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Abstract  49 

Coronary atherosclerosis is the main pathophysiological mechanism underlying myocardial infarction. 50 

The gut microbiota has been implicated in cardiometabolic disease but its relationship with subclinical 51 

coronary atherosclerosis is unknown. We identified 73 gut metagenomics species associated with 52 

coronary artery calcium score (CACS) in 8,973 SCAPIS participants without previous cardiovascular 53 

disease. Streptococcus associations were overrepresented and were validated in an independent case-54 

control study together with eight non-Streptococcus spp. We further found enrichment for bacterial 55 

genes linked to amino acid and carbohydrate degradation functions. Gut Streptococcus spp. were 56 

associated with circulating biomarkers of inflammation and infection response, bile acids, androgenic 57 

steroids and sphingomyelins, and were associated with their homologous species in the oral cavity, 58 

which were in turn associated with oral pathologies. This study provides robust evidence of the 59 

association of Streptococcus spp., with subclinical atherosclerosis and markers of systemic 60 

inflammation and infection, calling for studies re-investigating the infectious hypothesis in 61 

atherosclerosis pathogenesis.  62 
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Atherosclerotic cardiovascular diseases (ACVD), such as ischemic heart disease and ischemic stroke, 63 

are the major causes of death and disability 1. The formation of atherosclerotic plaques is a silent, 64 

complex, and progressive process characterized by accumulation of lipids, fibrous elements, calcium 65 

minerals, and inflammatory molecules in the subendothelial space2. While the underlying mechanisms 66 

of atherosclerosis remain incompletely understood, it has been proposed that the gut microbiota 67 

composition could contribute to accelerated atherosclerotic development by transmission of bacteria 68 

into circulation, resulting in either subsequent direct infection of the atherosclerotic plaque or systemic 69 

inflammation associated with infection at other sites2. For instance, experimental studies suggested 70 

that oral challenge with Streptococcus spp. accelerates atherosclerotic plaque growth and macrophage 71 

invasion3. Alternatively, certain bacteria could affect the atherosclerosis process by modulating the 72 

host metabolism or interaction with dietary components to produce both beneficial and harmful 73 

molecules2. Gut microbiota composition has already been linked to cardiovascular risk factors, such as 74 

obesity4, insulin resistance5 and type 2 diabetes6, although the causal relationships remain unclear. A 75 

number of case-control studies of symptomatic coronary atherosclerosis with up to 1,241 participants 76 

have pointed to differences in abundance of more than 500 gut species7–15. However, the findings are 77 

often not reproducible and are prone to bias; comparison groups are often non-comparable in terms of 78 

medical treatment and lifestyle factors, and there is risk of reverse causation. The importance of 79 

employing large cohorts in microbiome research of earlier phases of the atherosclerosis process are 80 

thus compelling7,13,14,16,17.  81 

Here, we identified associations between gut microbiota composition, in particular Streptococcus spp., 82 

and asymptomatic coronary atherosclerosis, determined by computed tomography-derived coronary 83 

artery calcium score (CACS), in a large cohort of middle-aged Swedes from the Swedish 84 

CArdioPulmonary bioImage Study (SCAPIS)18 and validated in a geographically distinct case-control 85 

study of symptomatic atherosclerotic disease. Furthermore, we identified associations of gut 86 

Streptococcus spp. with circulating inflammatory and infection biomarkers. These species were further 87 

associated with the corresponding oral Streptococcus spp. that in turn were associated with worse oral 88 

health. In conclusion, we identify a subset of gut microbiota species with enrichment for Streptococcus 89 
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that are robustly associated with CACS, laying the foundation for future studies on causal 90 

relationships and investigations of the plausibility of these species as potential intervention targets to 91 

reduce cardiovascular risk. 92 

Results 93 

Large Swedish cohort profiled with deep shotgun metagenomics of fecal samples and detailed 94 

coronary atherosclerosis imaging. In the current study, we took advantage of SCAPIS, a unique 95 

resource for epidemiological studies combining a large sample size with extensive and in-depth 96 

phenotypic information, including cutting-edge molecular techniques and direct imaging of the 97 

cardiovascular disease (CVD) processes18. We selected 8,973 individuals recruited at the Malmö and 98 

Uppsala sites, aged 50–64 years, with no history of symptomatic CVD. A description of the main 99 

sociodemographic and clinical characteristics of the study population is presented in Table 1, 100 

including the prevalence of calcified coronary plaques, measured as CACS and categorized as absent 101 

(CACS=0), mild (1–100), moderate (101–400), and extensive (>400) calcification of coronary arteries. 102 

The prevalence of CACS>0 in the study sample was 40.3%, comparable to the whole SCAPIS 103 

population19, which in turn showed a high agreement with contrast-enhanced coronary computed 104 

tomography angiography (CCTA), an alternate measurement of atherosclerosis19. Only 5.5% of the 105 

participants with CACS=0 were classified as having any coronary atherosclerosis. 106 

Gut microbiota composition and richness are associated with asymptomatic atherosclerosis and 107 

attenuated by adjustment for lifestyle factors, diet and medication. To test the primary hypothesis 108 

that gut microbiota composition is associated with CACS at the asymptomatic disease stage, we first 109 

tested whether the alpha and beta diversity measures were associated with CACS. Alpha diversity, a 110 

measure of overall species richness and evenness within each sample, was inversely associated with 111 

CACS (β=-0.16 (95% confidence interval (CI) = -0.26, -0.07, p-value=8.6*10-4)) using linear 112 

regression adjusting for age, sex, country of birth, center site and extraction plate (basic model). 113 

However, after further adjustment for smoking, physical activity, fiber and total energy intake, and 114 

self-reported medication for dyslipidemia, hypertension and/or diabetes (full model), no association 115 
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was observed (β=-0.04 (95% CI=-0.15, 0.06, p-value=0.38)). These covariates were included because 116 

our hypothetical causal diagram indicated them as potential confounders for the microbiota-CACS 117 

association (Extended Data Fig. 1). Further, in permutational multivariate analysis of variance 118 

(PERMANOVA), we found that beta diversity, an indicator of the overall similarity among samples, 119 

differed across the CACS categories in both models, although the fully adjusted model was attenuated 120 

(r2
basic=0.0007; p-valuebasic=1*10-04 vs r2

full=0.0004; p-valuefull=0.036). Pairwise comparisons revealed 121 

that the overall microbiome composition in participants with CACS=0 was different compared to other 122 

categories, with increasing distances with higher CACS classes (Figure 1 and Supplementary Table 123 

1). These findings suggest that gut microbiome composition and richness are associated with 124 

asymptomatic atherosclerosis, but that differences are partly due to differences in lifestyle factors, diet, 125 

and medication across groups. 126 

Specific species are robustly associated with subclinical atherosclerosis, especially species 127 

belonging to the Streptococcus genus. Extensive simulation studies prior to the analysis supported 128 

the use of linear regression modelling for high power, interpretability, and low frequency of false 129 

positive findings (Extended Data Fig. 2). We found the relative abundance of 73 out of 1,985 tested 130 

species associated with CACS at a false discovery rate (FDR) of 5% using the basic model further 131 

adjusted for Shannon diversity index. For 60 of these, the relative abundance was positively associated 132 

with CACS and for 13 negatively associated (Fig. 2a, b, d, Supplementary Tables 2 and 3). Gene-133 

set enrichment analysis (GSEA) for genera revealed an overrepresentation of the Streptococcus genus 134 

in the associations with a positive effect estimate (Fig. 2a, c, and Supplementary Table 4). In the full 135 

model (further adjusted for Shannon diversity index), 63 species remained associated with CACS in 136 

8,155 individuals with complete data on all covariates (Fig. 2a, d, and Supplementary Table 3). 137 

Streptococcus anginosus, Streptococcus oralis subsp. oralis, Anaerotignum lactatifermentans, 138 

Escherichia coli, and Eubacteriales sp. (internal identifier HG3A.1354) were most strongly species 139 

associated with CACS based on p-value, and all of them were positively associated. To assess whether 140 

the difference in the number of associated species between basic and full model was due to smaller 141 

sample size or confounding by the included covariates in the full model, we re-analyzed the 73 species 142 
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associations with the basic model restricted to the 8,155 individuals with complete data that were 143 

included in the full model. This analysis showed highly correlated (Pearson correlation=0.99) but 144 

slightly attenuated estimates compared to the full model, supporting the difference in the number of 145 

associated species between basic and full model to be mainly due to lower power and to some extent 146 

confounding (Supplementary Table 3 and Extended Data Fig. 3). A comparison of the main clinical 147 

characteristics of carriers and non-carriers of the most strongly associated species S. anginosus and S. 148 

oralis subsp. oralis (Supplementary Table 5) revealed that these Streptococcus spp. were more 149 

prevalent in women. Carriers had on average higher triglycerides, blood pressure, body mass index 150 

(BMI), high-sensitivity C-reactive protein (hsCRP), leukocytosis, neutrophilia, prevalence of diabetes, 151 

ulcerative and Crohn’s disease, and medication use compared to the non-carriers. Sensitivity analyses 152 

performed using partial Spearman correlation showed loss-of-significance for 32 species. However, 153 

extensive sensitivity analyses did not find any evidence for this difference resulting from single 154 

influential observations nor non-linear effects, and differences were thereby likely to be due to lower 155 

power compared to linear model (Supplementary Information, Supplementary Table 6 and 7). 156 

Even if not directly indicated as confounders, we further assessed the effect of adjustment for BMI and 157 

proton-pump inhibitors (PPI) medication, as well as excluding specific groups of individuals such as 158 

those with Crohn’s disease or those with antibiotic treatment the past 12 months from the analyses. . 159 

We also tested the effect of not adjusting the basic and full models for Shannon diversity index to 160 

observe if some of these factors could explain the identified associations of the species and CACS 161 

