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Abstract 

Background 
Hong Kong, has operated under a zero-Covid policy in the past few years. As a result, 
population immunity from natural infections has been low. The ‘fifth wave’ in Hong 
Kong, caused by the Omicron variant, grew substantially in February 2022 during the 
transition from winter into spring. The daily number of reported cases began to 
decline quickly in a few days after social distancing regulations were tightened and 
rapid antigen test (RAT) kits were largely distributed. How the non-pharmaceutical 
interventions (NPIs) and seasonal factors (temperature and relative humidity) could 
affect the spread of Omicron remains unknown.  
 
Methods 
We developed a model with stratified immunity, to incorporate antibody responses, 
together with changes in mobility and seasonal factors. After taking into account the 
detection rates of PCR test and RAT, we fitted the model to the daily number of 
reported cases between 1 February and 31 March, and quantified the associated 
effects of individual NPIs and seasonal factors on infection dynamics. 
 
Findings 
Although NPIs and vaccine boosters were critical in reducing the number of 
infections, temperature was associated with a larger change in transmissibility. Cold 
days appeared to drive 𝑅𝑒 from about 2–3 sharply to 10.6 (95%CI: 9.9–11.4). But this 
number reduced quickly below one a week later when the temperature got warmer. 
The model projected that if weather in March maintained as February’s average level, 
the estimated cumulative incidence could increase double to about 80% of total 
population. 
 
Interpretation 
Temperature should be taken into account when making public health decisions (e.g. a 
more relaxed (or tightened) social distancing during a warmer (or colder) season).   
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Introduction 
China, Hong Kong, Taiwan, New Zealand have been or previously been operating 
under a zero-Covid policy, likely resulting in a highly susceptible population due to 
low levels of previous virus exposure. The recent Omicron variant was estimated to 
cause a high infection rate with substantial hospitalisations and deaths in such 
countries, if the outbreak was not controlled [1]. Successfully managing the outbreaks 
in such highly susceptible populations is a challenging task. 
 
The SARS-CoV-2 Omicron outbreak (known as the ‘fifth wave’) in Hong Kong, 
originally linked to imported cases [2], was exacerbated since the Chinese Spring 
Festival, starting on 1 February 2022. This wave resulted in more than 1.1 million 
confirmed cases (in a total population of 7.48 million) within two months. Despite the 
social distancing was soon tightened on 10 February 2022 [3], the outbreak continued 
to grow. The number of new cases suddenly rose from about 10,000 on 25 February 
2022 to the peak of near 80,000 less than a week. Meanwhile on 25 February, because 
the PCR testing and contact-tracing systems were overwhelmed, the Government 
decided that Rapid Antigen Test (RAT) can be used for case confirmation and began 
to distribute the kits [4][5]. Surprisingly, several days later, the number reduced 
rapidly. The sharp pattern of the epidemic was clearly different from the slow plateau-
like infections that were commonly seen in many nearby countries around the same 
time (Figure S1). Modelling how this outbreak was managed in such an agile way 
allows us to formulate recommendations for the management of the future outbreaks. 
 
Faced with a growing number of cases, vaccine boosters received increased from 
approximately 20,000 to over 40,000 per day since February 2022 [6]. The 
distribution of neutralizing antibody titres induced by vaccine against the Omicron 
variant was observed in Hong Kong, which was not particularly high [7]. A higher 
titre level can reduce the susceptibility of infection more [8]. To take into account 
differences in antibody responses, epidemic models with multiple susceptible states 
(called stratified immunity) have been developed [9], in which each titre level was 
mapped to one of the states. Modelling stratified immunity allows a more natural 
description of the population immunity. The timing and the magnitude of the 
epidemic dynamics can be reconstructed more accurately [9].  
 
