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Abstract 

The excitation/inhibition (E/I) ratio has been shown to be imbalanced in individuals 

diagnosed with autism (AT) or schizophrenia (SZ), relative to neurotypically 

developed controls (TD). However, the degree of E/I imbalance overlap between SZ 

and AT has not been extensively compared. Our main objectives were (1) to quantify 

group differences in the E/I ratio between TD, AT, and SZ, (2) to assess the potential 

of the E/I ratio for differential diagnosis, and (3) to verify the replicability of our 

findings in a second, independently-acquired dataset. For each participant, we 

computed the Hurst exponent (H), an indicator of the E/I ratio, from the timecourses 

of 53 independent components covering the entire brain. Using Random Forest (RF), 

we ran a classification analysis using the largerof the two datasets (exploratory 

dataset; 519 TD, 200 AT, 355 SZ) to determine which of the 53 H would yield the 

highest performance in classifying SZ and AT. Next, taking the ten most important H 

from the exploratory dataset and the clinical and phenotypic information collected in 

the replication dataset (55 TD, 30 AT, 39 SZ), we used RF to compare classification 

performance using five feature sets: (a) H only; (b) Positive and Negative Syndrome 

Scale (PANSS) and the Autism Diagnostic Observation Schedule (ADOS) only; (c) 

PANSS, ADOS, Bermond–Vorst Alexithymia Questionnaire (BVAQ), Empathy 

Quotient (EQ), and IQ; (d) H, PANSS and ADOS; (e) H, PANSS, ADOS, BVAQ, EQ 

and IQ. Classification performance using H only was higher in the exploratory 

dataset (AUC = 84%) compared to the replication dataset (AUC = 72%). In the 

replication dataset, the highest classification performance was obtained when 

combining H with PANSS, ADOS, BVAQ, EQ and IQ (i.e., model e; AUC = 83%). 
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1. Introduction 

Autism (AT) and schizophrenia (SZ) have been recognized as independent 

diagnoses since the 1970s (APA, 2013). While AT is primarily characterized by 

distinct patterns of social communication, and repetitive behaviors, a SZ diagnosis 

consists of positive (e.g., hallucinations, delusions) and negative (e.g., social 

withdrawal) symptoms. They also show different onset trajectories (i.e., AT becomes 

apparent in early childhood, while SZ onset usually occurs in late adolescence or 

early adulthood), albeit a progression from AT to SZ cannot be excluded (Hsu 2022).  

However, the heterogeneity of both diagnostic categories (Benkarim et al., 2022; 

Segal et al., 2023) and their phenotypic overlap (Kästner et al., 2015) can hinder 

accurate psychiatric diagnosis. More precisely, AT and SZ co-occur in approximately 

4% of cases (Lai et al., 2019), and share both social (Oliver et al., 2020) and 

sensory-motor functioning patterns (Du et al., 2021). Differential diagnosis is 

additionally hindered by the fact that the common clinical observational and 

interviews to assess diagnosis-specific symptoms, such as the Autism Diagnostic 

Observation Schedule (ADOS) and the Positive and Negative Syndrome Scale 

(PANSS), do not have good specificity (Bastiaansen et al., 2011; Trevisan et al., 

2020). The overlap between SZ and AT has led to inquire about the underlying 

neural mechanisms, and whether these might aid in differential diagnosis (Horien et 

al., 2022). A recent international machine learning competition aimed to classify AT 

and typically developed (TD) showed that fMRI data can yield a classification 

accuracy of ~ 80% (Traut et al., 2022). Classification accuracies based on structural 

or functional MRI data can be just as high when distinguishing SZ from TD (de 

Filippis et al-2022). However, the challenge is greater when tackling diagnosis 
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overlap of heterogeneous nosological categories, such as AT and SZ, that share 

both genetic variants and neuroimaging patterns (Moreau et al., 2021).  

One potential brain-based marker is the excitation/inhibition (E/I) ratio, that has been 

shown to be different in both AT and SZ compared to TD. This is based on the 

concerted activity of mostly glutamatergic (i.e., excitatory) and GABAergic (i.e., 

inhibitory) neurons. The former are the most numerous and project throughout the 

entire brain, while the latter are fewer and synapse locally (for a comprehensive 

account of excitatory and inhibitory activity balance in the human brain, see Tatti et 

al., 2017). A way to estimate the E/I ratio in humans based on non-invasive 

measures, such as resting state fMRI (rsfMRI), is by computing the Hurst (H) 

exponent from the acquired timeseries; an increased H values indicates a decreased 

E/I ratio, and vice-versa (for a review see Campbell & Weber, 2022). 

In AT, Rubenstein & Merzenich (2003) first hypothesized that observed sensory 

processing patterns may result from an increased E/I ratio. Among the evidence they 

cite is the fact that parietal and cerebellar areas show ~50% less glutamic acid 

decarboxylase (GAD), the enzyme that synthesizes the inhibitory neurotransmitter γ -

aminobutyric acid (GABA) in AT compared to TD (Fatemi et al., 2002). Additionally, 

cortical minicolumns, which are functional units composed of GABAergic and 

glutamatergic neurons processing thalamic inputs, are smaller and more numerous 

in AT compared to TD (Casanova et al., 2002). A more recent summary specifically 

points towards the impact of reduced inhibition on cortical and hippocampal 

functioning in AT (Sohal & Rubenstein, 2019). Whether this E/I imbalance is mainly 

due to excessive excitatory activity, or deficient inhibitory activity, is not entirely clear 

(Dickinson, Jones & Milne, 2016; Ford & Crewther, 2016), but recent evidence points 

to the E/I imbalance in AT being caused by concomitant effect (see Canitano & 
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Palumbi, 2021). Finally, direct evidence for the contribution of an E/I imbalance in AT 

comes from a study using bumetanide (i.e., a selective NKCC1 chloride importer 

antagonist, which decreases depolarizing GABA action, to reduce the E/I ratio) in a 

large cohort of AT children (Juarez-Martinez et al., 2023). These authors reported a 

decrease in repetitive behaviors following a 91-day bumetanide trial. Another direct 

link between sensory processing and GABAergic activity in AT has been provided by 

Huang et al. (2023). These authors used arbaclofen, a GABA type B receptor 

agonist, to show that auditory repetition suppression was negatively impacted by the 

drug in TD, but improved in AT. 