(extensively explained in Supplementary Information, Extended Data Fig. 4, Supplementary 162 

Table 6 and 7). Statistical significance was lost for a few species in some of the analyses; however, 163 

effect estimates remained largely similar. Overall, these findings indicate that the associations 164 

identified in the main analysis were robust and were not in general affected by statistical model 165 

misspecification, PPI or antibiotic use, or gastrointestinal disease. Moreover, our findings show that 166 

the identified species are in general associated with CACS independent of established cardiovascular 167 

risk factors. 168 
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Sex modifies the association between certain species and subclinical atherosclerosis. We re-169 

assessed the 63 species associated with CACS in the full model stratifying for sex, and tested whether 170 

the effect estimates in the female strata were different to the male strata (Extended Data Fig. 5, 171 

Supplementary Tables 3 and 8). Streptococcus agalactiae, Rothia mucilaginosa, and two 172 

Eubacteriales spp. (HG3A.0242 and HG3A.0854) showed different effect estimates across sex 173 

(Cochran's Q-test p-value<0.05) where the two first mentioned species were associated in females only 174 

and the two latter in males only. These findings indicate that sex-specific associations are present 175 

between gut microbiota and subclinical coronary atherosclerosis.  176 

Few CACS-related species are also associated with carotid atherosclerosis. Next, using ordinal 177 

regression analysis with basic model adjustment and a FDR of 5%, we searched for associations of 178 

CACS-associated species with carotid atherosclerosis in 8,955 SCAPIS participants with available 179 

information of carotid atherosclerosis measured with ultrasound, in addition to deep shotgun 180 

metagenomics and CACS (Supplementary Table 9). Subjects were categorized as “no identified 181 

atherosclerosis” (n=3,821), “atherosclerosis in one carotid artery” (n=2,779), and “atherosclerosis in 182 

both arteries” (n=2,355). Carotid atherosclerosis was detectable in 57% of the SCAPIS participants 183 

which is higher than in previous large-cohort studies: 34% in the Atherosclerosis Risk in Communities 184 

study (ARIC)20, 47% in the Multi-Ethnic Study of Atherosclerosis (MESA)21, 44% in the Malmö Diet 185 

and Cancer study (MDC)22, and 45% in Risk Evaluation For INfarct Estimates (REFINE)-Reykjavik 186 

study23. Twenty-one of the CACS-related species were associated with carotid atherosclerosis in the 187 

basic model including Streptococcus mutans. However, Blautia obeum,  Clostridium phoceensis, 188 

Oscillibacter sp. (HG3A.0243), Intestinimonas sp. (HG3A.1018) and three Eubacteriales spp. 189 

(HG3A.0242, HG3A.0511, HG3A.1158) remained significant in the ordinal regression with the full 190 

model adjustment (Supplementary Table 9). These results may suggest that gut microbiota 191 

associations differ between the two vascular beds; however, it might also depend on differences in the 192 

measurement methods.  193 

Fifteen CACS-related species, including seven Streptococcus spp., are validated using a case-194 

control study of symptomatic atherosclerotic cardiovascular patients. We next attempted to 195 
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replicate findings using shotgun metagenomics data from a case-control study13 of 210 patients with 196 

symptomatic ACVD and 163 controls from a Chinese population representing a later stage of the 197 

atherosclerotic process, wider age range (32–107 years), different genetic background and 198 

geographical area, and also likely different dietary habits and medication usage, which are all factors 199 

that can modulate gut microbiota composition. Of the 73 species associated with CACS in the basic 200 

model in the current study, we could identify 64 species using the same gene sequence signatures as in 201 

the SCAPIS study. Fifteen of these 64 species, including seven Streptococcus spp. were associated 202 

with ACVD with consistent effect direction as in SCAPIS using logistic regression models adjusted 203 

for age, sex and Shannon diversity index at an FDR of 5%, where disease status was the dependent 204 

variable and the rank-base inverse transformation of the relative abundance was set as the independent 205 

variable of interest (Extended Data Fig. 6 and Supplementary Table 10). 206 

Trehalose and fructose degradation genes are enriched in CACS-related species, especially in 207 

Streptococcus genus. Next, to identify possible bacterial functions that might be involved in the 208 

coronary subclinical atherosclerosis and shared between the associated bacteria, we used GSEA to 209 

identify functional gut metabolic modules (GMM)24 enriched for the CACS-associated species. The 210 

GSEA were based on ranked p-values from the basic association model with CACS stratified by the 211 

direction of the regression coefficient. The analysis revealed four enriched functional GMM in the 212 

bacterial species positively associated with CACS, and one enrichment in species negatively 213 

associated with CACS (Extended Data Fig. 7a, b and Supplementary Table 11 and 12). The 214 

positive enriched modules were involved in amino acid degradation (threonine degradation I and II) 215 

and carbohydrate degradation (trehalose degradation and fructose degradation), while the negative 216 

module was involved in acetogenesis. To test if these functions were enriched due to the 217 

overrepresentation of Streptococcus spp. associated with CACS, we performed GSEA applying leave-218 

one (taxon)-out analysis (Extended Data Fig. 7c, Supplementary Table 13 and 14). This analysis 219 

revealed that the trehalose and fructose degradation functions were strongly attenuated when we 220 

removed Streptococcus spp., and to a lesser extent the threonine degradation II, supporting that 221 

Streptococcus spp. are important contributors for the association of these functions with CACS. 222 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.25.22275561doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.25.22275561
http://creativecommons.org/licenses/by/4.0/


Streptococcus spp. have a high ability to catalyze different types of carbohydrates including most 223 

common dietary sugars (fructose, glucose and sucrose) forming compounds involved in virulence 224 

processes including biofilm buildup25. Trehalose degradation has been linked to virulence, and its role 225 

as a stress protectant has been linked to protection from desiccation freezing, starvation, and osmotic 226 

stress26,27. For threonine degradation I, Roseburia was the important genus, for threonine degradation 227 

II, Bifidobacterium, and for homoacetogenesis, Romboutsia. Together, these results show that CACS-228 

associated species share, at least partially, some specific bacterial functions related to amino acid and 229 

carbohydrate degradation, and that Streptococcus spp. were the most important contributor to the 230 

enrichment for trehalose degradation genes, a function previously linked to bacterial virulence. 231 

Plasma bile acids, androgenic steroids, and sphingomyelin-associations with CACS-associated 232 

Streptococcus spp. are overrepresented. Next, we identified 2,377 associations between seven 233 

CACS-associated Streptococcus spp., and 873 of the 1,412 plasma metabolites detected in 7,252 234 

SCAPIS participants using partial Spearman correlation adjusted at 5% FDR (Extended Data Fig. 8 235 

and Supplementary Table 15). Among the positive associations, primary bile acid metabolism was 236 

enriched in four Streptococcus spp. (S. gordonii, S. parasanguinis, S. salivarius, and S. oralis. subsp. 237 

oralis), while secondary bile acid metabolism, acetylated peptides, and analgesics and anesthetics 238 

drugs sub-pathway were enriched in S. anginosus; and plasmalogen in S. oralis subsp. oralis (Fig. 3a 239 

and Supplementary Table 16). At individual metabolite level, all 11 primary bile acid metabolites 240 

were positively associated with all the Streptococcus spp. with adjusted p-values<0.05, with the 241 

exception of chenodeoxycholic acid sulfate. We further observed that metabolites from analgesic and 242 

anesthetic medications were positively associated with all the Streptococcus spp., particularly those 243 

metabolites derived from paracetamol. Furthermore, omeprazole was strongly associated with the 244 

Streptococcus spp., with the exception of S. agalactiae. In contrast, androgenic steroids metabolites 245 

and sphingomyelins showed enrichment among the metabolites negatively correlated with S. gordonii, 246 

S. parasanguinis, S. salivarius, and S. mutans; and S. mutans and S. anginosus respectively (Figure 3a 247 

and Supplementary Table 17). Notably, all androgenic steroids and 26 of the 29 sphingomyelins 248 

metabolites were negatively associated with CACS-related Streptococcus spp. with adjusted p-249 
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values<0.05. For androgenic steroids, sex-differences in the effect estimates were tested. Eleven 250 

metabolites reported different effect estimates across sex (Cochran's Q-test p-value<0.05). 251 

Collectively, these results show the tight relationship between CACS-associated Streptococcus spp. 252 

and endogenous and exogenous metabolites. Next, we additionally adjusted the full model assessing 253 

the relationship between Streptococcus spp. and CACS for the Streptococcus-associated metabolites 254 

(with <30% missing data) involved in sub-pathways related to primary and secondary bile acids 255 

metabolism, acetylated peptides, plasmalogen, androgenic steroids, sphingomyelins, analgesic and 256 

anesthetic drugs, and/or partially characterized molecules to assess the potential mediation by these 257 

metabolites (Extended Data Fig. 9 and Supplementary Table 18). The inclusion of these metabolites 258 

in the models did not attenuate the association between Streptococcus spp. and CACS compared with 259 

the full model restricted to complete data (n=5,683), indicating that the association is not mediated by 260 

these metabolites (Extended data Fig. 9). 261 

Streptococcus spp. are associated with markers of systemic inflammation and infection. To test 262 

whether Streptococcus spp. were associated with markers of systemic inflammation and infection, 263 

respectively, we evaluated the associations between these species and high-sensitivity plasma C-264 

reactive protein (hsCRP) (n=7,248), and counts of leukocytes (n=7,237) and neutrophils (n=7,235). 265 

