA, MAE was 

49 2.62 (2.28, 2.99) and 1.81 (1.57, 2.07) weeks, respectively. In data from cord blood, model accuracy slightly 

50 decreased overall (MAE 1.44 (95% CI 1.36, 1.53)). Accuracy was not impacted by maternal HIV status and 

51 improved when the dating ultrasound occurred between 9 and 13 weeks of gestation, in both heel prick and 

52 cord blood data (overall MAE 1.04 (95% CI 0.87, 1.22) and 1.08 (95% CI 0.90, 1.27), respectively).

53  Compared to internal validation performance using Ontario data and to our previously published 

54 external validations, model performance was diminished in the Kenya cohort, suggesting that reference 

55 ultrasound timing is an important factor in model performance. Our study highlights the challenges in 

56 reliably estimating GA in low resource settings, even those with access to dating ultrasound, given that the 

57 timing of dating ultrasound is critical to develop algorithms for accurate estimation of GA based on 

58 metabolic analysis of blood obtained at birth.

59

60

61

62  
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63 Introduction

64 The need for novel, non-invasive methods to accurately estimate gestational age (GA) in low resource 

65 settings has been identified by the World Health Organization as a priority area for improving global 

66 estimation of the burden of preterm birth at < 37 completed weeks of gestation. Preterm birth as well as 

67 being born small (small for gestational age; SGA = lowest ten centiles of birthweight given gestational age) 

68 are leading causes of infant mortality and morbidity, particularly in low- and middle-income countries 

69 (LMIC).1,2 Furthermore, medical needs and developmental milestones differ between term, preterm and SGA 

70 infants and thus, accurately identifying at-risk infants at birth is important in informing their postnatal care 

71 and supportive resources. Although the use of first-trimester ultrasound has improved our ability to estimate 

72 GA3, it is not widely available in all low resource settings and its implementation poses significant obstacles, 

73 including cost, training, equipment maintenance and lack of standardization.4 In low resource settings 

74 without access to prenatal ultrasound, GA estimates are often made based on last menstrual period, the 

75 accuracy of which may be affected by memory recall as well as irregular menses and maternal 

76 malnutrition.5,6 Commonly used postnatal examination methods for GA dating of infants (e.g., Dubowitz or 

77 Ballard score) also have limitations in terms of their accuracy – particularly in preterm and growth-restricted 

78 infants – and their utility is further limited by challenges with feasibility and high inter-user variability.7 

79

80 Given the limitations associated with existing GA dating methods, numerous research groups are testing new 

81 ways to accurately estimate GA.8–11 We have developed novel machine learning-based algorithms that use 

82 newborn screening metabolites and clinical and demographic covariates to estimate GA.12,13 These 

83 algorithms were originally developed and internally validated in a large cohort of newborns in Ontario, 

84 Canada.14,15 Refinements to the algorithms incorporated machine learning and improved the accuracy of 

85 gestational age estimations.12,16 Here we evaluate the use of these algorithms in a population of infants born 

86 in Siaya County, Kenya. 

87

88 Methods

89 Ethics

90 This study was approved by the Ottawa Health Sciences Network Research Ethics Board (20180330-01H), 

91 Children’s Hospital of Eastern Ontario Research Ethics Board (18/58X), the Stanford University School of 

92 Medicine Institutional Review Board (44656) and the Kenya Medical Research Institute (KEMRI) Scientific 

93 and Ethics Review Unit (SSC 2880). 

94

95 Study setting

96 A detailed study protocol has previously been published which describes the study sites and provides further 

97 details on sample collection and processing.17 The Kenya study site is located in Kisumu at the KEMRI 

98 Centre for Global Health Research, with field sites located in Siaya County, where a maternal-infant 

99 demographic surveillance program followed a prospective cohort of pregnant women and their infants in two 

100 community hospitals: Siaya County Referral Hospital (SCRH) and Bondo sub-County Hospital (BSCH). 
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101 Eligible participants were pregnant women between the ages of 15-49 years, residing within a 10 km radius 

102 of the research facility, willing to deliver in the research hospital, and not planning to relocate within 1 year 

103 of enrollment into the surveillance program. Participants were enrolled at their first antenatal care visit 

104 (ANC-1), which typically occurred prior to 20 weeks’ gestation. Participants underwent an early pregnancy 

105 ultrasound as early as possible and were offered treatment for common illnesses, including malaria, urinary 

106 tract infections, and sexually transmitted infections. A small portion of infants were born at home and 

107 evaluated within 72 hours of delivery. 

