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Abstract 
 
Existing imaging genetics studies have been mostly limited in scope by using 
imaging-derived phenotypes defined by human experts. Here, leveraging new 
breakthroughs in self-supervised deep representation learning, we propose a 
new approach, image-based genome-wide association study (iGWAS), for 
identifying genetic factors associated with phenotypes discovered from medical 
images using contrastive learning. Using retinal fundus photos, our model 
extracts a 128-dimensional vector representing features of the retina as 
phenotypes. After training the model on 40,000 images from the EyePACS 
dataset, we generated phenotypes from 130,329 images of 65,629 British White 
participants in the UK Biobank. We conducted GWAS on three sets of 
phenotypes: raw image phenotype, phenotypes derived from the original photos; 
retina color, the average color of the center region of the retinal fundus photos; 
and vessel-enriched phenotypes, phenotypes derived from vasculature-
segmented images. GWAS of raw image phenotypes identified 14 loci with 
genome-wide significance (p<5×10-8 and intersection of hits from left and right 
eyes), while GWAS of retina colors identified 34 loci, 7 are overlapping with 
GWAS of raw image phenotype. Finally, a GWAS of vessel-enriched phenotypes 
identified 34 loci. While 25 are overlapping with the raw image loci and color loci, 
9 are unique to vessel-enriched GWAS. We found that vessel-enriched GWAS 
not only retains most of the loci from raw image GWAS but also discovers new 
loci related to vessel development. Our results establish the feasibility of this new 
framework of genomic study based on self-supervised phenotyping of medical 
images.   
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Introduction 
 
Although genome-wide association studies (GWAS) have successfully identified 
thousands of genetic associations, most existing GWAS are based on a set of 
predefined phenotypes. While these phenotypes encode valuable biomedical 
knowledge, they are also biased by current clinical practice and epidemiological 
studies. In addition, as the granularity of phenotype code is often limited, it is 
often not sufficient to capture the complexity of human physiology and pathology 
in their entirety. Therefore, deriving new phenotypes beyond expert curation 
would enable the discovery of new genetic associations. 

Medical imaging is a rich resource for phenotype discovery. Through rapid 
technological advancements, modern medical imaging offers unprecedented 
details about a patient’s physiological condition and can be a high-content 
phenotyping modality. Existing imaging GWASs have leveraged imaging-derived 
phenotypes (IDPs)1–3. These IDPs were typically designed by imaging experts 
and generated by special-purpose image processing pipelines. Recently, 
machine learning, especially supervised deep learning (DL), is used to 
automatically generate IDPs4–6. These methods were trained by learning from 
data labeled by experts and identified new loci in GWAS2,7,8. However, although 
supervised DL can vastly improve the efficiency of image labeling, it fails to 
provide phenotypes beyond those defined by experts. In addition, although these 
phenotypes are derived for medical practice, clinical decision processes, and 
natural-language-based reporting, they often do not comprehensively capture the 
imaging content. There are limitations to the amount of information a human eye 
can extract from images. Many meaningful imaging features, some of which 
might be used implicitly by physicians, may not be verbalized in medical reports. 
In addition, there may be physiologically informative features that are present in 
the image but are completely missed or ignored by readers. For example, 
Google’s DL algorithm extracted novel features from retinal images, such as age, 
gender, and smoking status, that are not readily apparent to expert human 
graders9. Following studies identified features such as refractive error and 
anemia from retinal images10,11. These results suggest that additional information 
beyond human curation may be encoded within imaging data, and new methods 
are needed to extract such information. 

Here, we have designed a new framework of genome-wide genotype-phenotype 
association study by performing unsupervised image-based genome-wide 
association studies (iGWAS). For phenotype discovery, instead of supervised 
learning that relies on labels from expert annotations, unsupervised deep 
learning is applied to an image to capture its intrinsic contents12–15.  
Endophenotypes generated by the deep learning model are then subjected to 
GWAS to identify associated genomic loci.  
 
We tested this new approach using human fundus images. First, we derived 
endophenotypes from the raw color fundus images, which likely capture the 
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overall content of the image. In addition, we derive endophenotype from vessel-
segmentation of the raw images, which likely capture features enriched for the 
vascular structure of the retina. Vessel-enriched features are chosen because 
retinal vasculature of healthy individuals remains relatively stable since 
development, making it a suitable phenotype for genetic association studies. In 
addition, defects in the blood vessels in the retina lead to many human retinal 
diseases, such as diabetic retinopathy, and the feasibility of learning retinal 
vasculature representations as biomarkers has already been investigated16,17. 
We constructed a contrastive loss function over an Inception V3 architecture to 
learn a representation that captures the intrinsic retinal features of individuals. 
Our neural network outputs 128 endophenotypes representing the input image, 
either raw color image or vessel-segmented image. After training on 40,000 
images from EyePACS, our model generated phenotypes from 130,329 images 
of 65,629 British White participants in the UK Biobank. We conducted three sets 
of GWAS analyses: the raw fundus image endophenotypes, the vessel-enriched 
endophenotypes, and the average colors of the central patch representing retina 
colors. The retina colors were included in our analyses to aid the interpretation of 
our results as they are the most prominent feature of the fundus image. In 
addition, a follow up functional assay verified the role of the WNT7B gene, a 
novel candidate locus, in retinal vascular development in vivo.  

RESULTS 
Overall iGWAS framework 
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Figure 1: iGWAS of endophenotypes from retinal fundus images. (a) Using 
raw fundus images or segmented vessel mask images derived from fundus images 
(segmentation network omitted for conciseness) in EyePACS, we developed 
phenotyper neural networks that optimize contrastive losses; (b) Using the trained 
phenotypers, we generated 128 endophenotypes for each raw and vessel image 
in the UK Biobank vision cohort and do GWAS on these endophenotypes to 
identified independent loci.  
 