Five out of seven CACS-associated Streptococcus spp. (S. anginosus, S. parasanguinis, S. oralis 266 

subsp. oralis, S. gordonii and S. salivarius) were positively associated with hsCRP and leukocyte 267 

counts. The same five Streptococcus spp. and S. mutans were positively associated with neutrophil 268 

counts (Fig. 3b and Supplementary Table 19). These models were adjusted for age, sex, country of 269 

birth, smoking, physical activity, fiber and total energy intake, and self-reported medication for 270 

dyslipidemia, hypertension and/or diabetes, Shannon diversity index, center site and extraction plate. 271 

The inclusion of BMI and PPI into the models attenuated the estimates but all five species remained 272 

associated with hsCRP, while only S. parasanguinis and S. salivarius remained associated with 273 

leukocytes and neutrophils counts. S. oralis subsp. oralis was also associated with neutrophils counts 274 

(Supplementary Table 20).  275 
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Overall, these findings suggest that these Streptococcus spp. are related to markers of inflammation 276 

and infection, which have been described as plausible mechanisms in gut microbiota effects on the 277 

atherosclerosis process2.  278 

Gut Streptococcus spp. are correlated with oral Streptococcus spp. and the latter are associated 279 

with oral health. Streptococcus spp. are commonly localized in the oral cavity and are linked to worse 280 

oral health status. We investigated the correlation between the abundance of CACS-related 281 

Streptococcus spp. in the fecal and saliva samples from 343 participants in the Malmö Offspring 282 

Dental Study (MODS) with an age range between 23 and 71 years who underwent a thorough dental 283 

examination within 4 to 12 months after fecal sampling in the Malmö Offspring Study (MOS)28. The 284 

gene signature in the saliva samples mapped to S. anginosus, S. parasanguinis, S. gordonii, S. mutans, 285 

S. oralis, and two different S. salivarius (Ho1B.0002 and Ho1B.0234) in the catalogue. Unfortunately, 286 

we could not identify S. agalactiae in the salvia samples. We applied partial Spearman correlations 287 

with cluster-robust standard errors accounting for relatedness between the CACS-related 288 

Streptococcus spp. in the gut and the corresponding species in the oral cavity adjusting for age, sex, 289 

country of birth, and extraction plate of the fecal samples. Five Streptococcus spp. (S. anginosus, S. 290 

parasanguinis, S. gordonii, S. mutans and S. salivarius) from the fecal samples were positively 291 

associated with their homologous species in the oral cavity (rho=0.15–0.30) (Supplementary Table 292 

21). To investigate whether the oral Streptococcus spp. corresponding to CACS-associated gut 293 

bacteria species were associated with oral health, we fitted a series of ordinal regressions with cluster-294 

robust standard errors with three different outcomes (filled surfaces, surfaces with caries (initial and 295 

manifest), or gingival inflammation in 637 participants from MODS. These models were adjusted for 296 

age, sex, smoking, education, oral hygiene, activity realized the hour before the dental examination 297 

including eating, brushing teeth or/and smoking, and Shannon diversity index (Extended data Fig. 298 

10). S. anginosus was associated with all three outcomes at 5% FDR. S. mutans was associated with 299 

gingival inflammation and caries. S. parasanguinis and S. salivarius were associated with filled 300 

surfaces while S. gordonii was associated with gingival inflammation (Fig. 3c and Supplementary 301 

Table 22). Further adjustments for BMI, PPI and antibiotic treatment provided similar estimated 302 
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effects, indicating that these associations are independent of these factors (Supplementary Table 23). 303 

These findings showed a correlation between oral and gut microbiota, which may explain a migration 304 

of these species from the oral cavity to the gut. Furthermore, we observed four Streptococcus spp. 305 

associated with oral health, which may contribute to mechanisms underpinning the association 306 

between oral health and atherosclerosis process. 307 

Discussion 308 

Gut bacteria have been proposed to affect atherosclerosis progression and development through 309 

infections local or distal to the atherosclerotic plaque, or through production of metabolites affecting 310 

the atherosclerotic process2,29. The association of gut microbiota with coronary atherosclerosis has 311 

previously only been studied in symptomatic patients, who are often under treatment, resulting in high 312 

risk of bias. To address the previous biased sampling, we leveraged the large population-based 313 

SCAPIS cohort with detailed image-based measurements of coronary artery atherosclerosis, and deep 314 

characterization of the gut microbiome using shotgun metagenomics. We identified 73 species 315 

associated with CACS, with an enrichment of Streptococcus spp. and gene functions involved in 316 

amino acid and carbohydrate degradation. Our findings further supported that gut Streptococcus spp. 317 

were independently associated with endogenous and exogenous plasma metabolites, with 318 

inflammatory and infection markers, and with their bacterial homologues in the oral cavity, which 319 

were associated with worse oral health. Together, these findings provide robust evidence of the 320 

association of Streptococcus spp., with subclinical atherosclerosis and markers of systemic 321 

inflammation and infection, calling for studies to re-investigate the role of bacteria in atherosclerosis 322 

pathogenesis.  323 

The Streptococcus genus was clearly enriched in the associations between species and CACS, in line 324 

with observations in earlier ACVD case-control studies7,13,14. Specifically, we observed S. anginosus, 325 

S. oralis subsp. oralis, S. parasanguinis, S. gordonii, S. salivarius, S. mutans, and S. agalactiae 326 

associated with increased CACS. These species commonly colonize the oropharyngeal cavity and the 327 

digestive tract30 and all belong to the viridans streptococci group (VGS), except for S. agalactiae that 328 
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is a β-hemolytic non-VGS. An overview of the current knowledge of the involvement of these specific 329 

bacteria in cardiovascular pathologies is provided in Supplementary Table 24. VGS has the ability to 330 

infect the valves and the coronary vessels accounting for 20% of infective endocarditis cases, and they 331 

have been isolated from human coronary atherosclerotic plaque samples from coronary artery disease 332 

patients31–33. Some studies on animal models support a causal link between Streptococcus species and 333 

the atherosclerotic process3,34,35. For instance, atherosclerosis-prone mice orally challenged with S. 334 

sanginius had pro-inflammatory responses in the aorta, and accelerated atherosclerosis3. In the present 335 

study, we observed strong positive associations between abundance of CACS-associated 336 

Streptococcus species in the gut and hsCRP, leukocytosis and neutrophilia, which could have been 337 

triggered by low-grade bacteremia. Among patients with bacteremia, VGS is a common cause36,37. 338 

VGS species are early colonizers, and may contribute to or initiate biofilm formations. Biofilms are 339 

syntrophic beneficial poly-microbial communities that facilitate bacterial survival in aerobic 340 

environments such as the atherosclerotic plaque38 and biofilms have been observed in atherosclerotic 341 

lesions associated with the fibrous cap39, however causal relationships are not clear. Both biofilms and 342 

VSG can induce persistent inflammation, attract monocytes into the endothelial space, and contribute 343 

to platelet aggregation, all of which are the requisites for promoting the atherosclerosis 344 

development40,41. Both local and distal infections require translocation of bacterial species to the 345 

bloodstream. In the oral cavity, VGS form biofilms on the tooth surface and they can enter to the 346 

bloodstream following mucosal barrier injuries, for example daily dental care activities, invasive 347 

dental procedures, and oral pathologies, which have been associated with increased risk of 348 

atherosclerosis, myocardial infarction, and stroke42–48. Our results indicated associations between the 349 

oral VGS and worse oral health, which can potentially be the entry point to the bloodstream. 350 

A potential modifier of Streptococcus spp. abundance would be antimicrobial treatment. However, 351 

multiple clinical trials have demonstrated inefficacy of anti-infective therapies in mitigating 352 

atherosclerotic cardiovascular events49. The CLARICOR study50, in which patients with stable 353 

coronary artery disease were treated with clarithromycin, an antibiotic that can be used to treat 354 

Streptococcus spp. infections, reported increased mortality in the treatment arm. One possible 355 
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explanation for this lack of efficacy even though Streptococcus spp. would be causally related to 356 

atherosclerosis, could be the formation of Streptococcus-associated biofilms that increase the bacterial 357 

resistance to antibiotic treatment up to 1,000 times51, or alternatively, antibiotic treatment could lead to 358 

a recolonization of more pathogenic bacteria. Furthermore, the treatment window could exist much 359 

earlier in the atherosclerosis process. In the current study, the association between the Streptococcus 360 

spp. and calcification in the coronary arteries remained after exclusion of those participants treated 361 

with antibiotics the past year.  362 

Additionally, gut microbiota composition could affect atherosclerosis development through effecting 363 

the host metabolism. We identified 1,412 associations between CACS-associated Streptococcus 364 

species in the gut and plasma metabolites, with an overrepresentation of associations with plasma bile 365 

acids, androgenic steroids, and sphingomyelins. Gut microbiota species are essential to transform 366 

primary bile acids to secondary bile acids that enter circulation and interact with host bile acid 367 

receptors. Knock-out mice of these receptors were shown to be protected against atherosclerosis 368 

development or progression52. Elevated plasma bile acids have also previously been associated with 369 

increased risk of coronary plaques in asymptomatic individuals53. However, other studies have 370 

reported a null or a protective role in symptomatic disease54,55.  371 

Streptococcus spp. were also inversely associated with androgenic steroids and sphingomyelins. 372 

Androgenic steroids, which have a similar structure to bile acids, are recycled through enterohepatic 373 

circulation, which is partially regulated by gut microbiota56. Low levels of dehydroepiandrosterone 374 

(DHEA) have previously reported to associate with an increased risk of death caused by CVD in 375 

elderly men57. The role of sphingomyelins in the cardiovascular outcomes remains controversial. Some 376 

studies reported higher levels of sphingomyelin in coronary heart disease (CHD) patients compared to 377 

controls and these elevated levels were associated with earlier subclinical atherosclerosis58–61. 378 