Besides NPI and vaccination, the spread of COVID-19 is postulated to be influenced 
by temperature and humidity. Lower temperatures have been found to be associated 
with higher transmissibility [10][11][12]. In addition, the relationship between 
relative humidity and the transmissibility has also been studied [12][13][14]. A recent 
study suggested incorporating temperature can improve the accuracy of model 
forecasts [10]. As Hong Kong experienced cooler days than usual with high relative 
humidity during February 2022 and the spring season brought warmer conditions in 
the following months [15], these factors should be modelled.  
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In order to understand the drivers of the fifth wave and how this was successfully 
managed, a model embedding with stratified immunity [9] and non-pharmaceutical 
interventions (NPIs) [16] was developed. We aimed at quantifying the associated 
impacts of individual NPIs, vaccine booster and other seasonal factors (i.e. 
temperature and humidity) after incorporating daily changes of relevant data. 
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Material and Methods 
Daily vaccination rates of BioNTech and CoronaVac were collected from the 
COVID-19 Thematic Website [3]. Mobility data were collected from Google mobility 
[17]. Daily mean temperature and relative humidity were collected from Hong Kong 
Observatory [18]. Daily number of reported cases detected by either PCR or RAT 
were collected from the Hong Kong Centre for Health Protection [19].  
 
The period of the fifth wave in our study was defined as beginning when infected 
cases are consistently above 100 cases on 1 February 2022 and as ending on 31 March 
2022 when the daily case number has been constantly less than 10% of the epidemic 
peak since then. In order to capture the impacts of NPIs and seasonal factors in a 
population with changing immunity, we extended our previous deterministic stratified 
immunity model [9] to incorporate daily changes in vaccination, mobility and weather 
conditions (Figure 1 and Figure S2). 
 
The force of infection  𝜆! 	of individuals having 𝑖th antibody titre level is proportional 
to their susceptibility, social mixing, and temperature and relative humidity they were 
exposed to at each day: 
 

𝜆! = 𝑠𝑢𝑠𝑐! ∙ (1 + 𝛽"𝑚𝑜𝑏) ∙ 𝑒#!(%&%")𝑒##$(()&()") ∙ 𝑋   (1) 
 

where 𝑠𝑢𝑠𝑐! is the susceptibility of infection for susceptible individuals having 
antibody titre level 𝑖. 𝛽" is the coefficient for the percent reduction of population 
mobility (𝑚𝑜𝑏), compared to the pre-pandemic period. 𝑇 is the daily temperature and 
𝑇* is the baseline temperature (i.e. the average temperature in February). 𝛽% is the 
coefficient for temperature. Similarly, 𝛽() is the coefficient for relative humidity. 𝑅𝐻 
is the daily relative humidity and 𝑅𝐻* is the baseline relative humidity. 𝑋 here 
represents the effects from other factors, including other NPIs and the number of 
infected cases (see Supplementary Materials for detailed specification). 
 
Vaccine-induced protection 
The increase of antibody titre due to two different vaccines (BioNTech and 
CoronaVac are two available vaccines in Hong Kong) resulting from full 
immunization (2nd dose) or vaccine booster doses was collated from serum data in a 
previous study [7]. There are seven titre levels (from 1 to 7), indicating different 
dilutions, such as <1:10, 1:10, 1:20,…, 1:160, and ≥1:320, measured as the highest 
serum dilution that resulted in >50% reduction in the number of virus plaques 
(PRNT50) [20]. Antibody boosting was represented as the increase in antibody titre 
from the original to a boosted level, parameterised by a log-normal distribution (see 
Figure S3).  
 
The susceptibility of individuals at a particular antibody titre can be described using a 
sigmoid function (see Figure 1B): 
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𝑠𝑢𝑠𝑐!+, =
-

-./%('(!)*")
        (2) 

 
where 𝑠𝑢𝑠𝑐!+,is the probability (un-normalized) of developing disease for individual 
with antibody titer at level 𝑖 given a contact; 𝑇𝑃50 is the titre level found to exhibit 
50% protection, which was found to be 1:25.6 in a previous study [7]; and α is the 
shape parameter, which can be estimated by the model. Note that this ‘un-normalized’ 
probability does not lead to 100% susceptibility when the titre level is at the minimum 
level. This potentially leads to multi-collinearity issue during model fitting. To avoid 
this, we further normalized the susceptibility to allow the lowest titre to be fixed at 
100%. For the description of the full model, see Supplementary Materials.  
 