The core component of iGWAS is a phenotyping (encoder) neural network that 
generates endophenotypes, which are in turn associated with genotypes by GWAS 
(an example of iGWAS for retinal images is shown in Figure 1). Distinct from 
traditional phenotypes labeled by experts or by AI trained via supervised learning, 
iGWAS’s encoder network is trained by self-supervised learning to discover new 
phenotypes. We thus named it as Self-Supervised Phenotyper (SSuPer). Popular 
self-supervised learning losses, such as contrastive losses12,14,18 and 
reconstruction losses19, are used to extract coherent and biologically relevant 
features of individuals. We used a contrastive loss to learn features that are 
consistent between the images from the same person. The resulting “embedding 
vector,” the output of the encoder, is treated as “endophenotypes” for downstream 
GWAS analysis.  
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The iGWAS approach is executed in two phases: the model development phase 
and the GWAS phase. In the model development phase, a “phenotype 
development set” is used to train the embedding network. The phenotype 
development set is a collection of images from individuals, whose genotype data 
are not needed. The result of the model development phase is a trained neural 
network model, SSuPer, that can transform an input image into a set of self-
supervised image-derived phenotypes (SS-IDPs). In the GWAS phase, the trained 
SSuPer from the model development phase is used to generate SS-IDPs for 
images from the “GWAS set,” a dataset containing both images and genotypes of 
a different cohort of individuals. The SS-IDPs are then tested for association with 
genome-wide markers. 

Overall data analysis strategy for generating raw-image and vessel-
enriched endophenotypes from fundus images 
 
In this study, we designed and implemented the iGWAS approach to encode 
retinal features from fundus images. For the phenotype development set, we 
used data from EyePACS, a large public collection of 88,702 fundus images (see 
Methods: dataset extraction). After quality control (see Methods: Image 
quality control), 40,000 top quality images were used (Supplementary Table 
1). For the GWAS set, we used fundus images and genotype data of 65,629 
British White UK Biobank participants. Although the demographics of the 
EyePACS and UK Biobank cohorts do not match exactly, we reasoned that some 
characteristics of their fundus images should be similar, so we expect the 
features learned from EyePACS can be generalized to UK Biobank. 
 
First, the EyePACS fundus images are directly fed into the encoder neural 
network to generate raw image endophenotypes. A convolutional neural network 
(CNN) based on the Inception20 architecture is used because it is proven to 
deliver good results for modeling images.  
 
In parallel, the EyePACS fundus images were also fed into a vasculature 
segmentation network to generate vessel masks, which were then treated as the 
inputs to an embedding network to generate the vessel-enriched 
endophenotypes. We expected that using the segmentation mask would filter out 
much of the other information in the raw input image and thus result in images 
with enriched vasculature information, so that the endophenotypes would mainly 
be related to the vasculature as well. 
 
We found some of the endophenotypes strongly correlated with the color in both 
raw image derived endophenotypes and the vessel segmentation mask derived 
endophenotypes. Therefore, to account for the “retinal color,” defined as the 
average intensities of the red, blue, and green channels of the central patch of 
the fundus image, were considered as additional phenotypes in subsequent 
analysis (see Methods). While the definition of retinal color may not fully account 
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for change in illumination, texture of the retinal pigment epithelium, retinal 
lesions, and optic disk, it captures coarse-grained information of the retinal 
background. We conducted GWAS analyses for the three sets of phenotypes: 
128 raw image endophenotypes, 128 vessel-enriched endophenotypes, and 3 
retina colors (RGB channels). To aid in interpretation of the endophenotypes, we 
conducted univariate and correlation analyses among endophenotypes and 
between endophenotypes and relevant eye phenotypes. The overall pipeline is 
shown in Supplementary Figure 1. 

Design of encoder network that captures coherent features of fundus 
images from the same person 
 
To generate an embedding vector that represents the inherent biological features 
of an individual, we leverage a self-supervised metric learning approach that was 
described in ArcFace21, a widely adopted algorithm that is used to extract 
features for developing human face recognition methods, with some technical 
modifications detailed in methods (see Methods: Embedding neural network). 
Inception v3, which has been demonstrated to be capable of capturing complex 
information within fundus images, was used as a backbone architecture for the 
metric learning22. The output of our embedding network was designed to be a 
128-dimensional vector, based on previous work showing that 128-dimensional 
vectors are sufficient to represent complex datasets23,24. Our ArcFace loss 
function is a contrastive loss that first projects the embedding vector to the unit 
sphere and then optimizes the contrast between the embeddings from the eyes 
of the same person and the embeddings from different people by minimizing the 
angular distance between the embeddings of left and right retinas from the same 
individual while keeping the embeddings from different individuals at least some 
margins apart (Figure 3). We reasoned that if the trained model manages to 
capture real biologically relevant features, embeddings between an individual’s 
left and right fundus images should be more similar than those from different 
individuals, previous work also showed that genetic relatedness can be 
estimated from pairs of fundus images25. Details of model design and training are 
described in the Methods: Embedding neural network.   
 
For the vessel segmentation network, we chose a patch-based vessel 
segmentation network with the classic U-net architecture26 (See Methods: 
Fundus image segmentation). This is an easy choice because vessel 
segmentation of fundus images is a well-studied problem with mature methods27–
29.   
 