In SZ, the E/I ratio has also been reported to be imbalanced compared to TD.  Post-

mortem and genetic evidence (Anticevic & Lisman, 2017), and computational 

modeling revealed that this imbalance causes hyperconnectivity in association brain 

areas (Yang et al., 2016). In addition, a review has shown a link between an E/I 

imbalance and aberrant internal sensory processing in SZ, such as hallucinations 

(Jardri et al., 2016). Finally, dopamine appears to be crucial in maintaining the E/I 

balance by modulating the excitability of glutamate and GABAergic neurons, thus 

contributing crucially to the E/I ration in SZ (Purves-Tyson et al., 2021). 

Dopaminergic activity, in concerted action with glutamatergic and GABAergic activity, 

when disrupted, can directly impact memory function and prefrontal connectivity in 

SZ (please see Winterer & Weinberger, 2004, for an extended account). 

Supporting evidence in favor of an E/I imbalance in AT and SZ has been 

corroborated by animal models and post-mortem human studies, as well as by 

experimental, genetic, and magnetic resonance spectroscopy studies (MRS) (for a 

comprehensive review, please see Dickinson et al., 2016). It has been proposed that 

there are common neuronal pathways underlying E/I imbalance in both AT and SZ 
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(Canitano & Pallagrosi, 2017; Foss-Feig et al., 2017), and that this relies in turn on 

shared genotype (Gao & Penzes, 2015). However, given the substantial 

heterogeneity in both AT and SZ (e.g., Segal et al., 2023), it is difficult to ascertain to 

which extent there is overlap between the two diagnoses. 

In recent years, various machine learning approaches have been employed to 

improve differential diagnosis of mental disorders (Cho et al., 2019). Among these, 

interpretable models, such as Random Forest (RF), have become increasingly 

popular due to their transparency, as opposed to the traditional “black box” methods, 

such as support vector machine (Murdoch et al., 2019; Rudin, 2019).  A trade-off 

between high interpretability and high accuracy is usually considered when opting for 

a particular classification approach, as highly accurate classifiers usually provide 

little if any transparency. Among interpretable approaches, RF stands out as an 

algorithm that can provide both high accuracy and reasonable interpretability 

(Bhattacharya, 2022). In addition, it can also be used for feature selection based on 

feature importance in an out-of-sample classification, as we did in the current project 

(Speiser et al. (2019).  

To assess the role of clinical vs. E/I ratio data in classifying AT and SZ, we used two 

independent datasets and five distinct sets of features (i.e., classification models) 

comprising phenotypic and clinical assessment scores, the E/I ratio (as indexed by 

the H exponent) of multiple brain areas, or both. To quantify the E/I ratio based on 

rsfMRI timeseries, we computed the H of 53 predefined functional brain areas, based 

on the Neuromark templates (Du et al., 2020). The H exponent has been refined as 

a reliable computational approximation of synaptic E/I based on extensive 

physiological and in silico studies, (e.g., Trakoshis et al., 2020). For the clinical 

features we focused on core symptoms assessments: ADOS — measuring AT-
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related social and communication functioning, and PANSS — measuring SZ-related 

positive (e.g. delusions, hallucinations) and negative (e.g., social withdrawal) 

symptoms, and general psychopathology (e.g., attention deficits), an IQ estimate, 

and two social cognitive measures: EQ — measuring empathy, and BVAQ — 

measuring alexithymia, both of which have been shown to be different in AT and SZ 

compared to TD (van’t Wout et al., 2007; Warrier et al., 2018; Kinnaird, Stewart & 

Tchanturia, 2019). Two rsfMRI datasets were used to test replicability. The first 

dataset included data from publicly available repositories of either AT or SZ data, 

and included a relatively large dataset (Du et al., 2022). The second dataset was 

collected on-site, and included the above-mentioned clinical and phenotypic 

measures in a smaller dataset. We therefore only tested the out-of-sample 

replicability of the E/I-based classification model. We believe the use of both 

datasets holds important advantages. The replication dataset, while consisting of 

fewer participants, contains both rsfMRI and phenotypic and clinical data. In addition, 

the AT, SZ and TD in this dataset were collected in the same setting, which 

precludes the risk of site-related confounds. The larger, exploratory dataset was 

obtained by sourcing datasets from different online repositories, namely the Autism 

Brain Imaging Data Exchange (ABIDE I and II) for AT, and the Bipolar-Schizophrenia 

Network on Intermediate Phenotypes (B-SNIP), the Center for Biomedical Research 

Excellence (COBRE), the Maryland Psychiatric Research Center (MPRC), and the 

Function Biomedical Informatics Research Network (FBIRN) for SZ. These datasets 

had been acquired at various sites with different scanning parameters, and clinical 

and phenotypical data was also not uniformly available across sites and clinical 

groups. While this prevented us for doing a full exploration of all the classification 

models that we were able to test using the smaller dataset, it allowed us to, 1) 
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reduce model complexity and increase model stability (Schultz et al., 2022) in the 

smaller replication dataset by using only the most important H features (i.e., brain 

regions) from the larger exploratory dataset, and 2) demonstrate the replicability of 

the results of this model.   

 

2. Methods 

2.1. Participants 

Two independent datasets were used in the current project. An exploratory dataset 

(Exploratory), based on several publicly-available online datasets (described below), 

and an internally-collected replication dataset (Replication). 

For the Exploratory dataset, we analyzed 519 TD (362 males & 157 females; mean 

age = 28.49 ± 7.68), 200 AT (180 males & 20 females; mean age = 24.74 ± 6.6), and 

355 SZ (245 males & 110 females; mean age = 30.91 ± 7.95) from the previously 

preprocessed and harmonized dataset used in Du et al. (2022). The participants in 

Du et al. (2022) had been selected from several data repositories: the AT from 

ABIDE1 and ABIDE2, and the SZ from BSNIP, COBRE, FBIRN, and MPRC_PK. 

From the dataset of Du et al. (2022), we chose a subset of participants that closely 

matched the age (18-35 y.o.) and intelligence quotient (IQ) of the Replication 

dataset. Note that an estimated IQ > 75 criterion was chosen because it was the 

inclusion threshold in the BSNIP dataset, where no IQ values were recorded. 