108

109 Consent

110 Informed written parental consent was obtained prior to study enrollment. All liveborn infants of enrolled 

111 mothers were eligible for inclusion.

112

113 Collection of newborn screening specimens

114 Cord blood samples were collected via syringe within 30 minutes of delivery of the placenta. Four to five 

115 drops of blood from the syringe were applied to filter paper within pre-printed circles. Heel prick samples 

116 were collected from newborns ideally between 24-72 hours after birth, or prior to discharge if the newborn 

117 was released from the hospital within 24 hours of delivery. The newborn’s heel was warmed prior to skin 

118 puncture to promote blood flow. The puncture site was cleaned and air-dried and a sterile lancet was used to 

119 puncture the lateral plantar aspect of the newborn’s heel. The first drop of blood was wiped away and 4-5 

120 drops of blood were applied within pre-printed circles of a second filter paper. 

121

122 Heel and cord dried blood spot (DBS) cards were dried and stored at ambient temperature and shipped 

123 weekly to the Newborn Screening Ontario (NSO) laboratory at the Children’s Hospital of Eastern Ontario in 

124 Ottawa, Canada for analysis, along with clinical and demographic information required for clinical 

125 interpretation of metabolic profiles and for metabolic GA estimation models. This information included 

126 infant sex, birthweight (in grams), multiple birth status, GA (in weeks + days), date of birth, and timing of 

127 sample collection.

128

129 Newborn screening analysis

130 The newborn screening analysis process has been described in detail previously.17 Dried blood spot samples 

131 were analyzed for the following metabolites: hemoglobin profiles, 17-hydroxyprogesterone (17-OHP), 

132 thyroid stimulating hormone (TSH), immunoreactive trypsinogen (IRT), a panel of 12 amino acids and 

133 31 acylcarnitines, t-cell receptor excision circles (TREC), biotinidase activity, and galactose-1-

134 phosphate uridylyltransferase activity (Table 1). Real-time screening for three conditions [congenital 

135 hypothyroidism (CH), hemoglobinopathies, and medium-chain acyl-CoA dehydrogenase deficiency 

136 (MCADD)] occurred during this study. These conditions were deemed to be high priority for reporting and 

137 were treatable at the local collection sites. Results of screening for congenital metabolic conditions will be 

138 published elsewhere.
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139

140 Data preparation and statistical analysis

141 All analyses were conducted using SAS 9.4 and R 3.3.2. Data preparation steps, including standardization 

142 and log transformations are detailed in S1 Appendix.

143

144 Analytes were included as candidate predictors in GA estimation models based on their routine measurement 

145 as part of Ontario’s expanded newborn screening program, including hemoglobin profiles, amino acids, 

146 acylcarnitines, hormone and endocrine markers, enzymes and co-enzymes (Table 1). Newborn GA was 

147 estimated from models derived using multivariable regression coupled with elastic net regularization and 

148 including the following covariates:

149 1. Model 1: Birth weight, sex, multiple birth status and pairwise interactions. 

150 2. Model 2: Birth weight, sex, multiple birth status and newborn screening analytes and pairwise 

151 interactions.