We assumed that antibody levels in people who received vaccination more than three 
months ago had waned already and the amount of antibodies increased 7 days after 
having the second or third dose [21–23].  Hence, daily booster rate was defined as the 
proportion of total population who were having the booster dose 7 days ago. Pre-
existing immunity was defined as the proportion of individuals who had been 
vaccinated either with two or three doses between 25th October 2021 and 25th 
January 2022 (a week before the beginning of the fifth wave) (see Figure 1A and 
Figure 3A).  
 
Modelling testing, tracing and isolation 
We modelled both types of tests: the PCR test and the RAT. A certain amount of 
infected cases performed self-testing using RAT. After the latent period, once they 
were detected, they self-reported positive outcomes (e.g. through an online self-
reporting website in Hong Kong), and self-isolated at home. Home-isolated cases 
were still able to transmit the virus but with a lower rate of 10.9% (95%CI: 7.1–
14.7%) [16] than infectious cases who were not quarantined or isolated. We assumed 
that the proportion of infected cases that are detected (i.e. detection rate) by PCR was 
inversely associated with the ‘true’ number of cases (i.e. both detected and undetected 
cases) following an exponential curve. The average delay between symptom onset and 
hospitalization was set to 6 days after checking previous reports. Additional delays in 
reporting PCR-confirmed cases were dependent on the true case number. The delay 
became longer but changed less when the number of cases was larger. We modelled 
contact tracing following our previous approach [16]. According to the report from 
Centre of Health Protection, the average proportion of cases that were identified 
through contact tracing was reduced from about 50% in January to 10% in February 
(Figure S4). Therefore, the proportion of contact-traced was set to be 10% in this 
study. These contact-traced cases were assumed to be either quarantined or isolated at 
home. For the description of the full model, see Supplementary Materials. 
 

Model fitting 
The posterior distributions of the parameters of the model for Hong Kong were 
obtained after fitting the model to the daily numbers of reported cases detected by 
PCR or RAT. The posterior distributions were estimated using a Markov chain Monte 
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Carlo (MCMC) algorithm with 106 steps to guarantee an effective sample size (ESS) 
of greater than 1000 for all parameters (see Supplementary Materials). 
 
Calculating effective reproduction number  
The time-dependent effective reproduction number, 𝑅𝑒, was calculated using the 
next-generation matrix approach after the posterior distributions of the model 
parameters were obtained [6].  
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Results 
In order to quantify how the factors driving and controlling the fifth wave in Hong 
Kong, we modelled the separate effects of NPIs, vaccination and weather in a highly 
susceptible population. 
 
Characterising the fifth wave 
We first compared two models: the full model, in which the force of infection for 
susceptible individuals was determined by vaccine-induced protectiveness, the 
implementation of social distancing, and weather conditions (temperature and relative 
humidity); and the ‘reduced’ model, in which the weather effects were not included. 
After estimating the detection rates of PCR and RAT (Figure 1A and Figure S2), only 
the full model successfully reproduced the pattern of the actual reported case number 
(Figure 2A,C), i.e. a rapidly increasing trend, followed by a sudden reduction. The 
reduced model produced a longer plateau. The model performance, measured by 
deviance information criterion (DIC), was significantly improved when weather 
conditions were included (1995.1 versus 2650.9). Hence, the full model was used to 
characterise the fifth wave.  
 
The maximum daily number of reported cases (76,937) was successfully predicted on 
3 March. Furthermore, the model predicted that the true daily number of infections 
(including the undetected cases) at the time of virus exposure reached its peak on 23 
February with the highest estimated of 231,381 (95%CI: 210,705–256,860) and a 
cumulative 10.5% of the population have been infected (Figure 2CD). The amount of 
naturally infected cases appeared to be lower than the expected population immunity 
to suppress this outbreak [24]. However, few days later, the predicted number showed 
rapid decreases from the peak two times to approximately 80–100 thousand between 
27 February – 7 March and to below 40 thousand after 10 March (Figure 2C). The 
model estimated that up to the end of March, the cumulative incidence was 39.0% 
(95%Credible Interval (CI): 36.7–41.1%) of population (Figure 2B), while only 38% 
of them were reported. Nearly 35% of reported cases were detected by RAT (Figure 
2D).  
 