Because some of the data from the Replication dataset had been previously 

submitted to data repositories (e.g., ABIDE1) from which the dataset of Du et al. 

(2022) had been drawn, we ensured that no participants were included in both the 
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Exploratory and Replication datasets, by excluding them from the Exploratory 

dataset. 

For the Replication dataset, participants were recruited via the Olin Neuropsychiatry 

Research Center (ONRC) and the Yale University School of Medicine and 

underwent resting state fMRI (rsfMRI) scanning for the current study. We discarded 

participants with head motion > 10 mm, and those with incomplete phenotypic 

assessment information, resulting in a final dataset consisting of 55 TD (26 males & 

29 females; mean age = 23.86 ± 3.65), 30 AT (25 males & 5 females, mean age = 

22.33 ± 3.78), and 39 SZ (31 males & 8 females, mean age = 25.66 ± 3.53). The 

Replication dataset has been previously used by Hyatt et al. (2020, 2021) and 

Rabany et al. (2019), and the exclusion criteria we used here were the same: 

intellectual disability (i.e., estimated IQ < 80), neurological disorder (e.g., epilepsy), 

current drug use as indicated by pre-scanning interview and urine test, 

incompatibility with MRI safety measures (e.g., metal implants), and a history of 

psychiatric diagnoses in TD.  

 

2.2. Clinical and phenotypical assessment 

Clinical and phenotypic data was collected from the Replication dataset, but was not 

consistently available for the Exploratory dataset. The clinical assessment focused 

on assessing psychotic and autistic features. The severity of psychotic symptoms 

was assessed using the Positive and Negative Syndrome Scale (PANSS; Kay et al., 

1987) in both the AT and SZ group. The PANSS scores can be interpreted along 

three subscales: positive symptoms, reflecting the severity of hallucinations and 

delusions; negative symptoms, reflecting the severity of blunted affect and 
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anhedonia, and a general subscale quantifying other psychopathology such as poor 

attention and lack of insight. The ADOS, module 4 (Lord et al., 2000) was 

administered to all participants and the total score was used in this study to confirm 

or rule out an autism diagnosis and quantify autistic social communication 

characteristics. The Structured clinical interview for DSM-IV-TR Axis I disorders 

(SCID; First & Gibbon, 2004) to confirm a SZ diagnosis and the absence of any Axis 

I diagnoses in TD. Estimated IQ was calculated for the entire dataset using the 

Vocabulary and Block Design subtests of the Wechsler Scale of Adult Intelligence-III 

(WAIS-III; Wechsler, 1997; Sattler and Ryan, 1999). Additionally, all participants 

completed the Empathizing Quotient (EQ; Wakabayashi, Baron-Cohen & 

Wheelwright, 2006) which measures general empathy including both the affective 

and cognitive empathy components; the Bermond–Vorst Alexithymia Questionnaire 

(BVAQ; Vorst & Bermond, 2001), whose subscores are computed along five distinct 

dimensions: “verbalizing” reflects one’s propensity to talk about one’s feelings; 

“identifying” reflects the extent to which one is able to accurately define one’s 

emotional states; “analyzing” quantifies the extent to which one seeks to understand 

the reason for one’s emotions; “fantasizing” quantifies one’s tendency to day-dream, 

and “emotionalizing” reflects the extent to which a person is emotionally aroused by 

emotion-inducing events.  Descriptive statistics and group comparisons of the clinical 

and phenotypic data are given in Table 1.   
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Table 1. Means and standard deviations (in parentheses) of demographics, phenotypic and clinical 

scores for all three groups of the Replication dataset: est. IQ = estimated Intelligence Quotient; EQ = 

Empathy Quotient; ADOS = Autism Diagnostic Observation Schedule module 4; BVAQ = Bermond–

Vorst Alexithymia Questionnaire; FD = framewise displacement. Group statistics are shown in the last 

four columns. Pairwise comparisons were performed using Welch two-samples t test. Both 

uncorrected (i.e., p) and false discovery rate corrected (i.e., pFDR) p values are shown. 

 TD AT SZ AT v. SZ v. TD AT > TD AT > SZ TD > SZ 

 

Males/Females 

 

26/29 25/5 31/8 χ2(2) = 15.8, 

<.001 

 

χ2(1) = 9.1,  

.003 

 

χ2(1) = 0.01,  

.9 

 

χ2(1) = 8.62, 

.003 

 

    F(2, 121), p t(df), p, pFDR t(df), p, pFDR t(df), p, pFDR 

 

FD 0.08 

(0.03) 

0.09 

(0.04) 

0.11 

(0.1) 

5.23, .007 2.52 (66.6), 

.014, .03 

-0.772 (69.6), 

.443, .52 

-2.71 (54.3), 

.009, .01 

Age 23.86 

(3.73) 

22.33 

(3.74) 

25.66 

(3.58) 

8.31, < .000 -1.98 (79.8), 

.051, .08 

-4.06 (76.9), 

<.001, 0 

-2.46 (88), .016, 

.02 

est. IQ 112.26 

(14.62) 

109.1 

(15.21) 

99.41 

(13.34) 

9.366, <.001 -1.33 (82.8), 

.186, .27 

3.26 (77), .002, 

.01 

4.97 (90.5), 

<.001, 0 

EQ 49 

(10.28) 

33.57 

(11.1) 

39.8 

(12.26) 

22.37, <.001 -6.73 (72.2), 

<.001, 0 

-2.50 (73.9), 

.015, .03 

3.65 (72.2), 

<.001, 0 

ADOS Total 1.87 

(1.45) 

10.1 

(2.61) 

8.41 

(5.26) 

78.26, < .000 17.5 (52.2), 

<.001, 0 

1.67 (58.8), .72, 

.78 

-7.62 (44.2), 

<.001, 0 

BVAQ 

Verbalizing 

 

18.55 

(5.51) 

22.2 

(4.54) 

22 

(5.03) 

7.02, .001 3.07 (81.4), 

.003, .01 

-0.0571 (75.1), 

.955, .96 

-3.22 (90.4), 

.002, 0 

BVAQ 

Fantasizing 

19.69 

(5.12) 

 

17.9 

(6.03) 

21.36 

(5.48) 