152

153 Table 1. Newborn screening analytes included in predictive models

Hemoglobins Adult hemoglobin: HbA(A) 
Fetal hemoglobin: HbF (F), Acetylated HbF (F1)

Endocrine markers 17-hydroxyprogesterone (17-OHP), Thyroid stimulating hormone 
(TSH)

Amino Acids Arginine (arg); phenylalanine (phe); alanine (ala); leucine (leu); 
ornithine (orn); citruline (cit); tyrosine (tyr); glycine (gly); methionine 
(met); valine (val); 

Acyl-carnitines C0; C2; C3; C4; C5; C5:1; C6; C8; C8:1; C10; C10:1; C12; C12:1; 
C14; C14:1; C14:2; C16; C18; C18:1; C18:2; C10:1; C12:1; C14:1; 
C14:2; C4OH; C5:1; C5DC; C5OH; C6DC; C16:OH; C16:1OH; 
C18OH; C18:1OH; C3DC; C4DC

Enzyme markers Biotinidase; immunotripsinogen; galactose-1-phosphate 
uridylyltransferase (GALT)

T-cell Function T-Cell Receptor Excision Circles (TREC)

154

155 Models were trained and internally validated in independent training and validation/test cohorts of infants 

156 from Ontario, Canada (S1 Appendix). These pretrained models were then applied to the data for infants from 

157 the external cohorts to estimate GA. To evaluate model accuracy, GA estimates were compared to the 

158 ultrasound reference GA for each infant, and the residual error calculated. Different metrics were calculated 

159 to estimate model uncertainty, including mean square error (MSE), standard error of estimation [also known 

160 as root mean square error (RMSE)], and mean absolute error (MAE), which is the average of the absolute 

161 value of the residual across all subjects (or subsets of subjects). Additionally, we calculated the proportion of 

162 model-derived estimates that fell within ± 1 week of reference GA. MAE was the main performance metric 

163 used to evaluate model accuracy, but multiple metrics were calculated and reported to facilitate comparisons 
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164 to other models developed by our group and others. Model-derived frequency of preterm birth will be 

165 compared to the observed prevalence of preterm birth. 

166

167

168 Results

169 1,039 newborns had heel prick samples available, as well as clinical and demographic data including 

170 ultrasound-derived reference GA. Of these, 92 infants (8.9%) were preterm and 88 (8.5%) were SGA (Table 

171 2). 1,012 newborns (97.4%) also had a cord blood sample collected. It should be noted that the Ontario 

172 cohort in which the models were developed and internally validated had a lower preterm birth prevalence of 

173 5.6% and SGA prevalence of 3.9% (Table 2). 

174

175 Model-based GA estimation for heel prick samples

176 Overall, Model 1, which included only readily available clinical covariates (sex, birthweight and multiple 

177 birth status) estimated GA within 10.5 days on average, with a MAE of 1.5 (95% CI 1.41, 1.58) weeks. 

178 58.5% of model estimates were within ± 1 week of reference GA. For preterm births, Model 1 MAE was 

179 2.64 (95% CI 2.30,3.01) weeks and only 24.1% of estimates were within ± 1 week of reference GA. In SGA 

180 newborns, MAE was 3.13 (95% CI 2.85, 3.38) weeks and 3.4% of estimates were within ± 1 week of 

181 reference GA (Table 2). Model 2, which included clinical covariates plus analytes, estimated GA within 9.5 

182 days overall, with a MAE of 1.35 (95% CI 1.27, 1.43) weeks, and 64.1% of estimates were within ± 1 week 

183 of reference GA. In preterm infants, MAE was 2.62 (95% CI 2.28, 2.99) weeks and in SGA infants the MAE 

184 was 1.81 (95% CI 1.57, 2.07) weeks (Table 3).

185

186 The performance of Models 1 and 2 did not appear to be affected by the HIV status of the mother. Results for 

187 subjects with HIV-positive mothers (n=197) were almost identical to model performance for infants of HIV-

188 negative mothers (n=842) (Table 4). 

189

190 Model-based GA estimation for cord-blood samples

191 Model 1 demonstrated nearly identical performance in cord blood samples compared to heel prick samples, 

192 as analytes were not covariates in Model 1, and the heel and cord blood cohorts were almost entirely 

193 comprised of the same infants. Overall, in the cord blood cohort, Model 2 had a MAE of 1.44 (95% CI 1.36, 

194 1.53) weeks. In preterm infants, Model 2 had a MAE of 2.79 (95% CI 2.46, 3.12) weeks and in SGA infants 

195 the MAE was 2.06 (95% CI 1.76, 2.36) weeks (Table 2). Like the heel prick results, model performance was 

196 not sensitive to the HIV status of the mother (Table 5 and Table 6).