Training of encoder networks  
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Figure 2: Contrastive loss for deriving phenotypes coherent across images 
from the same person. (a) Contrastive loss is designed to map images from the 
same person to be closer while keeping images from different persons apart. The 
trained endophenotype vectors for raw fundus image embedding and for vessel-
enriched embedding (b) of the same persons reflect the design of contrastive 
learning in both the training set (EyePACS) and the test sets (UKBB). The 
distributions of the matched pairs (images from the same person) and the random 
pairs are separated. The distributions were estimated using Scott’s kernel with an 
additional multiplicative factor of 0.5 to smooth the curve. 
 
 
For 88,724 images from EyePACS, 54,992 passed our quality filter network 
(quality score > 0.5) (see Methods). 40,000 top quality images (quality score > 
0.95) were selected as we reasoned that this balance point of sample size and 
sample quality is sufficient for training the main SSuPer network. The 
characteristics of the EyePACS dataset are shown in Supplementary Table 1. 
 
Both the segmentation and the embedding networks were trained using standard 
gradient descent. See Methods for details. To verify the performance of the 
SSuPer embedding network, we compared the matched pairs (left and right eye 
of the same person) and random pairs (Figure 2b). As expected, there is a clear 
separation in the distribution of cosine distance between matched pairs and 
random pairs (see Supplementary Table 2 for quantification). Although less 
than that of EyePACS, the separation of matched and random pairs was clearly 
observed in UK Biobank, indicating the segmentation and embedding models are 
transferable and indeed capture the intrinsic features of the fundus images. 
Therefore, we directly applied the embedding networks trained using EyePACS 
to the UK Biobank data without fine-tuning. Of note, we observed a cone effect 
that the cosine similarity between any pair of embeddings is almost always 
greater than 0, which is a general phenomenon for deep neural networks30. 
Interestingly, the cone effect is more prominent for the embeddings of vessel 
mask images, which may indicate that the contrastive learning task is more 
difficult for the vessel mask images. 
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Descriptive analysis of endophenotypes in UK Biobank fundus photos 
 
We conducted our analysis using 65,629 British White participants from the UK 
Biobank who had available fundus images (see Methods: Dataset extraction). 
For each participant, we chose the first image for each eye, resulting in 130,329 
images. Basic demographic description of this dataset is shown in 
Supplementary Table 3.  Retina colors were also extracted as phenotypes. The 
central patch of the image (the fovea region) was used because it has more 
pigment and of low vessel density, providing a cleaner estimate of the retinal 
color (see Methods: Color GWAS). 
 
Univariate distributions of the endophenotypes generated by our embedding 
networks is shown in Supplementary Figure 2. Interestingly, we found that while 
most raw image endophenotypes have unimodal bell-shaped distributions, some 
vessel-enriched endophenotypes have bimodal or multimodal distributions. 
Meanwhile, examining their pairwise correlations showed that each 
endophenotype group has strong internal correlations (more so in vessel-
enriched endophenotypes) but the two groups themselves are weakly correlated 
(Figure 3), indicating that these two embeddings capture different aspects from 
images. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2023. ; https://doi.org/10.1101/2022.05.26.22275626doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.26.22275626
http://creativecommons.org/licenses/by/4.0/


 

10 

 
Figure 3. Absolute correlations among 128 vessel-enriched (upper left) and 128 
raw image-derived (lower right) endophenotypes. While some correlations within 
each endophenotype block are observed by hierarchical clustering, there is a 
lack of correlations across vessel-enriched and raw-image derived 
endophenotypes. 
 
iGWAS: GWAS of endophenotypes  
 
To identify genetic factors associated with endophenotypes, GWAS was 
performed for each of the 128 dimensions from all 130,329 images using linear 
mixed models as implemented by BOLT-LMM31, adjusted by age, sex, and 
ancestral principal components (PCs) (see Method: Endophenotype GWAS). 
Analyses were conducted separately for the left and right retinal images. Their 
results were not meta-analyzed because the endophenotypes of the two eyes 
may be correlated due to training. Instead, we pooled the results from the two 
eyes and took the intersection of the significant hits, and only the more significant 
p-value between the two eyes was reported. Since the endophenotypes were 
derived without the direct use of any genetic information, we expected there to be 
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minimal genomic inflation for the GWAS. Indeed, we observed that the genomic 
inflation factor was well-controlled (λGC≈1)  (Supplementary Figure 3), though 
some endophenotypes had slightly higher (1.099) inflation factors, indicating 
potential polygenic genetic architecture.  
 
For raw image endophenotype GWAS, we identified 2,150 SNP-endophenotype 
pairwise association signals from 113 SNPs (Supplementary Table 4) showing 
genome-wide significance (p-value<5×10-8) (Figure 4). These SNPs were 
clustered into 14 independent loci (Table 1) (see Methods: Endophenotype 
GWAS). 
 
The mean and standard deviation of the heritability from LD score regression 
(Supplementary Figure 4, Supplementary Table 10) of raw image 
endophenotype are 0.04 and 0.05 while those of vessel-enriched  
endophenotypes are 0.10 and 0.05 (T test p-value = 1.8×10-37). 
 