4, .02 -1.17 (73.5), 

.247, .31 

-2.72 (75.2), 

.008, .02 

-1.88 (82.8), 

.064, .07 

BVAQ 

Identifying 

 

15.53 

(4.82) 

18.57 

(6.4) 

20.41 

(4.96) 

10.43, <.001 2.59 (63), .012, 

.03 

-1.29 (68.2), 

.203, .29 

-4.79 (85.2), 

<.001, 0 

BVAQ 

Emotionalizing 

 

22.38 

(3.74) 

21.83 

(3.51) 

22.56 

(4.2) 

0.6, .55 -0.810 (81.4), 

.421, .47 

-1.07 (74), .289, 

.38 

-0.389 (77.9), 

.698, 7 

BVAQ 

Analyzing 

 

17.91 

(4.43) 

18.47 

(4.27) 

19.9 

(4.5) 

2.81, 0.6 0.576 (81.9), 

.566, .57 

-1.62 (76), .11, 

.18 

-2.27 (85.4), 

.026, .03 
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PANSS 

Positive 

 

 12.1 

(2.86) 

15.36 

(4.86) 

  -3.88 (66.96), 

<.001, 0 

 

PANSS 

Negative 

 

 15.57 

(4.7) 

19.26 

(6.2) 

  -2.644 (72.75), 

.01, .02 

 

PANSS 

General 

 

 26.7 

(5.62) 

31.59 

(6.98) 

  -3.716 (73), 

<.001, 0 

 

 

 

2.3. Imaging data acquisition and preprocessing 

The preprocessing steps of the rsfMRI data, using the SPM toolbox, of the 

Exploratory dataset were extensively described in Du et al. (2022). In short, the first 

few volumes were discarded, then rigid-body motion correction and slice-timing 

correction were performed. Finally, the data were normalized, resampled to 3 mm3 

isotropic voxels, and smoothed with a 6 mm FWHM Gaussian kernel. Prior to 

preprocessing, the effects of age, gender, site acquisition, and interactions between 

age and site, and gender and site were regressed from the gray matter volumes of 

each voxel, to ensure between-site harmonization; this procedure was detailed in Du 

et al. (2022). 

For the Replication dataset, rsfMRI scans lasted 7.5 min and were collected using a 

Siemens Skyra 3 T scanner at the ONRC. Participants lay still, with eyes open, while 

fixating a centrally presented cross. Blood oxygenation level dependent (BOLD) 

signal was obtained with a T2*-weighted echo planar imaging (EPI) sequence: TR 

= 475 ms, TE = 30 ms, flip angle = 60 deg, 48 slices, multiband (8), interleaved slice 

order, 3 mm3 voxels. Neuroimaging data were preprocessed using SPM8 

(www.fil.ion.ucl.ac.uk/spm/software/spm8/). Each dataset was realigned to the first 
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T2* image using the INRIAlign toolbox (https://www-

sop.inria.fr/epidaure/Collaborations/IRMf/INRIAlign.html), coregistered to their 

corresponding high signal-to-noise single-band reference image (sbREF; Glasser et 

al., 2013), spatially normalized to the Montreal Neurological Institute (MNI) standard 

template (Friston et al., 1995), and spatially smoothed (6 mm3). Finally, framewise 

displacement (FD) motion parameters were computed according to the FSL library 

algorithm (Jenkinson et al., 2012), and the mean FD value for each run was used as 

a covariate in group analyses.  

 

2.4. Data analysis 

For both the Exploratory and Replication dataset, we ran a fully automated 

independent component analysis (ICA) on the preprocessed fMRI data using the 

Group ICA for fMRI Toolbox (GIFT v4.0c; https://trendscenter.org/software/gift/; 

Calhoun et al., 2001) to define functional brain regions. The 53 replicable 

independent component (IC) templates from the NeuroMark pipeline (Du et al., 

2020) were used to estimate participant-specific, spatially-independent components 

using a spatially-constrained ICA algorithm (Du et al., 2018). A complete list of the 

NeuroMark IC templates, arranged into seven functional domains, and peak MNI 

coordinates for each IC template are given in Table 2 and illustrated in Supplement 

Figure 1. After detrending and despiking using 3dDespike (AFNI, 1995), we 

extracted one Hurst exponent (H), an estimate of the E/I ratio, from each of the 

resulting 53 IC timecourses of each participant. 

We estimated H using the nonfractal MATLAB toolbox 

(https://github.com/wonsang/nonfractal ; You et al., 2012). Specifically, we used the 
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function bfn_mfin_ml.m with the “filter” argument set to “haar” and the “ub” (upper 

bound) and “lb” (lower bound) arguments set to [1.5,10] and [-0.5,0], respectively, as 

previously recommended by Trakoshis et al. (2020).  

All the other statistical analyses were performed with R 4.1.1. These included a one-

way analysis of covariance (ANCOVA), Tuckey post-hoc, and two-sided two-sample 

Welch t tests.  

 

Classification/Discriminant Analyses  

A crucial aspect of classification algorithms in neuroimaging is sample size. It has 

been shown that larger sample sizes lead to more accurate estimates when brain-

behavior relationships are investigated via traditional statistical approaches (Marek 

et al., 2022). While this seems to be generally true also for machine learning (Schultz 

et al., 2022), the relationship between sample size and classification accuracy does 

not appear to be entirely linear (e.g., Flint et al., 2021). For this reason, in the current 

project, we established the initial classification accuracy of our brain-based 

classification model in the largest of our two datasets. 