𝑅𝑒 gradually decreased from about 5 to 2-3 in the first three weeks of February but 
increased sharply to 10.6 (95%CI: 9.9–11.4) on 20 February and maintained few days. 
The number then reduced quickly to be lower than 1 after just a week in the end of 
February (Figure 2B).  
 
Changes in vaccine-induced population immunity 
We first assessed whether vaccination was able to explain the rapid reduction in 
transmissibility during the late February. After incorporating antibody responses of 
second and third doses of BioNTech and CoronoVac, the pre-existing immunity by 1 
February only produced very limited protection (Figure 3A). Our model estimated 
that the susceptibility (i.e. the probability of being infected given a contact) of 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2022. ; https://doi.org/10.1101/2022.05.25.22275487doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.25.22275487
http://creativecommons.org/licenses/by-nd/4.0/


 8 

individuals following a sigmoid curve as the amount of antibody grew (see Figure 
1B). About 99% of individuals whose antibody titre levels were correlated with 
susceptibility greater than 50% (i.e. <1:40). 
 
With the rapid spreading of the omicron virus, many individuals who obtained two 
doses have continued to take the vaccine booster. According to the daily booster rate 
(Figure 1C), about 9.9% of the population have taken the booster doses (512,321 for 
BioNTech and 226,920 for CoronaVac) until one week before the estimated incidence 
peak time (23 February), and only 4.3% of the population were estimated to have 
antibody titre ≥1:40, defined as seroprevalence (Figure 3B). The immunological 
dynamics show that the predicted seroprevalence in susceptible individuals due to 
vaccination is relatively low (Figure 3CD). Up to the end of February, vaccine booster 
enabled about 7.5% reduction in the force of infection (Figure S5). Hence, the 
reduction of 𝑅𝑒 during the late February was difficult to explain by vaccine booster as 
the vaccine-induced population immunity was still very low.   
                                                                                                                                                   
Impacts of individual interventions and weather factors 
Next, we assessed the impact of each significant NPI (see Table 1). Social distancing 
regulations were tightened three times. The first tightening (T1) was maintained from 
7 January until 10 February with the population mobility reduced by 26.4% on 
average since 1 February compared to the population mobility before the pandemic 
began in 2020. The second tightening (T2) was introduced on 10 February up to 23 
February with the mobility further to be reduced by 31.1% on average compared to 
the baseline level. The third tightening (T3) was introduced on 24 February, which 
allowed the population mobility reduced by 36.4% on average until 31 March. In 
addition to PCR test, since 26 February, RAT was allowed to be used for confirming 
infection.    
 
Model predicted that, among all major interventions, if only T1 was used, the 
proportion of cumulative infections increased from 39.0% to 58.2% (95%CI: 54.2-
61.5%) (Figure 4A). The subsequent implementation of T2 and T3 further reduced the 
proportion of cumulative infections to 49.1% (95%CI: 45.2-52.7%) and 44.5% 
(95%CI: 40.5-48.1%), respectively. The model estimated that about 19.1% (95%CI: 
17.7-20.5%) of infectious cases were detected by RAT. With the use of RAT, the 
proportion of cumulative infections further decreased to the estimated proportion.  
 
On the other hand, temperature was found to be associated with the force of infection 
significantly. The model estimated that an increase of 1°C was associated with a 
16.0% (95%CI 14.9 – 17.1) relative reduction in the force of infection and therefore 
𝑅𝑒 (see Figure 4C). The average increase of temperature from 15°C to 22°C between 
February and March (Figure 1C) was thus associated with 66% reduction in the 
transmissibility. One percent increase in relative humidity was associated with only a 
0.3% relative increase in the force of infection (Figure 4D). The average reduction of 
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relative humidity from 81% (February) to 77% (March) was thus associated with 
about only 1% reduction in the transmissibility. 
 