197

198 Model-based GA estimation using reference GA derived from ultrasounds within recommended window

199 There was significant variation in the timing of gestational dating ultrasound, despite best efforts to conduct 

200 the ultrasound as early as possible. Reference GA for 28 newborns (2.7%) was derived from ultrasound 

201 conducted before 9 weeks’ gestation, and 889 (85.6%) had reference GA based on an ultrasound later than 
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202 13 weeks’ gestation. Only 120 newborns (11.5%) had reference GA based on an ultrasound conducted within 

203 9-13 weeks’ gestation (Table 4). When evaluated in these 120 newborns, model performance was markedly 

204 better, with Model 2 having a MAE of 1.04 (95% CI 0.87, 1.22) weeks overall and a MAE of 2.56 (95% CI 

205 1.50, 4.00) and 1.07 (95% CI 0.46, 1.70) weeks in preterm and SGA infants, respectively (Table 5).  

206

207 Similar to the heel prick results, Model 2 for cord blood specimens performed markedly better when only 

208 samples with reference GA ascertained between 9 and 13 weeks of gestation were included [overall MAE 

209 1.08 (95% CI 0.90, 1.27) weeks] (Table 5). 

210

211 Discussion

212 We externally validated the performance of a postnatal GA dating algorithm developed and validated in a 

213 cohort of infants in Ontario, Canada in a prospective birth cohort in Siaya County Kenya, a lower-middle-

214 income sub-Saharan African country. Heel prick and umbilical cord blood samples were collected shortly 

215 after birth, and ultrasound was used to provide a reference GA for each infant. Overall, model performance 

216 was worse in the Kenya birth cohort for Model 1 and Model 2 compared to internally validated model 

217 performance in Ontario, and in comparison to previously published external validations of metabolic GA 

218 algorithms.12,13 The heterogeneity of reference ultrasound timing was an important contributor to diminished 

219 model performance, as only 120 out of 1,039 participants had reference ultrasound completed between 9 and 

220 13 weeks of gestation. Model performance was markedly better in participants with reference GA 

221 ascertained inside compared to outside the recommended window. For example, Model 2 had an overall 

222 MAE of 1.04 weeks among infants with reference GA between 9 and 13 weeks, compared to MAEs of 1.48 

223 (<9 weeks), 1.34 (14-20 weeks) and 1.43 (>20 weeks) weeks for those with dating ultrasounds earlier and 

224 later than the recommended window. A similar pattern was seen for Model 1 and Model 2 in heel and cord 

225 samples both overall and in preterm and SGA newborns. Our study highlights the challenges in reliably 

226 estimating GA in low resource settings, even in those with access to dating ultrasound, given that the timing 

227 of dating ultrasound is critical to accurate estimations of GA.3,18 Indeed, most pregnant women in Kenya 

228 access ANC for the first time in the second trimester19. These challenges further underscore the need for 

229 novel, reliable GA estimation methods that can be adopted in LMICs.

230

231 Given the significant barriers to obtaining an early dating ultrasound, the metabolic GA approach may be a 

232 more feasible and accurate approach to GA dating than dating ultrasound when the timing of the latter is 

233 variable. Our study also demonstrated the utility of cord blood samples, which could further strengthen the 

234 feasibility of our approach in low resource settings. Cord blood samples are obtained shortly after birth and 

235 remove the burden of sample collection before discharge, do not cause any discomfort to the newborn and 

236 may be more readily accepted by parents who are not accustomed to the heel prick procedure. Given the 

237 higher prevalence of HIV in our patient population, our results also provide reassurance that HIV positive 

238 status does not appear to impact performance of algorithms based only on clinical measurements (Model 1) 

239 or those including metabolic markers measured in heel prick or cord blood (Model 2).
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240

241 The major limitation of our study was the small number of GA ultrasounds conducted during the optimal 

242 reference time-period. Therefore, a gold standard for reliable comparison with accurate true GA was not 

243 possible for a large percentage of the sample. Strengths of the study include the real-world approach to 

244 evaluating the algorithm, allowing us to assess not only model performance but the feasibility of this GA 

245 estimation approach as well. 