However, other studies suggest that long-chain saturated sphingomyelins may protect from CHD 379 

incidence62, while follow-up studies indicated no association between plasma sphingomyelins and 380 

incidence of CHD63. Collectively, these observations show that Streptococcus spp. are correlated with 381 

many metabolites that were suggested in previous studies to be related to CVD.  382 
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There are some limitations in the current study. First, few participants presented high levels of 383 

subclinical atherosclerosis, and thus limiting statistical power, which was however counteracted by the 384 

size of the cohort analyzed that represents a population at least seven times larger than those analyzed 385 

previously. Second, microbial composition can vary extensively throughout the gastrointestinal tract 386 

and quantification of the microbial communities in fecal samples represents the microbial population 387 

at the distal colon, but does not comprise other sites64 such as the small intestine, meaning that our 388 

study design might not allow discovery of species that are underrepresented in fecal samples. Third, 389 

we were unable to validate 64% of our findings in the discovery in the validation attempt. Here a more 390 

similar study of larger size would have been useful. As the validation was performed in a small case-391 

control study of symptomatic disease, we could not determine whether the lack of replication for some 392 

of our findings was caused by lack of true association, lack of power, differences in study design, 393 

and/or due to cross-country differences. Fourth, our study does not take into consideration the different 394 

interactions among bacterial species such as synergistic effects in the relationship with coronary 395 

atherosclerosis. Finally, the cross-sectional study design prevented causal inferences. Different causal 396 

inference methods could be used in future studies to disentangle the underlying relationships and 397 

determine whether the identified species and suggested mediators are causally related to 398 

atherosclerosis development. 399 

In conclusion, by combining data from a large population-based cohort study and highly accurate 400 

bioimaging to evaluate subclinical coronary atherosclerosis, we identified seven Streptococcus spp. 401 

associated with CACS, biomarkers of inflammation, and with their oral counterparts. These 402 

Streptococcus spp. may affect the atherosclerosis plaque development by direct infection or alteration 403 

of host metabolism. Future studies investigating the causal relationship in these associations will show 404 

whether these species can be used as potential biomarkers or treatment targets.  405 

Online Methods 406 

Study design and participants. SCAPIS was used as the primary data source. SCAPIS is a national 407 

Swedish general population study including 30,000 subjects aged 50–64 years, at six study sites, 408 
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focusing on phenotypes relevant to CVD, chronic obstructive pulmonary disease, and related 409 

metabolic disorders18. Participants from the Uppsala (n=4,541) and Malmö (n=4,432) centers were 410 

included in the present study after excluding 846 participants with prevalent CVD (self-reported 411 

myocardial infarction, angina, atrial fibrillation, heart valve disease, previous bypass surgery or 412 

percutaneous coronary intervention, revascularization of other arterial vessel, and stroke) before the 413 

baseline visit or missing information on country of birth or CACS. All participants gave written 414 

informed consent before participation. This investigation followed the principles expressed in the 415 

Declaration of Helsinki and was approved by the Swedish Ethical Review Authority 416 

(Etikprövningsmyndigheten Dnr 2010-228-31M, Dnr. 2018/315). 417 

The results were validated in a published case-control study13 of 214 cases and 171 controls of Han 418 

Chinese origin. The phenotypic data for the validation study are publicly available through the 419 

curatedMetagenomicData R package65. In this study, patients and controls aged 40–107 were recruited 420 

at the Medical Research Center of Guangdong General Hospital. Cases showed clinical manifestations 421 

of stable angina, unstable angina, or acute myocardial infarction. The diagnosis was confirmed by 422 

coronary angiography, and individuals with ≥50% stenosis in a single or multiple vessels were 423 

included in the study. At the time of medical examination, controls were free of any clinical symptom 424 

of ACVD including peripheral artery disease (coronary artery disease or myocardial infarction), 425 

cardiomyopathy, renal failure, peripheral neuropathy, systemic disease, and/or stroke13. 426 

We investigated the association between Streptococcus spp. located in the gut and in the oral cavity in 427 

the MODS, a sub-study of MOS. MOS was performed in 2013–2021 including 5,259 adults (18–71 428 

years old), which consisted of children and grandchildren from participants examined at the baseline 429 

(1992–1996) of the Malmö Diet Cancer Study Cardiovascular Arm, and it aimed to identify gene-430 

environment interactions of major diseases. The attendance rate of MOS was 47.9% and details of the 431 

study can be found in Brunkwall et al.66. Participants attending MOS 2014–2018 were eligible to 432 

participate in MODS (n=2,643) after the second visit in MOS. In total 831 individuals were recruited 433 

in MODS. The participants underwent a thorough dental examination including clinical examination, 434 

panoramic and bite-wing radiography. The Malmö Offspring Dental Study (MODS) was approved by 435 
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the Regional Ethics committee (Regionala etikprövningsnämden, REPN) in Lund (Dnr 2013/761), 436 

which is part of the Malmö Offspring Study (MOS) with ethical approval from Regional Ethics 437 

committee (REPN) in Lund (Dnr 2012/594). 438 

CACS determination. The total calcium score was measured in SCAPIS participants by summing the 439 

CACS in the left main coronary artery, anterior descending artery, circumflex artery, and right 440 

coronary artery. The specific methods for this measurement are available in Bergström et al.18. 441 

Carotid plaque assessment. The numbers of plaques in the left and right carotid arteries were 442 

determined in SCAPIS participants from two‐dimensional grey-scale ultrasound images obtained 443 

using a standardized protocol with a Siemens Acuson S2000 ultrasound scanner equipped with a 9L4 444 

linear transducer (both from Siemens, Germany) following the Mannheim consensus67. Carotid plaque 445 

presence was categorized in three categories. None: absence of identified plaques in both vessels; 446 

unilateral: identified plaques in one of the two vessels; and bilateral: identified plaques in both 447 

vessels18. 448 

Inflammation and infection markers. Clinical chemistry, including hsCRP, was carried out on 449 

venous blood from SCAPIS participants. A blood cell count, including white blood cell differential, 450 

was also performed. 451 

Oral health phenotypes. Five trained dentists performed the dental examination in MODS 452 

participants. Caries was detected using standard clinical criteria aided by mirror, probe (Hu-Friedy 453 

EXD57), and bite-wing radiographs. Cavitated lesions that extend into the dentin were recorded as 454 

manifest caries and a primary lesion not reaching the stage of manifest as initial. Initial and manifest 455 

lesions were summed for a combined variable of surfaces with caries. Filled surfaces included both 456 

fillings and crowns. Both caries and fillings were recorded on all teeth, counting five surfaces. 457 

Gingival inflammation was recorded as percentage of bleeding on probing excluding wisdom teeth 458 

and counting on six surfaces per tooth using a Hu-Friedy PCPUNC157 probe. 459 

Other phenotypes. In SCAPIS the sociodemographic, lifestyle, health, and cardiovascular risk factor 460 

information were collected using validated and standardized questionnaires18. Self-reported 461 
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cardiovascular, Crohn’s, and ulcerative diseases, as well as self-reported medication for high blood 462 

pressure, dyslipidemia, and diabetes were categorized as binary variables. The recruitment center was 463 

also categorized as a binary variable (Malmö or Uppsala). Self-reported smoking was categorized as 464 

never, former, and current smoker. The participants were grouped into sedentary, moderate exercise, 465 

moderate but regular exercise, and regular exercise and training in leisure time categories according to 466 

self-reported physical activity. The participants’ country of birth was categorized as Scandinavia, 467 

Europe, Asia, and other. The Scandinavia group included participants who were born in Sweden, 468 

Denmark, Norway, or Finland. BMI was determined by dividing the weight (measured in kg) by the 469 

square of the height (measured in meters). The participants who received PPI drugs were classified 470 

into a binary category, using plasma metabolomics information. The participants who had measurable 471 

omeprazole and/or pantoprazole levels in the plasma over the detection limit were classified as PPI 472 

drug users. Total energy intake and fiber intake were derived from the food frequency questionnaire. 473 

Both variables were natural log-transformed. Participants who reported values of ln(total energy 474 

intake) over or below the geometric mean of ln(total energy intake) ± 3 standard deviations in the 475 

population were excluded. Linkage with the drug prescription register was performed for antibiotic 476 

drug use (Anatomical Therapeutical Chemical code J01). Those participants who received a 477 

prescription for these drugs during the year preceding their attendance of the baseline visit were 478 

classified as participants with antibiotic drug treatment.  479 

In the validation case-control study13 , the sociodemographic information was collected using 480 

questionnaires. No information on Crohn’s and ulcerative diseases, cardiovascular medication, and 481 

physical activity was available. Smoking exposure was available only for 8.8% of the participants and 482 

none of them were under antibiotic treatment. 483 

In the MOS population, the sociodemographic, lifestyle, and medication treatment were collected 484 

using validated and standardized questionnaires. Country of birth was categorized in two levels 485 

(Sweden or other) and self-reported information of the PPI was used. BMI was measured dividing the 486 

weight (measured in kg) by the square of the height (measured in meters). Participants belonging to 487 

the same family were registered in a variable called “family id”. For the participants included in 488 
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MODS, we obtained information using standardized questionnaires filled out during the dental 489 

examination. Smoking was categorized as never, former and current smoker. The participants were 490 

grouped in primary education, secondary education or university degree according to the level of 491 

education acquired. Self-reported information of the antibiotic usage was categorized as binary 492 

variable depending on if the participants received antibiotic treatment the last three months. The 493 

activity performed by the participant during the previous hour before attending the dental examination 494 

included three variables categorized as binary depending on whether the participant did or did not the 495 

following actions: eat, smoke, and/or brush their teeth. The oral hygiene was assessed using the Löe 496 

plaque index and the mean degree of plaque per tooth surface was calculated68. Therefore, we summed 497 

the number of surfaces with plaques identified during the dental exploration divided by the number of 498 

teeth multiplied by six surfaces.   499 

Metagenomics. General considerations. For SCAPIS-Malmö and MOS samples, the whole analytical 500 

process was performed together in the project “lungut”, from DNA extraction to relative abundance 501 

calculation for each identified species, at Clinical Microbiomics A/S (Copenhagen, Denmark), 502 

following standardized methodology. The samples from lungut and SCAPIS-Uppsala were 503 

randomized on box-level (16 samples per box) and all the samples from these three studies were 504 

processed together during the years 2019 and 2020. MODS saliva samples were also carried out in the 505 

same company following the same pipeline during the year 2020, but it was not processed together 506 

with the three other studies. For the validation study13, the analytical pipeline for the metagenomics 507 

analysis from the FASTQ files to the relative abundance calculation for each identified species was 508 

also performed in Clinical Microbiomics A/S (Copenhagen, Denmark). 509 

Handling and analyses of SCAPIS, MOS and MODS. Clinical Microbiomics A/S (Copenhagen, 510 