For vessel-enriched endophenotypes, we identified 4,986 association signals 
from 176 SNPs (Supplementary Table 5) showing genome-wide significance (p-
value<5×10-8) (Figure 4). These SNPs were merged into 34 independent loci 
(Table 1) (see Methods: Endophenotype GWAS). Additionally, to test if the 
vessel-enriched endophenotypes can be represented by lower numbers of 
components and to evaluate the potential of removing variations in unwanted 
directions, we did principal component analysis for the vessel-enriched 
endophenotypes, selected the top 99% variance explaining components for 
GWAS and calculated the heritability (see Methods: PC GWAS and heritability 
calculation and Supplementary Table 11, 12). We found that the top variance 
explaining components have lower heritabilities than many vessel-enriched 
endophenotypes and the heritability decays very fast in these components, 
indicating that the principal components are not effective at capturing genetic 
variations. 
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Table 1: Loci significantly associated with raw-image or vessel-enriched endophenotypes found 
by iGWAS. BP is in GRCh37 coordinate. The vessel_PVAL and raw_PVAL columns contain the 
most significant p-value (min P) of the vessel-enriched endophenotype and the raw image 
endophenotype GWAS among all endophenotypes at each locus. Non-significant p-values are 
omitted. Candidate genes for each locus were annotated based on their distance from the leading 
SNPs and annotated function. 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2023. ; https://doi.org/10.1101/2022.05.26.22275626doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.26.22275626
http://creativecommons.org/licenses/by/4.0/


 

13 

 
Figure 4: Aggregated Miami plot with Manhattan plots of 128 vessel-enriched 
endophenotypes on the top, and that of raw image endophenotypes on the 
bottom. The two horizontal lines indicate significance levels set for individual 
GWAS (p=5 × 10-8) and all phenotypes (p=5 × 10-8/128). The red peaks are the 
vessel-enriched endophenotype associated loci that satisfy selection criteria 
defined in Methods: Endophenotype GWAS. The blue peaks are unique to raw 
image endophenotype GWAS. 
 
For vessel-enriched endophenotype GWAS, we make the following observations. 
Very recently, in a GWAS of retinal vessel tortuosity using fundus images32, 
tortuosity was determined by a non-deep learning software. Interestingly, two of 
the 34 of loci identified in our study overlapped with the top 10 SNPs shown in 
the tortuosity study32, at chr12:PDE3A and chr15:HERC2/OCA2. Furthermore, at 
least five candidate genes we identified, including FLT1, EPHB4, WNT7B, SOX6, 
and APOD, have been reported to have vessel-related functions. For example, 
highly significant SNPs (p-value = 4×10-23) were found around FLT1, which is a 
negative regulator of VEGF and is known to play an important role in retinal 
vessel development33. Similarly, a strong association was found with 
erythropoietin-producing hepatocellular receptor B4 (EPHB4) (Supplementary 
Figure 5a) , which is essential in vessel development34.  Modulation of Ephb4 
activity in the mouse retina was found to alter retinal neovascularization35,36. 
Another identified locus was centered at WNT7B (Supplementary Figure 5b), 
which is  known to be important in blood brain barrier development37,38.  Similarly, 
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SOX6 has been implicated in arteriole development in kidney39 and APOD has 
been linked to chorioretinal blood vessel formation40. Interesting, these loci in 
SOX6 and APOD have not been associated with retinal vasculature 
measurement phenotypes (EFO ID: EFO_0010554) in previous GWAS studies41–
43 as documented in GWAS Catalog, further indicating that our framework is an 
effective, novel approach for identifying new genetic loci associated with 
phenotypes captured by imaging. 
 
For raw image endophenotype GWAS, 2 additional loci were identified beyond 
what was found in the vessel-enriched endophenotype GWAS: TYRP1 and 
APBA2. TYRP1 and APBA1 are both associated with eye color44,45. 

GWAS of retina color 
Pigmentation of the human body, such as hair, skin, and iris, is strongly 
influenced by genetics. As the color of the human retina is influenced by factors 
such as the level of pigmentation of retinal pigment epithelium (RPE) and choroid 
blood vessels, we tested if genomic loci associated with retina color can be 
identified through genome association study of fundus images (Methods: Color 
GWAS). While association of iris color has been conducted46, no direct 
association studies of retinal color using fundus images have been conducted. In 
our study, significant genome-wide association (p<5×10-8, and intersection 
between hits from fundus images of left and right) was obtained for a total of 175 
SNPs (Supplementary Table 6 and Supplementary Figure 6) from 34 
independent loci (Supplementary Table 7).  
 
We found 13 out of the 34 retina color loci overlapped with previously reported 
GWAS loci for “hair color”47, “eye color”48, and “skin pigmentation”48 in the GWAS 
catalog (Supplementary Table 7, Supplementary Figure 8, see 
Supplementary Table 7 for details), supporting the validity our approach. 
Interestingly, many genes from unique loci identified in this study can be linked to 
pigmentation pathways (Supplementary Table 7). For example, mutations in 
FGFR3 lead to familial acanthosis nigricans, which results in skin pigmentation 
abnormalities49. In addition to pigmentation, it is interesting to note that 6 of the 
34 loci overlap with loci previously reported to be associated with macular 
thickness (Supplementary Table 7), including DCDC1, TPCN2, NCAM1, 
HERC2, PDE6G, and WNT7B. 

Genetic correlation analyses of endophenotypes  
To further interpret these vessel-enriched      endophenotypes, we correlated 
them with other traits that are related to retinal phenotypes. We conducted 
genetic correlation using summary statistics as they are easier to access and are 
suggested to be a good surrogate for phenotypic correlation50,51. We included 
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traits that either have GWAS hits near the endophenotype GWAS loci (within 
200kb) or are known to be related to retinal or corneal disorders, and whose 
genetic summary statistics for UK Biobank data are available (see Methods: 
Genetic correlation). Corneal phenotypes (H15-H22 Disorders of sclera, 
cornea, iris and ciliary body and H18 Other disorders of cornea from 
GeneAtlas52) were included because they may affect refractive error, which can 
have a detectable effect on the fundus images. We found that many 
endophenotypes (both raw image derived and vessel-enriched) are genetically 
correlated with skin/hair pigmentation and retinal color after Bonferroni correction 
(corresponds to p-value threshold of 0.05/128). Other nominally significant 
genetically correlated pairs (not significant after Bonferroni correction) include 
correlations between both endophenotypes and cardiovascular disease, 
diabetes, lung function and blood pressure. Vessel-enriched endophenotypes 
additionally show genetic correlations with cornea disorder, glaucoma, arterial 
diseases and retinal disorder (Supplementary Table 8, 9). 
 