246

247 Our study demonstrated that, despite being conducted within a prospective pregnancy cohort with a well-

248 defined protocol in a controlled research setting, there were still challenges in obtaining a true reference GA 

249 measurement. The results of this evaluation suggest that postnatal GA estimation algorithms such as the ones 

250 we have developed are both feasible and accurate, and previous analyses have indicated that GA estimation 

251 algorithm approaches are also potentially cost-effective.20 Therefore, we believe that GA estimation 

252 algorithms based on metabolic analysis of heel prick or cord blood DBS may be able to serve an important 

253 role in both individual infant estimates of GA and population level estimations of preterm birth rates. 

254 Algorithm-based GA estimates have potential even in settings where early ultrasound is available, given the 

255 substantial heterogeneity in timing of reference GA ultrasound in our population, a factor that may 

256 compromise the accuracy of estimates based on ultrasound alone. Given these findings, we believe that GA 

257 estimation algorithms may serve an important role in providing both individual estimates of GA and 

258 population-level estimates of preterm birth.

259
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291
292 Table 2. Cohort Characteristics

Canada
n=39, 666
(Ontario test cohort)

Kenya Heel Prick
n=1,039

Kenya Cord Blood
n=1,012

Sex, n(%)

Male 19,536 (49.3%) 526 (50.6%) 511 (50.5%)

Female 20,130 (50.5%) 513 (49.4%) 501 (49.5%)

Birth weight (g), mean ± SD

Overall 3,379 ± 530.2 3,238.4 ± 468.9 3,238.5 ±470.1

Term infants only 3,430.6 ± 476.1 3,277.1 ± 430.6 3,274.6 ± 435.1

Preterm infants only 2,504.1 ± 622.8 2,840.0 ± 635.4 2869.0 ± 632.5

Low birth weight (<2500 g), n (%) 1,812 (4.6%) 48 (4.6%) 46 (4.6%)

SGA (<10th Centile), n (%) 1,561 (3.94%) 88 (8.5%) 87 (8.6%)

SGA (<3rd Centile), n (%) 363 (0.92%) 28 (2.7%) 30 (3.0%)

Completed gestational age wks, 
mean ± SD

39.3±1.6 39.1 ±1.9 39.1±1.9

Term (≥37 wks), n (%) 37,440 (94.4%) 947 (91.1%) 922 (91.1%)

Late Preterm (32-36 wks), n (%) 2,049 (5.2%) 88 (8.5%) 86 (8.5%)

Very Preterm (28-31 wks), n (%) 126 (0.3%) 4 (0.4%) 4 (0.4%)

Extremely Preterm (<28 wks), n (%) 51 (0.1%) 0 0
293 SGA, small for gestational age (lowest 10 and 3 centiles within gestational age and sex strata, 
294 calculated in the Ontario cohort using Intergrowth-21 centiles and applied uniformly in the Ontario, 
295 China and Philippines cohorts)
296
297
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Table 3. Summary of model performance to estimate gestational age in samples from 
Kenya

Models Kenya Heel Prick Samples Kenya Cord Blood Samples

Overall, 
N=1,039

Preterm, N=93 SGA,
N=88

Overall,
N=1,012

Preterm, N=91 SGA,
N=87

Model 1: Sex and birth weight

MAE (CI)
RMSE (CI)
% +/-1 wk 
(CI)

1.50 (1.41, 1.58)
2.02 (1.91, 2.13)
58.5 (55.3, 61.6)

2.64 (2.30, 3.01)
3.09 (2.75, 3.45)
24.1 (14.5, 34.1)

3.13 (2.85, 3.38)
3.39 (3.06, 3.70)
3.4 (0.0, 7.7)

1.51 (1.42, 1.59)
2.04 (1.94, 2.16)
58.4 (55.4, 61.6)

2.70 (2.39, 3.04)
3.14 (2.84, 3.49)
23.4 (13.7, 32.0)