Denmark) processed three different projects that were: lungut (fecal samples from SCAPIS-Malmö 511 

and MOS samples), SCAPIS-Uppsala (fecal samples) and MODS (saliva samples). For lungut and 512 

SCAPIS-Uppsala, DNA was extracted from fecal samples using NucleoSpin® 96 Soil (Macherey-513 

Nagel, Germany) from the same batch (Lot: 1903/001) to limit the technical bias. For MODS, DNA 514 

was extracted from 250 μL saliva using the same tools. At least one negative control (no sample 515 
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material) was included per batch of sample during the extraction process. One positive control (mock) 516 

was included per batch during the whole laboratory process for all the projects, including DNA 517 

sequencing. DNA extraction quality was evaluated using agarose gel electrophoresis and the quantity 518 

was determined by Qubit 2.0 fluorometer for the three projects. The genomic DNA was randomly 519 

sheared into fragments of approximately 350 bp. The fragmented DNA was used for library 520 

construction using NEBNext® Ultra Library Prep Kit for Illumina (New England Biolabs, MA, USA). 521 

The sample index pairs were unique for each sample per run. The prepared DNA libraries were 522 

purified using AMPure XP kit, and evaluated using Agilent 2100 Bioanalyzer to determine fragment 523 

size distribution. Before sequencing, the concentration of the final libraries were determined using 524 

quantitative real-time PCR. The libraries were sequenced using an Illumina Novaseq 6000 instrument 525 

using 2150 bp paired-end reads. The sequencing process generated on average 26.3 million read pairs 526 

per sample in lungut, 25.3 million read pairs in SCAPIS-Uppsala and 26.3 million read pairs in 527 

MODS. Reads with >10% ambiguous bases, or >50% bases with Phred score (Qscore) <5 were 528 

removed. On average, 97.9% of the sequenced bases had a Qscore >20 in lungut, 97.8% in SCAPIS-529 

Uppsala and 97.4% in MODS. Reads that mapped the human reference genome GRCh38 using 530 

Bowtie 2 v.02.3.4.169 (selecting default settings) were removed from FASTQ files. The remaining 531 

reads, classified as high-quality non-host reads (NQNH), were mapped to the gene catalog using BWA 532 

mem v.0.7.16a. The reads were considered mapped if the following criteria were met: an alignment of 533 

≥100 bases, ≥95% identity in this alignment, mapping quality (MAPQ) ≥20, and 10 bases failing to 534 

align with the gene sequence at either end. Reads meeting previous criteria except the MAPQ 535 

threshold were considered multi-mapped. A gene count table was created with the number of mapped 536 

read pairs for each gene. Two specific gene catalogues were built. The first catalogue was built for the 537 

fecal samples including 6,813 samples from lungut, 4,876 from SCAPIS-Uppsala, 9,428 from Pasolli 538 

et al.70, and 3,486 publicly available genome assemblies for isolated microbial strains, selected for 539 

their relevance or potential relevance to the human gut or because they are used in commercially 540 

available mock microbial communities. The second catalogue was built for the saliva samples 541 

including 706 MODS samples, 1,305 oral samples compiled from 21 publicly available data sets, and 542 

1,326 publicly available genome assemblies from isolated microbial strains, selected for their 543 
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relevance or potential relevance to the human mouth, and 81 genome assemblies corresponding to 544 

commercially available mock microbial communities. The HQNH reads from the samples were 545 

assembled using MEGAHIT (v.1.1.1)71,72 into contigs of ≥500 bp. The contigs from lungut, SCAPIS-546 

Uppsala, Pasolli et al.70, and genome assemblies were combined, and genes were predicted using 547 

Prodigal Gene Prediction Software (v.2.6.3, metagenomics/anonymous mode; ; 548 

https://github.com/hyattpd/Prodigal). The contigs from MODS were combined with genome 549 

assemblies and genes were predicted using the same software. Genes and partial genes with a length 550 

<102 bp were removed, resulting in a set of 2.95109 genes in the human gut catalogue and 1.89x108 551 

genes in the human oral catalogue. For the human gut catalogue, the gene sequences were clustered 552 

using MMseqs2 (Release 11)73 (“pre-clustered” at 98% identity over 95% coverage of the longer 553 

sequence (>3 kbp), followed by 93% identity over 70% coverage of the shorter sequence (≤ 3 kbp)). 554 

For each cluster, a representative sequence was chosen based on the following criteria: first prioritize 555 

sequences derived from metagenome assembly (lungut, SCAPIS-Uppsala and Pasolli70) over those 556 

derived from isolated strain (genomes); then prioritize sequences representing the largest (cardinality) 557 

pre-cluster; then prioritize the longest sequence. The two sets of representative sequences were then 558 

re-clustered using the same criteria. The resulting sets of short and long cluster representatives were 559 

combined as follows: 1) All short cluster representatives were compared to all long cluster 560 

representatives and all alignments at 93% identity over 70% coverage of the shorter sequence were 561 

identified. 2) All genes that did not have an alignment were retained. 3) For genes that did have an 562 

alignment, the short gene but not the long gene were retained. The resulting set of 33.5 million 563 

sequences was then filtered to retain only sequences that represent a cluster with ≥ 1 reference-derived 564 

sequence and/or ≥ 5 metagenome-derived sequences, or must have been specifically selected for its 565 

relevance, e.g. as a pathogen or as a component of a mock community to build a non-redundant human 566 

gut gene catalog (version “HG3A”) of 14,147,921 microbial genes. For the human oral catalogue, the 567 

gene sequences were clustered using MMseqs2 (Release 11)73 (“pre-clustered” at 93% identity over 568 

70% coverage of the longer sequence, followed by 93% identity over 70% coverage of the shorter 569 

sequence). We searched for alignments between long gene cluster representatives and short gene 570 

cluster representatives at 93 % identity over 70 % coverage of the shorter sequence; for all matches we 571 
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removed the long gene and retained the short gene. The merged long and short genes were filtered to 572 

remove sequences with tetramer entropy below 4, resulting in a non-redundant human oral gene 573 

catalog (version "Ho01") of 8,554,253 microbial genes. 574 

Metagenomic species (MGS) core gene sets were defined as bins of co-abundant genes identified 575 

using gene abundances from the correspondent non-redundant gene catalog across the cohorts that 576 

passed the quality assessment according to Nielsen et al.74. Species abundance was estimated 577 

according to the signature gene set, which was assigned using 100 genes with the highest correlation 578 

to the median core gene abundance for each species. A table of species counts taking into account the 579 

total gene counts for the signature gene per species was created. A metagenomics species was 580 

considered detected if the read pairs were mapped to least three of the 100 signature genes. Species 581 

that did not fulfill this criterion were set to 0, resulting in a 99.6% of specificity, according to the 582 

internal benchmarks. The species count table was normalized for effective gene length (accounting for 583 

the read length). The relative abundance of each species was estimated normalizing it to the sum 584 

(100%). All analyses were performed at the species level. 585 

For beta diversity analyses and the comparison of carriers and non-carriers between the two center 586 

sites, downsized MGS relative abundance data was used. The estimation of downsized MGS was 587 

performed by random sampling without replacement from the gene count table corresponding to the 588 

signature genes. Both lungut and SCAPIS-Uppsala were downsized to 210,430 reads. One sample 589 

from SCAPIS-Uppsala was discarded due to it presented only 1,473 reads mapped to the signature 590 

genes and downsizing all the samples to 1,473 reds would result in a huge loss of precision. 591 

The taxonomical information was annotated after comparing all the genes on the two catalogues with 592 

NCBI RefSeq database75 for archaea, bacterial, fungal, protozoa, and viral genomes, using BLAST 593 

algorithms. Human gut catalogue was compared with NCBI RefSeq downloaded on 02 May 2021 and 594 

the human oral catalogue was compared with the version downloaded on 27 January 2020. To 595 

annotate at the various taxonomic ranks, we required different levels of identity (95%, 95%, 85%, 596 

75%, 65%, 55%, 50% and 45% for subspecies, species, genus, family, order, class, phylum, and 597 

superkingdom, respectively) and a minimum of 80 % sequence coverage. If >75% of the MGS genes 598 
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mapped to a single species the MGS was annotated to this species. For genus, family, order, class and 599 

phylum the thresholds were set to 60%, 50%, 40%, 30% and 25% respectively. Furthermore, at genus 600 

and species level the MGS was not annotated to this level if >10% of the genes mapped an alternative 601 

species or genus.  602 

The functional annotation was performed by comparing each gene in the catalog to the EggNOG (v. 603 

5.0)76 orthologous groups database (http://eggnogdb.embl.de/) using EggNOG-mapper software (v. 604 

2.0.1)77. This comparison provided annotation to the Kyoto Encyclopedia of Genes and Genomes 605 