First, using the Exploratory dataset, we classified the AT and SZ participants using a 

random forest (RF) algorithm, as implemented in the Interpretable Artificial 

Intelligence (IAI) toolbox (https://www.interpretable.ai/) and accessed through R 

4.2.1 (R Core Team, 2018). The feature set consisted of the 53 H exponents of each 

participant. We ran 100 randomized sample splits and averaged the model 

performance metrics that we obtained for each of the splits to obtain a final 

classification performance index (i.e., area under the curve/AUC, sensitivity and 

specificity). From each group, with each new split, 50% of the data was randomly 
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allocated to the test, and the rest to the train group. We used the AT sample as 

reference for calculating sensitivity and specificity. Following the classification, we 

selected the 10 ICs with the highest feature importance of H (figure/table x) as a 

simplified feature set for use in RF classification of the Replication dataset in the next 

step. Next, using the Replication dataset, we classified the AT and SZ participants 

using the same algorithm and toolbox, with 100 splits and 50% randomized 

allocation of data into the train and test groups. Five models were used for the RF 

classification in this case, containing the following features: (a) E/I model: the H only 

values of the 10 ICs ranked as most important by the RF classification in the 

Exploratory dataset; (b) symptoms only model: PANSS 3 factor scores and ADOS 

total scores; (c) symptoms and cognitive model: PANSS, ADOS, EQ, BVAQ, and IQ 

scores; (d) E/I and symptoms model: the 10 H from model (a) plus the PANSS and 

ADOS scores, and (e) E/I, symptoms and cognitive model: the 10 H from model (a) 

plus the PANSS, ADOS, EQ, BVAQ, and IQ scores. Similar to the previous step, we 

used the AT sample as reference to calculate sensitivity and specificity, and each 

final model performance index (i.e., AUC, sensitivity and specificity) was obtained by 

averaging the respective model performance metric over the 100 sample splits. 

Misclassification for each participant for each model was calculated as the ratio of 

number of times each participant was misclassified, to the total times s/he was 

allocated to a test set. 

 

3. Results 

3.1. Group differences in demographic, clinical and phenotypic assessment 
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In the Exploratory dataset, there were significant group differences differences on 

age (F (2) = 42.45, p < .001), and sex distribution (χ2 (2) = 35.156, p <.001).  

Data for the Replication dataset, including statistical tests, are presented in Table 1. 

There were significant differences in estimated IQ, age, sex and FD, and therefore 

these parameters were used as covariates in further group analyses. Regarding core 

symptom assessments, the AT and SZ groups did not significantly differ in their 

social and communication skills, as indicated by the ADOS scores, but the PANSS 

scores on all three domains (i.e., positive and negative symptoms, and general 

psychopathology) were significantly elevated in SZ compared to AT. For social tasks, 

BVAQ-Fantasizing was significantly decreased in AT compared to SZ. Empathy was 

significantly decreased in both AT and SZ compared to TD, and in AT compared to 

SZ.  

3.2. Group differences in H in the Exploratory dataset 

The ANOVA results testing group differences in H values are given in Table 2. While 

all areas showed significant group differences, the largest effect size (i.e., η2 >= 

0.06) was found for: the paracentral lobule (i.e., ICs no. 10 and 13; belonging to the 

Sensorimotor domain), the calcarine gyrus, middle occipital gyrus, fusiform gyrus, 

and inferior occipital gyrus (i.e., ICs no. 17, 18, 20, 23; in the Visual network), the 

insula, and the superior, middle and right inferior frontal gyrus (i.e., ICs no. 27, 30, 

31, 35; in Cognitive control domain), the precuneus and anterior cingulate cortex 

(i.e., IC no. 43, 44, 47; Default Mode network), and one area of the Cerebellar 

domain (i.e., IC no. 50). 

Table 2. Group differences in Hurst exponent (H) per component, in the Exploratory dataset, 

computed using ANCOVA with age and sex as covariates. Multiple comparison correction of the 

ANCOVA p values was performed using false discovery rate (fdr). The ANCOVA effect size was 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 29, 2023. ; https://doi.org/10.1101/2022.05.24.22275531doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.24.22275531
http://creativecommons.org/licenses/by-nc-nd/4.0/


calculated using partial η2. Post hoc tests were ran using Tukey’s HSD Test for multiple comparisons 

with C.I. = 95%. 

* p < .05; ** p < .01; *** p < .001 

 

  Adjusted H mean (SE)   

IC no.  
  

[X Y Z] MNI coordinates 

TD AT SZ F  

(2, 1069) 

p pfdr ηp2  Post hoc 

  

SUBCORTICAL DOMAIN 

 

 

 

1 Caudate 1 

[6.5      10.5     5.5] 

0.57  

(0.01) 

0.59 

(0.02) 

0.49 

(0.01) 

16.34 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

2 Subthalamus/ 

hypothalamus 

[-2.5    -13.5   -1.5] 

0.77 

(0.01) 

0.78 

(0.02) 

0.68 

(0.01) 

15.33 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

3 Putamen  

[-26.5    1.5     -0.5]    

0.88 

(0.01) 

0.89 

(0.02) 

0.81 

(0.01) 

11.45 <.001 0 0.02 AT > SZ ** 

TD > SZ *** 

4 Caudate 2 

[21.5      10.5   -3.5] 

0.57 

(0.01) 

0.58 

(0.02) 

0.5 

(0.01) 

13.8 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

5 Thalamus  

[-12.5   -18.5  11.5] 

0.91 

(0.01) 

0.89 

(0.02) 

0.81 

(0.01) 

13.96 <.001 0 0.03 AT > SZ ** 

TD > SZ *** 

  

AUDITORY DOMAIN 

 

 

 

6 Superior temporal 

gyrus  

[62.5      -22.5     

7.5] 

0.55 

(0.01) 

0.56 

(0.02) 

0.47 

(0.01) 

16.5 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

7 Middle temporal 

gyrus  

[-42.5     -6.5    10.5] 

0.7 

(0.01) 

0.71 

(0.02) 

0.63 

(0.01) 

15.3 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

  

SENSORIMOTOR DOMAIN 

 

8 Postcentral gyrus 1 

[56.5      -4.5     

28.5] 

0.91 

(0.01) 

0.87 

(0.02) 

0.82 

(0.01) 

11.39 <.001 0 0.02 TD > SZ *** 

9 Left postcentral 

gyrus 

0.83 

(0.01) 

0.82 

(0.02) 

0.74 

(0.01) 

15.1 <.001 0 0.03 AT > SZ ** 

TD > SZ *** 
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[-38.5    -22.5   56.5] 

10 Paracentral lobule 1 

[0.5      -22.5     

65.5] 

0.62 

(0.01) 

0.7 

(0.02) 

0.54 

(0.01) 

37.2 <.001 0 0.07 AT > SZ *** 

TD > SZ *** 

TD < AT *** 

11 Right postcentral 

gyrus  

[38.5     -19.5    

55.5] 

0.84 

(0.01) 

0.81 

(0.02) 

0.76 

(0.01) 