We further projected the total number of infections under different scenarios of 
weather conditions. Assuming that the relationship between weather conditions and 
force of infection held, if the coldest (8.5–10.7°C) and most humid (94–95% relative 
humidity) days (20 and 21 February 2022) were replaced by the average February 
daily mean temperature and relative humidity, the predicted cumulative infections 
reduced significantly to 28.2% (95%CI 25.0–31.5) (Figure 4B). If the weather in 
March were still maintained as the average February’s level, cumulative infections 
increased to 77.5% (95%CI 75.1–81.1)  up to the end of March (Figure 4B), which is 
similar as the prediction from the reduced model without weather effects (Figure 2F). 
 
In order to verify whether the sharp pattern of 𝑅𝑒 was affected by NPIs or 
vaccination, we further simulated 𝑅𝑒 after removing T2&T3, T3, RAT or vaccine 
boosters. We found that 𝑅𝑒 was generally similar with a moderate level of upward 
shift (Figure S6). To validate that weather was a key driver of the transmission, we 
simulated using the reduced model without weather effects. The peak of 𝑅𝑒 was then 
disappeared (Figure 2B).  
 
Required interventions for outbreak prevention 
Our simulation results showed that the COVID-19 transmission was not easy to be 
managed by social distancing, RAT and pre-existing vaccine booster in a cooler 
condition. For example, even with 80% booster coverage, mobility needs to be 
reduced at least 65% (Figure 5A), which was far higher than the actual average 
reduction in mobility observed during a more relaxed T1 period (26.4%) or a more 
tightened T3 period (36.4 %). Otherwise, RAT coverage (i.e. the percentage of cases 
that are detected by RAT) has to be greater than 60% during the more relaxed T1 
period (Figure 5C). 
 
In comparison, if the average weather conditions in March were assumed, 𝑅𝑒 of 
below 1 can be achieved without the uses of RAT when about one third of people had 
taken booster doses during the more tightened period (Figure 5B), meanwhile, 
without a surge on 𝑅𝑒. 10% RAT coverage allowed social distancing measures to 
relax as T1 (Figure 5D). 
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Discussion 
In countries and cities that have adopted a zero-Covid policy [3] [25], their low 
population immunity indicates high risks of infection and death. This study used 
Hong Kong, a densely populated city in southern China with low pre-existing booster 
coverage [6] as an example to assess the impacts of interventions and seasonal factors 
(temperature and humidity). 
 
Modelling results suggest that cold temperatures were associated with the sharp 
increase in transmissibility during the early Hong Kong’s fifth waves (Figure 1C, 2C 
and 4C). Although social distancing tightenings and vaccine booster posed important 
impacts on mitigation, temperatures were more likely to be the main factor to drive or 
contain the spread of the outbreak (Figure 4B, Figure S1). These results were 
validated after comparing the full model to the model without weather effects (Figure 
1). On the other hand, a very weak association between relative humidity and 𝑅𝑒 was 
found. The relationship between relative humidity and the transmissibility has been 
studied but with different conclusions [12][13][14][26].  
 
There are some explanations of the impact of lower temperature on disease 
transmission. First, the virus can be more stable at cold condition, which facilitates its 
transmission [27] [28]. Second, temperature may affect the immune responses of 
hosts, or moderate the interaction between the virus and host immune system [29]. 
Third, an alternative explanation is that people may spend more time indoors in cold 
days, which may increase the likelihood of indoor airborne transmission [30]. 
Possible mechanisms for temperature-dependent infectivity in SARS-CoV-2 has been 
discussed [10]. 
   
Policy Relevance 
We suggest that temperature pattern should be taken into account for making public 
health decisions, such as deciding the level of NPIs or the timing of booster doses. 
Our results (Figure 5AC) found that, if the local spread begins during a cold weather 
condition, the outbreak is likely to be extremely difficult to suppress (Re <1). Very 
high booster coverage (around 80%) combined with extremely strengthed social 
distancing (stronger than all tightenings introduced in the fifth wave) or frequent uses 
of RAT (e.g. more than half of the cases are detected by these kits) are required. If 
contact tracing cannot prevent initial transmission clusters from growing, high 
vaccine booster coverage with mass testing or regional lockdown seems to be 
unavoidable to suppress the Omicron outbreak. On the other hand, the outbreak is 
likely to become more manageable during warmer seasons.  
 