(KEGG) orthology (KO) database (https://www.genome.jp/kegg/). The functional potential profile 606 

was determined with GMM24, which includes 103 metabolic pathways that represent a cellular 607 

enzymatic process. MGS were assigned to a GMM if they contained at least two-thirds of the KOs 608 

required for the functionality of the module. If the module consisted of three or fewer steps, the MGS 609 

must contain all the steps. If the module contains alternative paths, the MGS only have to contain one 610 

of the paths. 611 

For lungut, SCAPIS-Uppsala and MODS, no detectable levels of DNA were observed for negative 612 

controls, while detectable levels of DNA were observed for mock samples. The mock samples showed 613 

a coefficient of variation estimated by the Shannon diversity index of 3.30% in lungut and 3.05% in 614 

SCAPIS-Uppsala. The coefficient of variation for 158 pairs of biological replicates randomly 615 

introduced in the analysis in SCAPIS-Uppsala center (where Clinical Microbiomics was blind to this 616 

information) was 1.49%. 617 

Analyses of the validation study. All the FASTQ files from the validation study were directly 618 

downloaded from the European Nucleotide Archive (ENA) under the project code “PRJEB21528”. 619 

The bioinformatics processing of reads, mapping to the catalogue, MGS count table generation and 620 

MGS relative abundance calculation steps were performed following the same algorithm used in the 621 

SCAPIS and MOS samples, with the exception of a minimum read-to-gene alignment length >90 bp to 622 

accommodate the 2X100 paired-end sequencing in the validation study. 623 
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Metabolomics data. Fasting plasma samples were stored at –80 C until they were processed by 624 

Metabolon Inc (Durham, NC, USA), as described by Evans et al.78. The order of the SCAPIS samples 625 

were randomized and they were analyzed together with quality control standards including pure water, 626 

solvents used for metabolite extraction and a pool of human samples maintained by Metabolon Inc 627 

(Durham, NC, USA). Proteins from these samples were removed by precipitating them adding 628 

methanol and applying vigorous shanking using Glem Mills GenoGrinder 200 and centrifugation. The 629 

metabolite identification was carried out under different settings using Waters ACQUITY ultra-630 

performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high 631 

resolution/accurate mass spectrometer (MS) interfaced with a heated electrospray ionization (HESI-II) 632 

source and Orbitrap mass analyzer operated at 35,000 mass resolution. The settings were a reverse 633 

phase (RP)/UPLC-MS/MS method with positive-ion mode electrospray ionization (ESI), a RP/UPLC-634 

MS/MS with negative ion mode ESI, and a Hydrophilic interaction (HILIC)/UPLC-MS/MS with 635 

negative ion mode. Then, Metabolon’s hardware and software were used to extract the raw data, 636 

identify the peaks, and process the specific quality controls. The peak measurement areas for each 637 

metabolite were divided by the median peak area of samples in that batch (n=144). The compounds 638 

were identified by comparison to Metabolon library, which contains over 3,300 commercially purified 639 

standards and recurrent unknown entities. Metabolite quantification was performed according to the 640 

area-under-the-curve quantification of the corresponding peaks. For each metabolite, if the metabolite 641 

measurement failed to reach the detection threshold were imputed from the minimum observed value 642 

for that metabolite. Each metabolite was assigned to a superpathway, which includes broad metabolic 643 

pathway terms, and a subpathway, which includes narrow metabolic pathway terms, during the 644 

annotation process. Drug metabolites were categorized as binary variables and the remaining 645 

metabolites were natural log plus one (ln+1) transformed. 646 

Statistical analysis. Simulation to determine the main statistical model. The statistical method for the 647 

models in which CACS was the outcome was selected from simulation data. The simulated dataset 648 

was built by shuffling randomly the first delivered data (n=438) to simulate the null hypothesis. We 649 

ran 12 models using different transformations in CACS and in microbial species: Linear model with 650 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.25.22275561doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.25.22275561
http://creativecommons.org/licenses/by/4.0/


ln+1 transformation on CACS and microbial species; linear model with bootstrapping standard errors 651 

with ln+1 transformation on CACS and microbial species; linear model with bootstrapping based on 652 

the residuals with ln+1 transformation on CACS and microbial species; linear model using robust 653 

standard errors with ln+1 transformation on CACS and microbial species; linear model with ln+1 on 654 

CACS and a center log ratio transformation on the species; negative binomial model with 655 

bootstrapping standard errors with ln+1 transformation on the microbial species; negative binomial 656 

model with ln+1 transformation on microbial species; negative binomial model with center log 657 

transformation on the microbial species; hurdle negative model in which we applied a logistic 658 

regression in the zero part of the hurdle negative model and a negative binomial model in the count 659 

part of the hurdle negative binomial model with the species ln+1 transformed; spearman correlation; 660 

ordinal regression with a ln+1 transformation on the microbial species; and a two-step model, in which 661 

logistic regression was first applied, followed by a negative binomial for CACS>0 with a ln+1 662 

transformed species. The final model was selected according to the performance in the simulation 663 

based on the inflation factor and prioritizing methods that allow investigating the associations, in 664 

accordance with the hypothetical causal diagram created using DAGitty (www.dagitty.net; Extended 665 

Data Fig. 1) (regression over correlation), and easy interpretation. The linear model using ln+1 666 

transformation in CACS and in the gut microbiota species performed well and it was one of the easiest 667 

regression methods for result interpretation.  668 

Association between gut microbiota diversity and atherosclerosis. Alpha and beta diversity were 669 

estimated using the R package vegan79. Alpha diversity was assessed using Shannon diversity index 670 

and beta diversity using Bray Curtis dissimilarity. For alpha diversity, we fitted linear regression 671 

model using CACS as the outcome and adjusting the model for age, sex, country of birth, and 672 

technical variables including center site and metagenomics extraction plate within each center site (we 673 

included an indicator variable for center site and interaction terms between metagenomics extraction 674 

plate and center site, but no main effect for metagenomics extraction plate (since this would be 675 

redundant)). We further adjusted this model for smoking, physical activity, dietary indicators, and self-676 

reported medication for dyslipidemia, hypertension and/or diabetes. For beta diversity, we performed 677 
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PERMANOVA analyses with 9,999 permutations and assessing the marginal effects of the terms with 678 

beta-diversity as the outcome in the model. The independent variable was the four categories of CACS 679 

and the models were adjusted for the same two set of covariates used in the alpha diversity analyses. 680 

Pairwise comparisons were carried out using PERMANOVA models. Multiple testing was adjusted 681 

for using 5% Benjamini-Hochberg FDR. 682 

Association between gut microbiota species and coronary atherosclerosis. In the discovery cohort, a 683 

series of linear multivariable regressions using ln+1 of CACS as the dependent variable and ln+1 of 684 

the 1,985 microbial species as independent variable. We fitted a model for each species separately. 685 

Two sets of covariates were selected according to the assumptions of the causal framework (Extended 686 

Data Fig. 1). The basic model was adjusted for age, sex, country of birth, and technical variables 687 

including center site, metagenomics extraction plate within each center site and Shannon diversity 688 

index. The full model was additionally adjusted for smoking, physical activity, ln(total energy intake), 689 

ln(fiber intake), and medication (self-reported medication prescribed for dyslipidemia, high blood 690 

pressure, and/or diabetes). Multiple testing was adjusted for using 5% Benjamini-Hochberg FDR. The 691 

analyses were performed jointly as well as sex-stratified. To test if the estimate effects were different 692 

in the sex-stratified analyses the Cochran's Q-test was used. 693 

We used GSEA from the fgsea R package80 to determine whether species associated with CACS were 694 

enriched for certain genera. This statistical method was applied on the ranked p-values for positive and 695 

negative regression coefficients separately of the associations between species and the phenotype of 696 

interest in the basic model. The enrichment p-values were controlled using 5% Benjamini–Hochberg 697 

FDR. 698 

Sensitivity analysis. Analyses for species significantly associated with CACS were repeated without 699 

adjusting for Shannon diversity index. The analyses were also repeated including BMI and PPI drugs 700 

as additional covariates in the full model. The full model was also fitted additionally adjusting for 701 

traditional cardiovascular risk factors (BMI, diabetes, systolic blood pressure, diastolic blood pressure, 702 

total cholesterol, cholesterol in low-density lipoproteins, and cholesterol in high-density lipoproteins) 703 

to test if the effect of the gut microbiota species on coronary atherosclerosis was independent of these 704 
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traditional cardiovascular risk factors. We also performed sensitivity analyses excluding data for 705 

participants with Crohn’s disease, ulcerative disease and for participants who underwent antibiotic 706 

treatment during the year preceding their attending the baseline visit. The associations from the main 707 

analysis (basic and full model using linear regression) were tested using partial Spearman correlations 708 

to ensure consistency using different statistical methods. In case of a discrepancy between the main 709 

model (linear regression) and the sensitivity model (Spearman correlation) a study of influential 710 

observations that may drive the linear association was performed by calculating unscaled dfbeta 711 

values. If the most influential observation had higher dfbeta values compared to the regression 712 

coefficient and the values were in the same direction as the regression coefficient, the finding from the 713 

linear regression was deemed unreliable. The residuals from the association between the species 714 

considered as reliable and CACS using linear regression were plotted against the exposure to identify 715 

any trend between the two variables.  716 

Association between gut microbiota species and carotid atherosclerosis. To assess the association 717 

between CACS-related species and carotid atherosclerosis, a series of ordinal multivariable 718 

regressions were performed using the presence of carotid plaque as the dependent variable for carotid 719 

atherosclerosis and the microbiota species significantly associated with CACS as the independent 720 

variable including only one species in each model. The relative abundance of these species were ln+1 721 

transformed. The models were adjusted using the covariates in the basic and full model. Multiple 722 

testing was adjusted using 5% Benjamini-Hochberg FDR. 723 

Validation in a case-control study with symptomatic atherosclerotic cardiovascular patients. 724 