12.71 <.001 0 0.02 AT > SZ * 

TD > SZ *** 

12 Superior parietal 

lobule  

[-18.5    -43.5   65.5] 

0.94 

(0.01) 

0.91 

(0.02) 

0.86 

(0.01) 

21.81 <.001 0 0.02 AT > SZ * 

TD > SZ *** 

13 Paracentral lobule 2 

[-18.5    -9.5     56.5] 

0.62 

(0.01) 

0.65 

(0.02) 

0.52 

(0.01) 

30.66 <.001 0 0.05 AT > SZ *** 

TD > SZ *** 

 

14 Precentral gyrus  

[-42.5    -7.5     46.5] 

0.53 

(0.01) 

0.57 

(0.02) 

0.46 

(0.01) 

20.65 <.001 0 0.04 AT > SZ *** 

TD > SZ *** 

 

15 Superior parietal 

lobule  

[20.5     -63.5    

58.5] 

0.94 

(0.01) 

0.92 

(0.02) 

0.83 

(0.01) 

19.98 <.001 0 0.04 AT > SZ *** 

TD > SZ *** 

 

16 Postcentral gyrus 2 

[-47.5    -27.5   43.5] 

0.9 

(0.01) 

0.88 

(0.02) 

0.8 

(0.01) 

16.37 <.001 0 0.03 AT > SZ ** 

TD > SZ *** 

 

  

VISUAL DOMAIN 

 

17 Calcarine gyrus  

[-12.5     -66.5    8.5] 

0.68 

(0.01) 

0.74 

(0.02) 

0.61 

(0.01) 

26.43 <.001 0 0.05 AT > SZ *** 

TD > SZ *** 

TD < AT ** 

18 Middle occipital 

gyrus  

[-23.5     -93.5   -0.5] 

0.75 

(0.01) 

0.78 

(0.02) 

0.63 

(0.01) 

32.1 <.001 0 0.06 AT > SZ *** 

TD > SZ *** 

 

19 Middle temporal 

gyrus  

[48.5      -60.5   

10.5] 

0.57 

(0.01) 

0.63 

(0.02) 

0.51 

(0.01) 

17.72 <.001 0 0.03 AT > SZ ** 

TD > SZ *** 

TD < AT *** 

20 Cuneus 

[15.5      -91.5   

22.5] 

0.92 

(0.01) 

0.89 

(0.02) 

0.84 

(0.01) 

12.77 <.001 0 0.02 AT > SZ * 

TD > SZ *** 

 

21 Right middle 

occipital gyrus  

[38.5      -73.5     

6.5] 

0.81 

(0.01) 

0.81 

(0.02) 

0.73 

(0.01) 

18.59 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

 

22 Fusiform gyrus  

[29.5     -42.5  -12.5] 

0.59 

(0.01) 

0.66 

(0.02) 

0.53 

(0.01) 

30.33 <.001 0 0.05 AT > SZ *** 

TD > SZ *** 

TD < AT *** 
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23 Inferior occipital 

gyrus  

[-36.5     -76.5   -4.5] 

0.81 

(0.01) 

0.85 

(0.02) 

0.74 

(0.01) 

21.21 <.001 0 0.04 AT > SZ * 

TD > SZ *** 

TD < AT *** 

24 Lingual gyrus  

[-8.5       -81.5   -4.5] 

0.54 

(0.01) 

0.53 

(0.02) 

0.49 

(0.01) 

6.01 <.00 0 0.01 TD > SZ *** 

 

25 Middle temporal 

gyrus  

[-44.5     -57.5   -7.5] 

0.68 

(0.01) 

0.72 

(0.01) 

0.64 

(0.01) 

10.61 <.001 0 0.02 AT > SZ *** 

TD > SZ ** 

  

COGNITIVE CONTROL DOMAIN 

 

26 Inferior parietal 

lobule 1 

[45.5    -61.5     

43.5] 

0.55 

(0.01) 

0.57 

(0.02) 

0.48 

(0.01) 

15.68 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

27 Insula  

[-30.5    22.5     -3.5] 

0.78 

(0.01) 

0.8 

(0.02) 

0.68 

(0.01) 

24.6 <.001 0 0.04 AT > SZ *** 

TD > SZ *** 

28 Superior medial 

frontal gyrus  

[-0.5      50.5     

29.5] 

0.66 

(0.01) 

0.73 

(0.02) 

0.61 

(0.01) 

15.35 <.001 0 0.03 AT > SZ *** 

TD > SZ ** 

TD < AT ** 

29 Inferior frontal gyrus 

[-48.5    34.5     -0.5] 

0.59 

(0.01) 

0.64 

(0.01) 

0.54 

(0.01) 

16.97 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

TD < AT * 

30 Right inferior frontal 

gyrus  

[53.5     22.5     

13.5] 

0.64 

(0.01) 

0.67 

(0.02) 

0.54 

(0.01) 

32.12 <.001 0 0.06 AT > SZ *** 

TD > SZ *** 

31 Middle frontal gyrus  

[-41.5    19.5     

26.5] 

0.62 

(0.01) 

0.67 

(0.01) 

0.54 

(0.01) 

31.87 <.001 0 0.06 AT > SZ *** 

TD > SZ *** 

TD < AT ** 

32 Inferior parietal 

lobule 2 

[-53.5    -49.5   43.5] 

0.91 

(0.01) 

0.92 

(0.02) 

0.85 

(0.01) 

12.5 <.001 0 0.02 AT > SZ *** 

TD > SZ *** 

33 Left inferior parietal 

lobule  

[44.5    -34.5     

46.5] 

0.79 

(0.01) 

0.82 

(0.01) 

0.73 

(0.01) 

16.95 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

34 Supplementary 

motor area  

[-6.5      13.5     

64.5] 

0.55 

(0.01) 

0.55 

(0.02) 

0.49 

(0.01) 

9.14 <.001 0 0.02 AT > SZ ** 

TD > SZ *** 

35 Superior frontal 

gyrus  

[-24.5     26.5    

49.5] 

0.6 

(0.01) 

0.69 

(0.02) 

0.52 

(0.01) 

42.94 <.001 0 0.07 AT > SZ *** 

TD > SZ *** 

TD < AT *** 
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36 Middle frontal  

gyrus 1 

[30.5      41.5    

28.5] 