We also correlated (phenotypically and genetically) both the raw image 
endophenotypes and vessel-     enriched endophenotypes with fundus 
background color and found that the latter are more strongly correlated with 
fundus background color. The strong correlation between vessel-enriched 
endophenotypes and retinal color is possibly due to the vessel segmentation 
masks lacking texture information which is abundant in raw images, so the 
phenotyping network for the vessel segmentation masks has to rely more on the 
color information (Supplementary Table 8, 9). 
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Functional validation of candidate gene involved in retinal vessel 
development 

 

Figure 5: Depletion of Wnt7b in developing retina induced defects in 
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vascular development. 

(a) Schematic constructs of Wnt7b cDNA- and shRNA-expressing vectors.  (b-e) 
Figures demonstrating HEK293T cells under GFP and mCherry channels after 
24-hours’ transfections. b: Wnt7b cDNA only. c: Wnt7b shRNA80 only. d: GFP 
channel of Wnt7b cDNA + shRNA80. e: mCherry channel of Wnt7b cDNA + 
shRNA80. (f) Knockdown efficiencies of each shRNA after 24 hours transfection 
was calculated. Gray column: The ratio of cDNA only GFP fluorescent intensity 
over shRNA only mCherry fluorescent intensity. Magenta column: the ratio of 
GFP over the mCherry fluorescent intensity after a combo of cDNA and shRNA 
transfections. Statistical differences were determined by Two-tailed T-test. *** 
represents a significant difference P-value <0.001. (g). The experimental design. 
(h). Knock down of Wnt7b (shRNA 80) led to abnormal vessels in the retina in 
the outer plexiform layer (OPL). NHS-Biotin: tracer for vessels. Isolectin B4: 
vascular cell marker. (i-n). Quantification of vessels in superficial, intermediate 
and deep vascular plexuses in the retina. Vessel area and branch points were 
quantified. Data are mean ± SEM (n = 3 in control group, six lobes of retina were 
included; n = 2 in shRNA 80 group, four lobes of retina were included; n = 2 in 
shRNA 83 group, four lobes of retina were included). Statistical differences were 
determined by one-way ANOVA with a post Tukey's multiple comparisons test, 
comparing the shRNA 80 and 83 groups with the control group. *p < 0.05, **p < 
0.01, *p < 0.001 and ****p < 0.0001. Scale bar: 50 μm. 

 

To validate the candidate genes identified from our vasculature GWAS, we 
sought to test if Wnt7b functions in retinal vessel development. Although mice 
with partial loss of function of Wnt7b mutation show persistence of the hyaloid 
vessel, involvement of Wnt7b in the retinal vasculature has not been reported53. 
Four shRNAs (shRNA80-83) targeting Wnt7b were designed and tested in cell 
culture for their knockdown efficiency. Greater than 70% knockdown efficiency 
was observed for all shRNAs with shRNA83 having the highest knockdown 
efficiency (Figure 5a-f). To test the function of Wnt7b in the retina, shRNA80 and 
shRNA83 were electroporated into mouse retinas in vivo at postnatal day 0 (P0) 
as described54 (Figure 5g). Thirty days after electroporation, the retinas were 
harvested following injection of NHS-biotin vessel tracer55. When Wnt7b was 
knocked down in the retina, the total vessel area was significantly increased in 
the intermediate vascular plexus and reduced in the deep vascular plexus 
(Figure 5h-k). Similarly, the vessel branch-points were significantly increased in 
the intermediate and superficial plexuses and decreased in the deep vascular 
plexus when Wnt7b was depleted from the developing retina (Figure 5l-n). 
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These results demonstrate that Wnt7b plays an important role in normal retinal 
vascular development.  

 
Discussion 
 
Our work is one of the first proof-of-concept studies of a self-supervised learning-
based phenotype discovery method for imaging GWAS. With no expert 
supervision, our method was able to extract endophenotypes and identify genes 
relevant to retinal vessel development, including a new locus that was validated 
experimentally.  
 
While there have been previous imaging GWAS on DL-based phenotyping, they 
either used expert-defined phenotypes7,43 or clustering of dense representational 
vectors into subtypes. We directly use the dense vectors, which contain more 
information than the subtype cluster labels, as phenotypes. There are a handful 
of studies that use final or intermediate layers of the neural network as 
phenotypes, but these networks were trained in a supervised fashion using 
external labels (e.g., age56 or eye diseases57) or via transfer learning58. Of note, 
there is another contrastive learning approach, ContIG, for phenotyping the retina 
fundus images by maximizing cross-modality matching between the image part 
and the genetic part of the same individuals59. However, we found that the 
GWAS of ContIG derived phenotypes returns less loci than what derived by 
iGWAS, may be due to the fact that part of the sample sizes was consumed by 
the model training and thus GWAS sample size is limited. On the other hand, 
iGWAS does not require data sets with both images and genetic data to train the 
encoder, and may have a wider range of applicability.  
 