3.17 (2.91, 3.46)
3.43 (3.10, 3.77)
3.6 (0.0, 8.3)

Model 2: Sex, Birth weight and analytes

MAE (CI)
RMSE (CI)
% +/-1 wk 
(CI)

1.35 (1.27, 1.43)
1.83 (1.72, 1.94)
64.1 (61.1, 67.2)

2.62 (2.28, 2.99)
3.09 (2.74, 3.48)
29.4 (20.2, 38.9)

1.81 (1.57, 2.07)
2.18 (1.91, 2.46)
46.9 (35.8, 57.3)

1.44 (1.36, 1.53)
1.95 (1.85, 2.06)
61.2 (58.3, 63.9)

2.79 (2.46, 3.12)
3.19 (2.85, 3.57)
21.1 (11.8, 29.3)

2.06 (1.76, 2.36)
2.41 (2.13, 2.69)
33.2 (23.0, 44.6)

MAE: Mean absolute error; RMSE: Root mean square error; SGA: small for gestational age
Data are presented as the mean and 2.5th and 97.5th bootstrap percentiles for MAE, RMSE and 
the percentage of model estimates within 1 and 2 weeks of ultrasound GA for 1000 bootstrap 
samples generated from each cohort.

Table 4. Summary of model performance to estimate gestational age in heel prick samples 
according to HIV status and timing of GA dating ultrasound 

Kenya Heel Prick Samples

HIV Neg, N=842 HIV Pos, N=197 US <9 weeks, 
N=28

US 9-13 weeks, 
N=120

US 14-20 weeks, 
N=503

US >20 weeks, 
N=386

Model 1: Sex, birthweight multiple birth

MAE (CI)
RMSE (CI)
% +/-1 wk 
(CI)

1.49 (1.39, 1.57)
2.01 (1.89, 2.13)
58.1 (54.8, 61.7)

1.56 (1.37 1.74)
2.06 (1.81, 2.31)
60.4 (53.9, 67.0)

1.51 (1.11, 1.93)
1.89 (1.53, 2.29)
49.6 (32.1, 67.7)

1.27 (1.08, 1.45)
1.61 (1.40, 1.83)
68.6 (60.2, 76.3)

1.57 (1.45, 1.69)
2.07 (1.92, 2.23)
55.5 (51.0, 60.0)

1.48 (1.33, 1.64)
2.08 (1.89, 2.28)
60.0 (54.6, 65.0)

Model 2: Sex, birthweight multiple birth and analytes

MAE (CI)
RMSE (CI)
% +/-1 wk 
(CI)

1.34 (1.27, 1.43)
1.81 (1.70, 1.93)
63.7 (60.5, 66.9)

1.35 (1.16, 1.53)
1.93 (1.67, 2.20)
65.7 (59.5, 72.0)

1.48 (1.09, 1.90)
1.85 (1.46, 2.23)
49.6 (29.6, 66.7)

1.04 (0.87, 1.22)
1.38 (1.19, 1.58)
71.5 (63.3, 79.1)

1.34 (1.23, 1.46)
1.84 (1.68, 2.00)
64.5 (59.8, 68.9)

1.43 (1.31, 1.58)
1.94 (1.77, 2.13)
62.2 (56.8, 66.8)

MAE: Mean absolute error; RMSE: Root mean square error; SGA: small for gestational age
Data are presented as the mean and 2.5th and 97.5th bootstrap percentiles for MAE, RMSE and 
the percentage of model estimates within 1 and 2 weeks of ultrasound GA for 1000 bootstrap 
samples generated from each cohort.