Multivariable logistic regressions were fitted with disease status as the binary outcome. The exposure 725 

variables were the species with adjusted p-value <0.05 from the basic model used in the discovery 726 

cohort that were available in the validation dataset. We did a rank-based inverse normal transformation 727 

of the relative abundance of these species for the analysis. The models were adjusted for age, sex and 728 

Shannon diversity index. Those associations with a p-value adjusted for Benjamini–Hochberg <0.05 729 

and showing an effect in the same direction as we observed in the discovery cohort were considered as 730 

validated. 731 
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Functional analysis based on gut metabolic modules. GSEA was used to assess if species belonging to 732 

a specific functional GMM were enriched in their association with CACS compared to species in the 733 

other functional models. The analysis was performed on ranked p-values for positive and negative 734 

regression coefficients separately, and controlled using 5% Benjamini–Hochberg FDR. To determine 735 

if these results were driven by an enrichment of species belonging to a same genus we carried out a 736 

repeated GSEA but applying a leave-one-(taxon)-out in the analysis, which consist in removing the 737 

species belonging to one genus each time.  738 

Associations between Streptococcus spp. and plasma metabolites. Partial Spearman correlations were 739 

fitted using the R package ppcor81 to assess the correlations between the significant CACS-associated 740 

Streptococcus spp. with plasma metabolites controlling for multiple testing using 5% Benjamini–741 

Hochberg FDR. The models were adjusted using the same covariates as previously defined in the full 742 

model. GSEA was also performed on ranked p-values for positive and negative correlation coefficients 743 

separately to evaluate if the streptococci associated with plasma metabolites were enriched for certain 744 

metabolite subpathway. The enriched p-values were controlled using 5% Benjamini-Hochberg FDR. 745 

To investigate the possible mediation effect of these metabolites in the association between 746 

Streptococcus spp. and CACS we additionally adjusted the full model for metabolites involved in 747 

enriched subpathways with  <30% missing values and adjusted p-value <0.05.  748 

Associations between Streptococcus spp. and systemic inflammatory and infection biomarkers. A 749 

series of linear multivariable regressions were fitted to assess the association between CACS-related 750 

Strepptococcus spp. (independent variable) and hsCRP and counts of neutrophils and leukocytes 751 

(outcomes) controlling for multiple testing using Benjamini-Hochberg at 5% FDR level. The relative 752 

abundance of these species were ln+1 transformed, while the outcome variables were natural log 753 

transformed. The models were adjusted for the same covariates as the full model. These models further 754 

adjusted for BMI and PPI were also performed. 755 

Associations between gut and oral Streptococcus spp. and between oral Streptococcus spp. and oral 756 

health phenotypes. To investigate the association between CACS-related Streptococcus spp. in the gut 757 

with their homologue in the oral cavity, a series of partial Spearman correlation with cluster-robust 758 
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standard errors (family id as a cluster) were fitted adjusted for age, sex, country of birth and gut 759 

metagenomics extraction plate. The models were not adjusted for oral metagenomics extraction plate 760 

because previous quality controls showed no significant effect from the plate on the oral microbiome. 761 

The oral Streptococcus spp. associated with an adjusted p-value <0.05 with their homologue in the gut 762 

were then associated with three oral health phenotypes consisting of filling surfaces, caries and 763 

gingival inflammation using ordinal regressions. The oral health phenotypes were the dependent 764 

variable in the regressions and the ln+1 transformation of the relative abundance of the Streptococcus 765 

spp. the independent variable. These ordinal regression with cluster-robust standard errors (family id 766 

as a cluster) were adjusted for age, sex, smoking, education, oral hygiene, activity realized the hour 767 

before attending to the dental examination, and oral Shannon diversity index. The models were 768 

additionally adjusted for BMI, PPI and antibiotic treatment. A 5% Benjamini–Hochberg FDR was 769 

applied to denote statistical significance in the analyses. 770 

Data availability. 771 

The availability of individual data are limited due to the sensitive nature of the data and it can only be 772 

used with previous ethical approval. Therefore, the metagenomics sequences has been anonymized 773 

and they are available in ENA under accession code “PRJEB51353”. A subset of anonymized 774 

metabolomics data (n=125) is available in MetaboLights under the study identifier “MTBLS407”. 775 

However, all the data used in this work is available from the authors upon reasonable request and with 776 

previous written permission from the Swedish Ethical Review Authority and the SCAPIS Data Access 777 

Board.  778 

Code availability. 779 

The source code used to generate the results for the analysis is available at 780 

https://github.com/MolEpicUU/GUTSY-CACS.   781 
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Table 1 Descriptive characteristics of participants in the discovery cohort (SCAPIS study) 1019 

 
Malmö 

n=4,541 

Uppsala 

n=4,432 

CACS†‡ 0.00 [0.00; 27.0] 0.00 [0.00; 15.0] 

Clinical CACS, n (%)‡:                   

  0  2,574 (56.7)   2,781 (62.7)  

  1–100  1,379 (30.4)   1,187 (26.8)  

  101–400  398 (8.76)    319 (7.20)   

  >400  190 (4.18)    145 (3.27)   

Carotid arteries with identified plaques, n (%):                   

  None   1,862 (41.1)   1,959 (44.2)  

  Unilateral  1,388 (30.7)   1,391 (31.4)  

  Bilateral  1,275 (28.2)   1,080 (24.4)  

Age (years)*  57.3 (4.28)    57.6 (4.39)   

Sex, female, n (%)  2,480 (54.6)   2,336 (52.7)  

Country of birth, n (%):                   

  Scandinavia  3,575 (78.7)   4,001 (90.3)  

  Asia  237 (5.22)    170 (3.84)   

  Rest of Europe  629 (13.9)    165 (3.72)   

  Other  100 (2.20)    96 (2.17)   

Triglycerides, mmol/L† 1.10 [0.80; 1.50] 1.09 [0.83; 1.53] 

LDL cholesterol, mg/L*‡  3.64 (0.94)    3.57 (0.92)   

HDL cholesterol, mmol/L†‡ 1.60 [1.30; 2.00] 1.40 [1.20; 1.70] 

Total cholesterol*  5.48 (1.00)    5.73 (1.05)   

SBP, mmHG*‡ 122 (16.4)   125 (15.9)   

DBP, mmHG*‡  75 (9.65)    77 (9.79)   
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BMI, kg/m2‡  27.2 (4.58)    27.0 (4.36)   

HsCRP, mmol/L†‡ 1.20 [0.60; 2.40] 1.20 [0.59; 2.30] 

Neutrophil counts*109/L† 3.00 [2.40; 3.80] 2.80 [2.30; 3.50] 

Leukocyte counts*109/L† 5.60 [4.70; 6.70] 5.30 [4.60; 6.30] 

Total energy intake, Kcal/day† 1,578 [1,220; 2,066]   1,612 [1,268; 2,048]   

Fiber intake, g/day† 11.3 [8.58; 14.2]    11.5 [9.01; 14.1]    

Diabetes, n (%)  198 (4.55)    171 (4.07)   

Crohn’s and ulcerative disease, n (%):  43 (1.00)  52 (1.24) 

Medication for dyslipidemia, n (%)  292 (6.71)    274 (6.53)   

Medication for high blood pressure, n (%) 834 (19.2)    764 (18.2)   

Medication for diabetes, n (%)  165 (3.80)    140 (3.34)   

Proton pump inhibitor, n (%)  159 (4.51)  122 (2.78) 

Antibiotic treatment (J01 class), n (%) 931 (20.5)    819 (18.5)    

Smoking, n (%):                   

  Never smoker  1,948 (44.0)   2,469 (58.6)  

  Former smoker  1,681 (38.0)   1,351 (32.1)  

  Current smoker  795 (18.0)    394 (9.35)   

Physical activity in leisure time, n (%):                   

  Sedentary  594 (13.8)    425 (10.2)   

  Moderate exercise  2,107 (48.9)   1,873 (45.1)  

  Moderate but regular exercise  1,114 (25.8)   1,357 (32.7)  

  Regular exercise and training  498 (11.5)    496 (11.9)   

 1020 

* Mean (standard deviation). 1021 

† Median [interquartile range]. 1022 

‡ CACS, coronary artery calcium score; LDL, low-density lipoprotein; HDL, high-density lipoprotein; 1023 
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SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; hsCRP, high-1024 

sensitivity C-reactive protein.  1025 
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Fig. 1 Beta diversity across the coronary artery calcium score (CACS) categories. Representation 1026 

of the two principal coordinates (PCo) based on Bray-Curtis dissimilarity between individuals colored 1027 

according to clinical categories of CACS, a measure of asymptomatic atherosclerosis. The centroid of 1028 

the two first coordinates is shown as a triangle. Absent: CACS=0; Mild: 1≤CACS<101; Moderate: 1029 

101≤CACS<401; and Extensive: CACS>400. 1030 

 1031 

 1032 
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Fig. 2 Metagenomic species associated with coronary artery calcium score (CACS) in the basic model and the 

full model showed an overrepresentation of Streptococcus spp. a, Cladogram of species associated with CACS 

with a p-value <0.05 (unadjusted for multiple testing) in the basic model. Blue shade indicates the genera 

overrepresented (FDR<5%) in the enrichment analysis using gene-set enrichment analysis. Only the metagenomics 

species identified at least to species level were highlighted. Red circles indicate the streptococcal species associated 

with CACS in the full model (FDR<5%). Turquoise circles indicate the non-streptococcal species associated with 

CACS in the full model (FDR<5%). b, Volcano plot representing all the associations between species and CACS in 

basic model. Red dots indicate the significant streptococcal species associated with CACS (FDR<5%), turquoise dots 

indicate significant non-streptococcal species associated with CACS (FDR<5%), and grey dots indicate the 

associations between non-significant species and CACS (FDR≥5%). c, Dot plot showing the results of the enrichment 

analysis using gene-set enrichment analysis at genus level using the ranked p-values with positive regression 

coefficients of the associations between species and CACS in the basic model. Modules with less than 15 elements 

were removed from the plot to improve the visualization. Streptococcus was the only enriched genus (FDR<5%) and it 

is indicated with a blue dot. d, Forest plot of the Streptococcus spp. associated with CACS in the basic mode and full 

model with FDR<5%. The dots represent the estimate of the association between the Streptococcus spp. and the 

CACS, and the bar represents the 95% confidence intervals. The estimates and the confidence intervals were ln(x+10) 

-1 transformed to improve the figure visualization. Orange color represents sex-combined analysis, purple color 

represents results for the female population, and blue color represents results for the male population. The * indicates 

the existence of a sex-effect modification in the association between the Streptococcus spp. and the CACS (unadjusted 

for multiple testing). 