Our iGWAS framework is flexible and can be adapted and extended in various 
ways. To study retinal vasculature, our current approach includes a segmentation 
step that generates vessel masks, and the embeddings are subsequently derived 
from these predicted vessel masks. To capture additional information in fundus 
images, such as the morphology of the optic disc, hemorrhages, exudates, or the 
pigmentation level, alternative preprocessing/segmentation steps may be 
applied, or this process can be completely skipped. Also, while the pair of eyes of 
an individual are natural “biological replicates” for our ArcFace-like approach, our 
approach may be extended to images without replicates, via current approaches 
for contrastive learning14. Furthermore, to inject labels to make more specific 
phenotypes, one can use a hybrid approach that minimizes both supervised and 
self-supervised losses. 
 
Paradoxically, we found that the segmentation mask image, as a heavily filtered 
version of the raw image containing only a subset of the original information, 
gives more genetic association signals. They have higher heritabilities and the 
GWAS of which identifies most loci in the GWAS of raw image endophenotypes. 
We postulate that the original contrastive learning task done on the raw images 
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was relatively easy because there are ample texture features or even artifacts to 
match the left and right fundus images. By replacing raw image with a vessel 
mask, we make the contrastive learning task harder and the model is forced to 
focus on vessel features.  
 
While we prioritize the proof-of-concept, there is room for further methodological 
improvements. For example, it is not completely optimized to use the 128-
dimensional vector as phenotypes. Moreover, the phenotyping model and 
segmentation model were all trained in different datasets then directly deployed 
to the UK Biobank data so there may exist some distribution shift that we didn’t 
account for. We chose not to do domain adaptation on the UK Biobank data set 
to avoid false association signals due to information leaking. Addressing the 
distribution shift may improve the separation of endophenotype distances 
between matched and random pairs in the UK Biobank. Also, we used the soft 
vessel segmentation mask instead of a binary one because the performance of 
the segmentation model is not good enough to permit a global threshold while at 
the same time preserve most details of vasculature. This might also be the cause 
of the appearance of many color loci in the vessel-enriched GWAS results. In 
addition, lack of clear image interpretation of our endophenotype derived from 
unsupervised learning might be a major limitation. Future work is needed to 
engage image interpretation methods to identify relevant image features. 
Moreover, our retina color GWAS uses RGB color, which may be susceptible to 
change in illumination. Defining retina color in other color spaces may further 
improve the detection power. 
 
Admittedly, it is challenging to use an unsupervised approach to extract 
exclusively vessel-related information from complex modalities like retina fundus 
images. While our segmentation-based endophenotypes were aimed to enrich 
vessel-related features, they are also reflecting other related factors. One of the 
main factors we explored is retinal colors. Retinal color may affect the recent 
GWAS8,32,43,60 on AI-based automatic extracted phenotypes from fundus images 
including optic nerve head morphology, retinal vessel measurements which also 
identified the HERC2/OCA2 locus as the strongest hit. In addition, as in any 
association study, genetic loci identified in our study associated with retinal blood 
vessel could be due to secondary effect of other hidden confounding factors. For 
example, eye conditions such as refractive error could affect the appearance of 
the retina vessel. Indeed, it has been reported that WNT7B is associated with 
refractive error61–63. In addition, other factors such as retinal background texture 
were not considered. More sophisticated representation learning with 
disentanglement may be used to control for these correlations64,65. Therefore, to 
establish causality relationship between the gene loci with the phenotype, further 
investigation, such as follow up functional experiments presented in our study, is 
essential. 
 
In sum, the benefit of self-supervised-learning-derived phenotypes is that no 
external training labels are required. This frees up the burden of complicated and 
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expensive labeling and makes our approach applicable to any large collection of 
images. As we leverage big datasets to improve our understanding of diseases, 
self-supervised methods are needed to efficiently extract meaningful information 
from medical images. We predict that iGWAS as a general phenotype discovery 
approach will be a fruitful research avenue.  
 
Methods 
 

Data set extraction 

The DRIMDB dataset66, was downloaded on 2018/11/26 from 
https://www.researchgate.net/publication/282641760_DRIMDB_Diabetic_Retinop
athy_Images_Database_Database_for_Quality_Testing_of_Retinal_Images. We 
used it as part of the training set to train the quality control network as it contains 
images with quality labels. It contains 69 bad quality fundus images and 125 
good quality fundus images.  

Multiple datasets (accessed in 2018/11/02), including ARIA67 (sample number: 
143), CHASEDB168 (sample number: 28), DRIVE68,69 (sample number: 40), 
HRF70 (sample number: 45), IOSTAR70,71 (sample number: 30)  and STARE70–73 
(sample number: 40), containing fundus images and their corresponding vessel 
segmentation masks, were used to train the vessel segmentation network. 

The Messidor dataset74 (accessed in 2018/11/02) contains 1200 eye fundus color 
images that were acquired using a color video 3CCD camera mounted on a 
Topcon TRC NW6 non-mydriatic retinograph with a 45-degree field of view. The 
dataset was used to validate the performance of our embedding method. 

The EyePACS dataset (accessed in 2018/11/02) was downloaded from 
Kaggle.com. It contains fundus images from both healthy subjects and subjects 
with different grades of diabetic retinopathy. 35,126 Kaggle training set images 
and 53,576 Kaggle test set images were combined. The demographic 
characteristics including age, sex, and ethnicity of individual images were 
undisclosed.   
 
The UK Biobank data was accessed via approved project 24247. We conducted 
our analysis on over 65,629 British White (self-reported white British (field: 
21000) and genetically identified as Caucasian (field: 22006)) participants from 
the UK Biobank who had fundus images available (field: 21015 and 21016). For 
each participant, we chose the first image for each eye, resulting in 130,329 
images. Genetic data as genotyped by Applied Biosystems UK BiLEVE Axiom 
Array (field: 22438) and imputed (field: 22828)75 were downloaded. The fundus 
images in the UK Biobank data were taken using the TOPCON 3D OCT 1000 
Mk2 alongside with the optical coherence tomography (OCT) imaging data. The 
data were collected in two phases: the initial assessment visit (2006-2010) at 
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which participants were recruited and consent given and the first repeat 
assessment visit (2012-13). The size of each fundus image is 1536x2048 pixels. 