0.6 

(0.01) 

0.62 

(0.02) 

0.52 

(0.01) 

19.83 <.001 0 0.04 AT > SZ *** 

TD > SZ *** 

37 Hippocampus 1 

[23.5     -9.5    -16.5] 

0.62 

(0.01) 

0.66 

(0.01) 

0.57 

(0.01) 

17.47 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

38 Left inferior parietal 

lobule  

[45.5      -61.5   

43.5] 

0.76 

(0.01) 

0.8 

(0.02) 

0.72 

(0.01) 

9.63 <.001 0 0.02 AT > SZ *** 

TD > SZ * 

TD < AT * 

39 Middle cingulate 

cortex  

[-15.5     20.5    

37.5] 

0.83 

(0.01) 

0.85 

(0.02) 

0.75 

(0.01) 

18.12 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

40 Inferior frontal gyrus  

[39.5      44.5     -

0.5] 

0.89 

(0.01) 

0.91 

(0.02) 

0.83 

(0.01) 

12.78 <.001 0 0.02 AT > SZ *** 

TD > SZ *** 

41 Middle frontal  

gyrus 2 

[-26.5     47.5      

5.5] 

0.67 

(0.01) 

0.7 

(0.02) 

0.6 

(0.01) 

19.1 <.001 0 0.03 AT > SZ *** 

TD > SZ *** 

42 Hippocampus 2 

[-24.5     -36.5    1.5] 

0.55 

(0.01) 

0.55 

(0.02) 

0.48 

(0.01) 

10.69 <.001 0 0.02 AT > SZ ** 

TD > SZ *** 

 

DEFAULT MODE DOMAIN 

 

 

 

43 Precuneus 1 

[-8.5      -66.5   35.5]     

0.89 

(0.01) 

0.94 

(0.02) 

0.81 

(0.01) 

23.02 <.001 0 0.04 AT > SZ *** 

TD > SZ *** 

44 Precuneus 2 

[-12.5    -54.5   14.5] 

0.68 

(0.01) 

0.76 

(0.02) 

0.6 

(0.01) 

33.29 <.001 0 0.06 AT > SZ *** 

TD > SZ *** 

TD < AT *** 

45 Anterior cingulate  

cortex 1 

[-2.5        35.5     

2.5] 

0.69 

(0.01) 

0.61 

(0.02) 

0.57 

(0.01) 

25.34 <.001 0 0.05 TD > SZ * 

TD < AT * 

46 Posterior cingulate  

cortex 1 

[-5.5      -28.5   26.5] 

0.9 

(0.01) 

0.89 

(0.02) 

0.84 

(0.01) 

9.29 <.001 0 0.02 AT > SZ * 

TD > SZ *** 

 

47 Anterior cingulate  

cortex 2 

[-9.5      46.5   -10.5] 

0.57 

(0.01) 

0.68 

(0.02) 

0.5 

(0.01) 

48.15 <.001 0 0.08 AT > SZ *** 

TD > SZ *** 

TD < AT *** 

48 Precuneus 3 

[-0.5       -48.5  49.5] 

0.65 

(0.01) 

0.63 

(0.02) 

0.6 

(0.01) 

6.81 <.00 0 0.01 TD > SZ *** 

49 
Posterior cingulate  

cortex 2 

0.74 

(0.01) 

0.74 

(0.02) 

0.68 

(0.01) 

10.98 <.001 0 0.02 AT > SZ ** 

TD > SZ *** 
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[-2.5       54.5    

31.5] 

 

CEREBELLAR DOMAIN 

 

 

 

50 Cerebellum 1 

[-30.5   -54.5   -42.5] 

0.64 

(0.01) 

0.69 

(0.02) 

0.56 

(0.01) 

27.74 <.001 0 0.05 AT > SZ *** 

TD > SZ *** 

TD < AT * 

51 Cerebellum 2 

[-32.5   -79.5   -37.5] 

0.83 

(0.01) 

0.85 

(0.02) 

0.75 

(0.01) 

19.32 <.001 0 0.04 AT > SZ *** 

TD > SZ *** 

52 Cerebellum 3 

[20.5    -48.5   -40.5] 

0.64 

(0.01) 

0.61 

(0.02) 

0.56 

(0.01) 

13.51 <.001 0 0.03 TD > SZ *** 

53 Cerebellum 4 

[30.5    -63.5   -40.5] 

0.68 

(0.01) 

0.63 

(0.02) 

0.59 

(0.01) 

18.59 <.001 0 0.03 TD > SZ *** 

TD > AT ** 

 

3.3. Group differences in H in the Replication dataset 

The ANCOVA results showing group differences in H values from each component 

are given in Table 3. The areas most sensitive to overall group differences, after 

controlling for age, sex, IQ, and FD, were the left and right postcentral gyrus and 

paracentral lobule (i.e., IC no. 9, 11, and 10 respectively, part of the Sensorimotor 

network), and the calcarine gyrus, middle occipital gyrus, middle temporal gyrus, 

inferior occipital gyrus, and lingual gyrus (i.e., IC no. 17, 18, 19, 23 and 24 part of the 

Visual network). The supplementary motor area (i.e., IC no. 34), associated with the 

Cognitive Control domain, also yielded significant group differences.  

Table 3. Group differences in Hurst exponent (H) per component, in the Replication dataset, 

computed using ANCOVA with age, sex, IQ, and FD as covariates. Multiple comparison correction of 

the ANCOVA p values was performed using false discovery rate (fdr). The ANCOVA effect size was 

calculated using partial η2. Post hoc tests were ran using Tukey’s HSD Test for multiple comparisons 

with C.I. = 95%. 