Additional doses or boosters are likely to be a standard part of the vaccination 
schedule, similar as the scenario seen for seasonal influenza [31]. Because of antibody 
waning, getting vaccinated too early before the next outbreak may result in insuffcient 
immunity when infections occur. As the current pandemic is likely to become 
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seasonal epidemics [32], having the additional doses at a ‘right’ timing (e.g. before 
winter) may be another important factor, in addition to the vaccine coverage, for 
reducing the total incidence. 
 
These findings are not implying that public health interventions are not important 
during warmer seasons. We suggest that seasonal temperature variation should be 
taken into account for policy making or model projection. For example, up to now 
(the middle of May 2022), even though social distancing measures have been relaxed 
more than previous T1 (mobility also increases to the level before the fifth wave) 
together with about only 50% booster coverage, cases are very limited (< 200 per 
day), which is consistent to our projection assuming warm conditions (Figure 5D).    
 
Limitations 
Some limitations exist in our study. First, the study mainly focus on the disease 
transmissibility while not explore the impact of vaccine or seasonal factors on disease 
severity. Second, the number of total infections may be underestimated since the 
proportion of cases that are underreported is largely unknown when the testing 
capacity is limited. Therefore, we attempted to capture the changes in underreporting 
and reporting delay in our modelling. Third, model validation may be sensitive to the 
assumption of the protectiveness of vaccine or natural infections. Here the data used 
in our study were based on a published empirical study without age stratification [7]. 
  
Conclusion 
A recent work has suggested a striking effect of temperature on the spread of COVID-
19 [10]. Here, we found that temperature was associated with a larger impact on the 
transmissibility than strict public health interventions without lockdown throughout a 
significant outbreak in a single city. Incorporating seasonal variation in temperature 
can improve the accuracy of modelling of SARS-CoV-2 transmission, which helps to 
find a balance between normal life and low health impact.  
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 Tables and Figures 
 
Table 1. Description of significant nonpharmaceutical interventions and their impacts 
on the infections. Predicted number of cumulative incidence resulting from T1 or T2 
was calculated assuming that after the end of each tightening, the mobility still 
maintained at the average level during its implemented period. 
 
NPIs Description Predicted 

cumulative 
infections 
(%) 

Effects 
(percent 
reduction 
in 
cumulative 
infections)  

First social 
distancing 
tightening 
(T1) 

§ From 7 January, the Government tightened social 
distancing measures to the same level as used at the 
epidemic peak time in the wave of the epidemic. A 
person must wear a mask all the time while on 
public transportation or in a specified public place 
[33].  

§ Mobility reduced to -26.4% on average between 01 – 
09 February. 

58.2 (54.2 
– 61.5) 

– 

Second 
tightening 
(T2; from 10 
February to 
23 February) 

§ From 10 February, the maximum number of people 
permitted for gatherings in public places was 
reduced from 4 to 2. The maximum number of 
persons per table in catering premises was 2 except 
for people presenting their vaccination records in 
certain premises [34]. 

§ Mobility reduced to -31.1% on average between 01 – 
23 February. 

49.1 (45.2 
– 52.7) 

15.6 (14.1 
– 17.1)  

Social 
distancing 
further 
tightening 
(T3; from 24 
February) 

§ Starting on 24 February 2022, all persons shall wear 
a mask in any public places. The maximum number 
of persons per table in catering premises was 
reduced to 2 [35]. 

§ Mobility further reduced to -36.4% on average 
between 24 February and 31 March. 

44.5 (40.5-
48.1) 
 

9.5 (8.7 – 
10.5)  
(23.6 (21.8 
– 25.6) if 
compared 
to T1) 

Adopting 
rapid antigen 
test 

§ Starting on 26 February, members of the public 
tested positive by RAT, whether distributed by the 
Government or on their own purchase, should be 
considered positive cases and they should take all 
necessary steps to avoid further spreading of the 
virus, including staying at home [4]. 

§ Distributing rapid test kits based on the risk levels of 
districts instead of issuing compulsory testing 
notices [5]. 