Image quality control 

We trained a neural network to automatically assess the quality of the fundus 
images. Since the DRIMDB does not contain enough labelled images, we 
manually labeled 1,000 fundus images of good and bad quality from the 
EyePACS dataset and combined them with the DRIMDB dataset as the training 
set. An Inception v3 network22 pretrained on ImageNet was downloaded and fine-
tuned to classify qualities of different samples with early stopping. The quality 
assessment network outputs a score between 0 (bad) and 1 (good) to indicate 
the quality of the image, and it was trained using cross entropy loss. An image 
was defined as good quality if the output quality score of the network from that 
image was greater than 0.5. 

The performance of the quality assessment network was validated on a subset of 
UK Biobank fundus images taken from white British subjects with diabetes 
mellitus (n=7,683). A previously validated procedure was used to determine DM 
status based on self-reported DM diagnosis, use of DM medications and 
presence of DM complications76. We also used HbA1c > 6.5% as a criterion for 
identifying DM. Two ophthalmologists were asked to grade the image for the 
stage of diabetic retinopathy and determine if an image is of bad quality. A 
fundus image in this subset was classified as bad quality if both graders agreed 
that the quality of the image is poor. Comparing with this ground truth, the quality 
assessment network reached an AUC ROC of 92.14%. At 0.5 threshold, the 
positive predictive value was 0.9832, the negative predictive value was 0.4916, 
the sensitivity was 0.7155, and the specificity was 0.9574. 

Fundus image segmentation 

The graph cut algorithm77 from OpenCV78 was implemented to separate the 
foreground and background, and the foreground image was cropped and then 
resized to 224×224. The segmentation network is a specialized U-net, ESPNet79. 
ESPNet is a lightweight memory friendly architecture that allows a whole batch of 
images to be processed at the same time. We modified the ESPNet for the 
vessel segmentation task. While a typical segmentation output is a binary image 
mask of the original image size, we chose to use an un-binarized grey-scale 
image output in order to retain more details of the small vessels. The quality of 
the segmentation was confirmed by visual inspection. The segmentation model 
was trained on a combined dataset (n=306) of ARIA67, CHASEDB168, DRIVE68,69, 
HRF70, IOSTAR70,71  and STARE70–73 for 500 epochs using the Adam optimizer80, 
with a learning rate of 1×10-4 using the cross-entropy loss. Then, the model with 
the best test Dice score81 was selected. On the held-out test set, the Dice score 
of the trained model reached 0.77. 
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Embedding neural network 
The raw fundus images or the retinal vessel segmentation images were fed to a 
network that also uses the Inception v322 backbone to produce a 128-
dimensional embedding vector. The final fully connected layer of the Inception v3 
network was replaced to produce a 128-dimensional vector. We adopted an 
approach similar to ArcFace21: Each subject is assigned a template embedding 
and the network is trained to minimize the angle between embeddings of different 
photos of a subject and his/her template while maintaining a margin between 
embeddings of a specific photo and templates of different subjects. Specifically, 
our loss function is:  
 

𝐿 = −
1
𝑁(

!

"#$

𝑙𝑜𝑔 𝑙𝑜𝑔	
𝑒%&'%&'%	(*!+,)	

𝑒%&'%&'%	(*!+,)	 +∑!.#$,.0" 𝑒%&'%&'%	*"	
	 

where 𝑁 is the number of samples, 𝑗 is the angle between the output of the 
network and the template of the 𝑗th sample, 𝑚 is the margin, and 𝑠 is the inverse 
temperature scaling factor. In our study, 𝑚 is set to be 30 and 𝑠 is set to be 0.5, 
which are the best performing hyperparameters on multiple face recognition 
datasets. 

  
The embedding network was trained using 40,000 images from the EyePACS 
database (https://www.eyepacs.com/). The quality control network was used to 
score each image, and the top-ranked 40,000 images were taken. The right eye 
images were flipped for preprocessing, and random rotations were applied to add 
robustness. The training-testing split was 80/20. We also trained the embedding 
network with an additional task of classifying the grade of diabetic retinopathy. 
The weight ratio of these two tasks was 10 to 1. The network was trained using 
Adam optimizer80 with a learning rate of 1×10-4 for 500 epochs on RTX 2080Ti 
and A100, and the model with the lowest test set loss was selected. Source code 
is available at https://github.com/ZhiGroup/iGWAS.  
 

Endophenotype GWAS 
The genome-wide scans for UK Biobank were conducted over 658,720 SNPs 
that were directly genotyped by UK Biobank Axiom Array (field: 22438). To 
control for confounding factors due to ethnicity, we only included individuals of 
British white ethnicity (self-reported white British (field: 21000) and genetically 
identified as Caucasian (field: 22006)). The sample size was 65,629. We used all 
130,329 images from this cohort without applying image quality control because 
fewer loci were identified otherwise (data not shown). The GWAS was performed 
with BOLT- LMM (Version 2.3.4)31 on all 128 dimensions of the embedding 
vector using the linear mixed model association method (BOLT_LMM_INF) with 
age, sex, and the first 10 ancestral principal components as covariates. In total, 
we conducted 256 GWAS, one for each of the 128 endophenotypes from one 
eye. As a result, each variant had 256 p-values, 128 for the left and 128 for the 
right fundus images. A variant was selected if the minimum of the left 128 p-
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values and the minimum of the right 128 p-values both passed a threshold of 
5×10-8. The association signals from selected variants from both eyes and across 
endophenotypes that were merged into single independent loci if they are in 
linkage disequilibrium (r2>0.2) or within 250kb from each other.  
 