 

 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.25.22275561doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.25.22275561
http://creativecommons.org/licenses/by/4.0/


43 
 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.25.22275561doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.25.22275561
http://creativecommons.org/licenses/by/4.0/


44 
 

Fig. 3 Heatmaps of associations between CACS-related gut Streptococcus spp. and plasma metabolites sub-

pathways, inflammatory and infection markers, and oral Streptococcus spp. related to oral health phenotypes. 

a, Heatmap showing the enrichment of metabolite sub-pathways based in full adjusted associations between CACS-

related gut Streptococcus spp. and plasma metabolites. Blue represents the normalized enrichment score (NES) on the 

enrichment analysis for the negative associations between the Streptococcus spp. and plasma metabolites and red 

represents the NES on the enrichment analysis based on the positive associations. Significant enrichments at 5% FDR 

are displayed with an asterisk (*). b, Heatmap showing linear associations between CACS-related gut Streptococcus 

spp. and three inflammatory markers (hsCRP: high-sensitivity C-reactive protein, neutrophils and leukocytes) adjusted 

for age, sex, country of birth, center site, metagenomics extraction plate within the center site, Shannon diversity 

index, smoking, physical activity, fiber and total energy intake, and self-reported medication for dyslipidemia, 

hypertension and/or diabetes. The three inflammatory markers were scaled to mean of 0 and standard deviation of 1. 

The heatmap is colored based on the magnitude of the linear correlation coefficient. Significant associations at 5% 

FDR are displayed with an asterisk (*). c) Heatmap showing the associations between oral CACS-related gut 

Streptococcus spp. and three oral health phenotypes (Filled surface, Caries and Gingival inflammation) adjusted for 

age, sex, smoking, education, oral hygiene, activity realized the hour before attending to the dental examination, and 

Shannon diversity index. The heatmap is colored based on the natural logarithm of the odds ratio (ln(odds ratio)). 

Significant associations at 5% FDR are displayed with an asterisk (*). 
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Extended Data Fig. 1 Directed acyclic graph of the assumed framework in the associations between the gut 

microbiome and atherosclerosis. The graph was generated in DAGitty v3.0 assuming gut microbiota species are 

causally associated with atherosclerosis. A directed edge (or “arrow”) from one node to another represents a direct 

effect between these two nodes. Red circles represent confounder variables, blue circles mediator variables, green 

circles technical source of variation, and grey circles unobserved variables. BP, blood pressure; Dyslipidemia Med, 

medication for dyslipidemia; Diabetes Med, medication for diabetes; BP med, medication for blood pressure; BMI, 

body mass index; PA, physical activity. 
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Extended Data Fig. 2 Quantile-quantile plot (qq-plot) of p-values from simulation studies performed prior to 

the analysis of the relationship between species and coronary artery calcium score (CACS). The first data 

delivered from Clinical Microbiomics A/S (n=438) was shuffled randomly to create a simulation dataset with 

maintained variable distribution. The y axis has been truncated at 10 units to improve the visualization of the qq-plots.  

Then, 12 models were tested to compare their performance in the dataset and are depicted in the qq-plot. Boot.lm, 

linear model with bootstrapping standard errors;  boot.lm.resi, linear model with bootstrapping based on the residuals; 

boot.nb; negative binomial model with bootstrapping standard errors; hurdle.nb.count, the count part of the hurdle 

negative binomial model; hurdle.nb.zero, the zero part of the hurdle negative binomial model; lm.clr, linear model 

transforming the species data using center log ratio transformation; lm.log1p , linear model transforming the species 

data using natural logarithm of the relative abundance plus one; nb, negative binomial model; nb.clr, negative 

binomial transforming the species data using center log ratio transformation; ordinal, ordinal regression model, 

robust.lm, linear model using robust standard errors; spearman, partial spearman correlation; two.stage.count, linear 

model on the counts different to zero after a first step using natural logistic regression; and two.stage.zero, logistic 

regression applied before a second step using linear regression on the counts different to zero.  
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Extended Data Fig. 3 Scatterplot showing the correlation between the estimates and the p-values of the basic 

model and the full model in 8,155 participants with complete data on all covariates. Blue line indicates the linear 

regression showing a slightly lower slope compared to the black line, which represents the regression with slope =1. 

The Pearson correlation (R) between the main model and the sensitivity model is displayed in the figure. 
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Extended Data Fig. 4 Scatterplot showing the correlation between the main analysis using basic and full models 

and sensitivity models excluding participants with Crohn’s disease, antibiotic drug users, without adjusting for 

Shannon diversity index, and after adjusting the full model for body mass index (BMI), participants receiving 

proton-pump inhibitors (PPI) and/or established cardiovascular risk factors (CVRF). Blue lines indicate the 

linear regression and the black lines represent the regression with slope =1. The Pearson correlation (R) between the 

main model and the sensitivity model is displayed in the figure. 
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Extended Data Fig. 5 Forest plot of the species associated with CACS showing sex-effect modification with p-

value <0.05 (unadjusted for multiple testing) in the full model. The dot represents the estimate of the association 

between the species and the CACS, and the bar represents the 95% confidence interval. Orange color represents sex-

combined analysis, purple color represents results for the female population, and blue color represents results for the 

male population. 
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Extended data Fig. 6 The distribution of fifteen species associated with increased coronary artery calcium score 

in the SCAPIS study over 210 cases and 163 controls of symptomatic atherosclerotic cardiovascular disease in 

the case-control study by Jie Z et al. The species were identified using the same gene signature as in SCAPIS and 

the resulting relative abundance were rank-based inverse normal transformed. 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.25.22275561doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.25.22275561
http://creativecommons.org/licenses/by/4.0/


53 
 

Extended data Fig. 7 Functional gut metabolic modules (GMM) enriched on the positive associations between 

species and CACS in the basic model. a, Dot plot showing the results of the enrichment analysis using gene-set 

enrichment analysis (GSEA) to identify functional GMM using the ranked p-values of the positive associations 

between species and CACS in the basic model. Blue dots indicate the enriched GMM. b, Dot plot showing the results 

of the enrichment analysis using gene-set enrichment analysis (GSEA) to identify functional GMM using the ranked 

p-values of the negative associations between species and CACS in the basic model. Orange dots indicate the enriched 

GMM. c, GSEA applying leave-one (taxon)-out analysis removing one genus at a time for each enriched GMM. Red 

dots indicate the analysis removing Streptococcus genus and the black lines indicate the enrichment analysis without 

removing any genus. The genera indicated in the figure are the two removed genus that causes lower normalized 

enrichment score (NES) or the two removed genus that causes higher normalized enrichment score (NES). 
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Extended data Fig. 8 Correlations between CACS-associated species and plasma metabolites of enriched 

metabolic sub-pathways. a, Heatmap showing the partial Spearman correlations between CACS-associated 

Streptococcus spp. and plasma metabolites involved in the significantly enriched metabolic sub-pathway based on the 

ranked p-values of positive associations adjusted for the covariates used in the full model (model adjusted for age, sex, 

country of birth, smoking, physical activity, total energy intake, fiber intake, self-reported medication prescribed for 

dyslipidemia, high blood pressure, and/or diabetes, and technical variables including center site, metagenomics 

extraction plate and Shannon diversity index). The asterisk (*) indicates the associations significant at 5% FDR. b, 

Heatmap showing the partial Spearman correlations between CACS-associated Streptococcus spp. and plasma 

metabolites involved in the significantly enriched metabolic sub-pathway based on the ranked p-values of  negative 

associations adjusted for the covariates used in the full model. The asterisk (*) indicates the associations significant at 

5% FDR.   
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Extended data Fig. 9 Scatterplot showing the correlation between the estimates and the p-values of the 

associations between Streptococcus spp. and CACS in the full model (n=5,683) with and without adjustment for 

metabolites with <30% missing data involved in sub-pathways related to primary and secondary bile acids 

metabolism, acetylated peptides, plasmalogen, androgenic steroids, sphingomyelins, analgesic and anesthetic 

drugs, and/or partially characterized molecules; and the same analysis but restricting the analysis to those 

participants with complete data. Blue lines indicate the linear regression and the black lines represent the regression 

with slope =1. The Pearson correlation (R) between the main model and the sensitivity model is displayed in the 

figure. 
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Extended data Fig. 10 Directed acyclic graph of the hypothetical causal framework in the association between 

the oral Streptococcus spp. and three phenotypes of oral health (filled surface, caries and gingival 

inflammation). The graph was generated in DAGitty v3.0 assuming causal association between Streptococcus spp. 

and oral health. A directed edge (or “arrow”) from one node to another represents a direct effect between these two 

nodes. Red circles represent confounder variables, blue circles mediator variables, and green circles technical source 

of variation. Dyslipidemia Med, medication for dyslipidemia; and Last Hour Act, activity realized the hour before 

attending to the dental examination. 
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