Table 5. Summary of model performance in Cord Blood Samples According to HIV Status 
and Timing of GA Dating Ultrasound (US)
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Models HIV Neg, N=822 HIV Pos, N=190 US <9 weeks, 
N=27

US 9-13 weeks, 
N=121

US 14-20 weeks, 
N=494

US >20 weeks, 
N=370

Model 1: Sex, birthweight and multiple birth

MAE (CI)
RMSE (CI)
% +/-1 wk (CI)

1.49 (1.41, 1.59)
2.03 (1.92, 2.15)
57.9 (54.3, 60.9)

1.56 (1.37, 1.76)
2.08 (1.86, 2.34)
60.5 (53.3, 67.0)

1.41 (0.96, 1.89)
1.84 (1.43, 2.26)
55.6 (35.7, 73.9)

1.28 (1.10, 1.45)
1.63 (1.39, 1.84)
67.5 (59.2, 76.0)

1.58 (1.46, 1.71)
2.10 (1.94, 2.25)
55.0 (50.8, 59.4)

1.48 (1.33, 1.63)
2.09 (1.88, 2.27)
60.1 (54.7, 64.6)

Model 2: Sex, birthweight, multiple birth, and analytes

MAE (CI)
RMSE (CI)
% +/-1 wk (CI)

1.43 (1.34, 1.52)
1.92 (1.81, 2.04)
61.4 (58.3, 64.4)

1.49 (1.29, 1.70)
2.04 (1.80, 2.28)
60.4 (53.1, 67.6)

1.60 (1.22, 2.03)
1.89 (1.49, 2.30)
55.4 (36.7, 73.1)

1.08 (0.90, 1.27)
1.44 (1.25, 1.62)
70.5 (62.2, 78.2)

1.46 (1.33, 1.57)
1.99 (1.83, 2.14)
61.7 (57.5, 65.7)

1.53 (1.39, 1.66)
2.03 (1.87, 2.19)
57.9 (53.3, 62.6)

MAE: Mean absolute error; RMSE: Root mean square error; SGA: small for gestational age
Data are presented as the mean and 2.5th and 97.5th bootstrap percentiles for MAE, RMSE and 
the percentage of model estimates within 1 and 2 weeks of ultrasound GA for 1000 bootstrap 
samples generated from each cohort.

Table 6. Summary of model performance in heel and cord blood samples restricted to 9-13 
week ultrasound.

Models Kenya Heel Prick Samples Kenya Cord Blood Samples

Overall, N=120 Preterm,
N=5

SGA,
N=13

Overall,
N=120

Preterm, N=5 SGA,
N=14

Model 1: Sex, birthweight and multiple birth

MAE (CI)
RMSE (CI)
% +/-1 wk 
(CI)

1.27 (1.08, 1.45)
1.61 (1.40, 1.83)
68.6 (60.2, 76.3)

2.80 (1.00, 4.50)
3.19 (1.41, 4.53)
18.8 (0.0, 60.0)

2.47 (1.92, 3.00)
2.63 (2.02, 3.22)
7.8 (0.0, 27.3)

1.27 (1.08, 1.47)
1.62 (1.39, 1.87)
67.6 (59.2, 76.7)

2.82 (1.20, 4.33)
3.22 (1.73, 4.43)
19.6 (0.0, 66.7)

2.52 (2.08, 3.00)
2.67 (2.17, 3.22)
7.5 (0.0, 25.0)

Model 2: Sex, birthweight, multiple birth and analytes

MAE (CI)
RMSE (CI)
% +/-1 wk 
(CI)

1.04 (0.87, 1.22)
1.38 (1.19, 1.58)
71.5 (63.3, 79.1)

2.56 (1.50, 4.00)
2.78 (1.58, 4.00)
18.8 (0.0, 60.0)

1.07 (0.46, 1.70)
1.44 (0.73, 2.02)
77.0 (50.0, 100.0)

1.07 (0.88, 1.23)
1.43 (1.24, 1.62)
71.0 (62.5, 79.2)

2.60 (1.00, 4.00)
2.94 (1.63, 4.00)
19.6 (0.0, 66.7)

1.52 (0.88, 2.15)
1.90 (1.30, 2.37)
49.4 (22.2, 75.0)

MAE: Mean absolute error; RMSE: Root mean square error; SGA: small for gestational age
Data are presented as the mean and 2.5th and 97.5th bootstrap percentiles for MAE, RMSE and 
the percentage of model estimates within 1 and 2 weeks of ultrasound GA for 1000 bootstrap 
samples generated from each cohort.
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