Fine mapping was conducted for significant loci for vessel-enriched 
endophenotypes. For each loci group, the variant with the most significant p-
value was deemed the lead SNP, and the imputed genotypes of SNPs (field: 
22828) at the hit region, 250kb upstream and 250kb downstream of the lead 
SNP, were extracted for dense mapping. To generate consistent association 
results without rerunning the imputed SNPs across the entire genome, the 
imputed SNPs at each hit region were concatenated with the non-imputed SNPs 
on other chromosomes then fed into the BOLT-LMM. LocusZoom (legacy 
version, accessed between 2018 and 2021)82 was used to generate localized 
annotations of the significant loci groups. 
 

Extracting retina background color and color GWAS 
The traits of retina color were created as follows. The size of each UK Biobank 
fundus image is 1536x2048 pixels. Right eye fundus images were first flipped 
before cropping. The center patch of size 400x400 pixels around the fovea 
region, [600:1000, 800:1200], was cropped, and the average intensities of each 
of 3 channels (red, green, and blue) in this patch were taken as the quantitative 
traits. Since the fundus images of UK Biobank are mostly aligned as they are 
taken with unified protocol, the patches at the same location were comparable. 
The 3 color variables were adjusted for in color-adjusted iGWAS. In addition, the 
GWAS analyses were done on the same cohorts and using the same pipeline as 
in vessel-enriched      endophenotype GWAS. 
 

Genetic correlation 
The genetic correlations were calculated using LDSC software (v1.0.1)83. 
Besides computing genetic correlation within the endophenotypes, we 
additionally selected several traits (Supplementary Table 8, 9) to probe the 
endophenotypes. We counted the number of vessel-enriched endophenotype 
GWAS loci that overlapped with traits from the GWAS catalog (Supplementary 
Figure 7). The selection criteria were: (1) The previous GWAS hits of the trait fall 
within any iGWAS loci more than twice or the traits are related to retinal or 
corneal disorders, and (2) The summary statistics of the trait are available from 
either https://alkesgroup.broadinstitute.org/UKBB/UKBB_409K/ or  
http://geneatlas.roslin.ed.ac.uk. To our knowledge, these are the only publicly 
available summary statistics computed by linear mixed models. 
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Querying GWAS catalog  
For each independent locus, the range from the first to the last significant SNP 
was first transformed using LiftOver, then a range query was performed with the 
range plus 250kb flanking regions on the GWAS Catalog database to identify 
previous associations. 
 
PC GWAS and heritability calculation 
For vessel-enriched endophenotypes, we did PCA and selected the first 27 
components (in descending order of explained variance) that explains 99% of the 
variance. We did GWAS on these 27 PCs on the same cohorts and using the 
same pipeline as in vessel-enriched endophenotype GWAS and calculated the 
heritabilities using LDSC83 v 1.0.1(https://github.com/bulik/ldsc). 

Functional validation of candidate gene involved in retina vessel 
development 
 
Electroporation was performed as previously described84. To label retinal 
vessels, mice were deeply anesthetized by a sustained flow of isoflurane (3% 
isoflurane at 2 L/minute mixed with pure oxygen). Sulfo-NHS-LC-biotin molecules 
(~226 Da, Thermo Fisher, 21335) were injected (0.5mg/g body weight) into the 
left ventricle of mouse hearts with a 31-gauge insulin syringe. The heartbeat was 
continuous for 10 minutes to ensure good circulation of the tracer. Eyes were 
enucleated and fixed in fresh 4% PFA for 30 minutes on ice. Retinas were 
dissected out in PBS, fixed overnight in 4% PFA, and washed three times in PBS 
the following day. Retinas were incubated with blocking buffer (containing 3% 
Triton X-100, 0.5% Tween 20, 1% BSA, and 10% donkey serum in PBS) at 4°C 
overnight. For immunohistological staining, retinas were incubated with isolectin 
B4 conjugated to Alexa Fluor® 647 (Molecular Probes™; I32450; 1:500) for 24 
hours and washed five times in PBS. Retinas were then incubated with 
streptavidin conjugated to Alexa Fluor™ 488 (Thermo Fisher Scientific™; 
NC0186832; 1:2000) for 24 hours to detect the NHS-Biotin tracer and washed 
three times in PBS. Retinas were flat-mounted with Fluoromount-G® 
(SouthernBiotech; 0100-01) and imaged by confocal microscopy.  
 
 
Animals 
Wild type mouse neonates were obtained from time pregnant CD1 mice (Charles 
River Laboratories, #022). All animal studies were approved by the Administrative 
Panel on Laboratory Animal Care (APLAC) at Stanford University. 
 
 
Data availability 
The MRI and the genetic data used in this study are provided by UK Biobank 
(https://www.ukbiobank.ac.uk/enable-your-research/register). The summary 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2023. ; https://doi.org/10.1101/2022.05.26.22275626doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.26.22275626
http://creativecommons.org/licenses/by/4.0/


 

25 

statistics of all GWAS can be downloaded at 
https://drive.google.com/drive/folders/1jaQ-
dCDKbY_zW0_FinPUwS7uGlNNPoMc?usp=sharing. 
  
 
Code availability 
Source code is available at https://github.com/ZhiGroup/iGWAS. 
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