39.0 (36.7-
41.1) 

13.2 (11.4 
– 15.5) 
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Figure 1. Daily uncertainties of social distancing, vaccination and weather conditions 
were considered in the modelling process. (A) Factors that affect the number of 
reported cases detected, including daily uncertainties (i.e. vaccination, mobility and 
weather) and the uses of PCR and RAT. Reporting rates and delays are taken into 
account to allow the model output to compare to actual reported cases, detected by 
PCR (red) and RAT (yellow). (B) Left, modelling the change of susceptible 
individuals with different antibody titre levels after vaccination. 𝑆! represents the 
susceptible individuals having ith antibody titre level. Right, the relationship between 
antibody titre and susceptibility. (C) Daily booster vaccine rates, mobility, and 
weather conditions (such as daily mean temperature and relative humidity) throughout 
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the outbreak. Left, T1-3 represent individual social distancing tightenings. Right, 
dotted lines represent average weather conditions in February and dashed lines 
represents average values in March. 
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Figure 2. Predicted COVID-19 transmission dynamics of the fifth wave. (A) Predicted 
numbers of reported cases by the full model (solid blue line) and the reduced model 
(dotted blue line). (B) Corresponding 𝑅𝑒 of the two models over time. (C) Daily 
number of true infections (including undetected cases) predicted by the full model. 
Solid blue line represents the predicted number of daily infections. Red solid line 
represents the predicted number of daily reported cases. Red dashed line represents 
the predicted number of daily reported cases detected by PCR. Bars represent the 
daily numbers of reported cases detected by PCR (red) and RAT (yellow). (D) 
Cumulative infections (defined as the number of cumulative infections divided by 
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total population size). Individual lines and bars represent the data as (C) but as a 
percentage of the total population. (EF), same as (C) and (D) but the numbers are 
predicted by the reduced model. 
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Figure 3. Population immunity and the associated protectiveness. (A) The estimated 
pre-existing immunity (i.e. the distribution of antibody titers among the population) 
on 1 February, 2022. (B) Vaccine-induced population immunity at the predicted peak 
time of the fifth wave (23 February). (C) Seroprevalence (i.e. the percentage of people 
whose antibody titre ≥1:40) in susceptible individuals. (D) Changes in the proportion 
of susceptible individuals with each antibody titre level over time. 
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Figure 4. Predicted impacts of individual non-pharmaceutical interventions (NPIs) or 
changes in weather conditions on cumulative infections. (A) The predicted cumulative 
infections are plotted in the solid line (with all NPIs) and in the dotted lines (with 
different combinations of interventions). The triangles represent different start date of 
the interventions. (B) The predicted cumulative infections of all NPIs under different 
assumptions of weather conditions. Scenario 1: the coldest and most humidity days 
(20 and 21 February) are replaced by the average February daily mean temperature 
and mean relative humidity. Scenario 2: the weather conditions in March are replaced 
by the average February weather level. (C, D) The marginal effects of temperature 
and humidity on the force of infection. The red solid points represent the effects of 
average temperature (C) and average relative humidity (D) in February, and the blue 
circles represent the average temperature (C) and relative humidity (D) in March.  
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Figure 5.  The impacts of mobility and rapid antigen test on transmissibility with 
different pre-existing booster coverages and different weather conditions. (A) 𝑅𝑒  
plotted for a combination of percent reduction in mobility and booster coverage with 
an average weather condition in February without the uses of RAT. The upper dashd 
line (labeled as more tightened) represents the average mobility level when T3 was 
used. The lower dashed line (labeled as more relaxed) represents the average mobility 
level between 1 and 9 February, when T1 was used. (C) 𝑅𝑒 plotted for a combination 
of different coverage of RAT and vaccine booster with an average weather condition 
in February. T1 was used. The dashed line represents the model-estimated percentage 
of cases that are detected by RAT (19.1%). The second column, (B) and (D), shows 
the same data as (A) and (C) but with an average weather condition in March. In (A) 
and (B), the RAT coverage is set as 0. In (C) and (D), mobility is fixed as the average 
level during T1, as the more relaxed tightening. 
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