* p < .05; ** p < .01; *** p < .001 
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  Adjusted H mean (SE)   

IC no. TD AT SZ F  

(2, 117) 

p pfdr ηp2 Post hoc 

 

SUBCORTICAL DOMAIN 

 

1 Caudate 1 

 

1.1 

(0.02) 

0.98 

(0.03) 

0.99 

(0.03) 

2.55 .08 0.18 .04 - 

2 Subthalamus/ 

hypothalamus 

 

0.8 

(0.02) 

0.83 

(0.03) 

0.75 

(0.03) 

2.38 .1 0.2 .04 - 

3 Putamen  

 

0.98 

(0.02) 

0.97 

(0.03) 

0.93 

(0.03) 

1 .36 0.56 .02 - 

4 Caudate 2 

 

0.98 

(0.02) 

0.95 

(0.03) 

0.97 

(0.03) 

0.01 .6 0.78 .01 - 

5 Thalamus  

 

0.94 

(0.02) 

0.91 

(0.03) 

0.85 

(0.03) 

2.8 .07 0.18 .05 - 

 

AUDITORY DOMAIN 

 

6 Superior temporal 

gyrus  

 

0.99 

(0.02) 

0.96 

(0.03) 

1 

(0.03) 

0.99 .37 0.56 .02 - 

7 Middle temporal gyrus  

 

0.91 

(0.02) 

0.93 

(0.03) 

0.93 

(0.03) 

0.33 .72 0.86 .01 - 

 

SENSORIMOTOR DOMAIN 

 

8 Postcentral gyrus 1 

 

1.35 

(0.02) 

1.3 

(0.03) 

1.27 

(0.03) 

2.55 .08 0.18 .04 - 

9 Left postcentral gyrus 

 

1.29 

(0.02) 

1.21 

(0.3) 

1.15 

(0.03) 

6.18 .003 0.02 .1 TD > SZ** 

10 Paracentral lobule 1 

 

1.19 

(0.02) 

1.12 

(0.04) 

1.04 

(0.03) 

6.25 .003 0.02 .1 TD > SZ** 

11 Right postcentral 

gyrus  

 

1.3 

(0.03) 

1.25 

(0.04) 

1.16 

(0.03) 

4.57 .01 0.05 .7 TD > SZ** 

12 Superior parietal 

lobule  

 

1.2 

(0.02) 

1.16 

(0.03) 

1.1 

(0.03) 

2.8 .07 0.18 .05 - 
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13 Paracentral lobule 2 

 

1.11 

(0.02) 

1.07 

(0.03) 

1.01 

(0.03) 

3 .05 0.16 .05 TD > SZ* 

14 Precentral gyrus  

 

1.22 

(0.02) 

1.2 

(0.03) 

1.14 

(0.03) 

2.78 .07 0.18 .05 - 

15 Superior parietal 

lobule  

 

1.25 

(0.02) 

1.23 

(0.03) 

1.21 

(0.03) 

0.5 .61 0.78 .008 - 

16 Postcentral gyrus 2 

 

1.28 

(0.02) 

1.24 

(0.03) 

1.21 

(0.03) 

1.93 .15 0.28 .03 - 

 

VISUAL DOMAIN 

 

17 Calcarine gyrus  

 

1.3 

(0.02) 

1.2 

(0.03) 

1.18 

(0.03) 

6.23 .003 0.02 .1 TD > SZ** 

18 Middle occipital gyrus  

 

1.17 

(0.02) 

1.12 

(0.03) 

1.04 

(0.03) 

5.76 .004 0.03 .09 TD > SZ** 

19 Middle temporal gyrus  

 

1.19 

(0.02) 

1.14 

(0.03) 

1.06 

(0.03) 

6.33 .003 0.02 .1 TD > SZ** 

20 Cuneus 

 

1.26 

(0.02) 

1.19 

(0.03) 

1.16 

(0.03) 

3.79 .03 0.13 .06 TD > SZ* 

21 Right middle occipital 

gyrus  

 

1.17 

(0.02) 

1.11 

(0.03) 

1.03 

(0.03) 

8.46 <.001 0 .13 TD > SZ*** 

22 Fusiform gyrus  

 

1 

(0.02) 

0.98 

(0.03) 

0.95 

(0.02) 

3 .05 0.16 .05 TD > SZ* 

23 Inferior occipital gyrus  

 

1.11 

(0.02) 

1.1 

(0.03) 

0.97 

(0.03) 

8.25 <.001 0 .12 TD > SZ*** 

24 Lingual gyrus  

 

1.24 

(0.02) 

1.15 

(0.03) 

1.08 

(0.03) 

7.9 <.001 0 .12 TD > SZ*** 

25 Middle temporal gyrus  

 

1 

(0.02) 

0.99 

(0.03) 

0.96 

(0.03) 

2.69 .7 0.86 .04 - 

 

COGNITIVE CONTROL DOMAIN 

 

26 Inferior parietal  

lobule 1 

 

1.37 

(0.02) 

1.37 

(0.02) 

1.39 

(0.02) 

0.29 .75 0.86 .01 - 

27 Insula  

 

1.03 

(0.02) 

1.01 

(0.02) 

1 

(0.02) 

0.7 .5 0.73 .01 - 
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28 Superior medial frontal 

gyrus  

 

1.15 

(0.02) 

1.13 

(0.03) 

1.15 

(0.03) 

0.24 .78 0.86 .004 - 

29 Inferior frontal gyrus 

 

1.12 

(0.02) 

1.1 

(0.02) 

1.11 

(0.02) 

0.18 .83 0.88 .003 - 

30 Right inferior frontal 

gyrus  

 

1.19 

(0.02) 

1.16 

(0.02) 

1.19 

(0.02) 

0.63 .54 0.73 .01 - 

31 Middle frontal gyrus  

 

1.18 

(0.02) 

1.16 

(0.02) 

1.15 

(0.02) 

0.48 .62 0.78 .01 - 

32 Inferior parietal  

lobule 2 

 

1.35 

(0.02) 

1.32 

(0.02) 

1.31 

(0.02) 

1.63 .2 0.33 .03 - 

33 Left inferior parietal 

lobule  

 

1.29 

(0.02) 

1.28 

(0.03) 

1.28 

(0.02) 

0.08 .93 0.93 .001 - 

34 Supplementary motor 

area  

 

1.25 

(0.02) 

1.17 

(0.02) 

1.23 

(0.02) 

5.1 .008 0.05 .08 TD > AT** 

35 Superior frontal gyrus  

 

1.21 

(0.02) 

1.18 

(0.02) 

1.22 

(0.02) 

1.4 .25 0.4 .02 - 

36 Middle frontal gyrus 1 

 

1.1 

(0.02) 

1.1 

(0.03) 

1.1 

(0.03) 

.21 .81 0.88 .004 - 

37 Hippocampus 1 

 

0.78 

(0.02) 

0.79 

(0.03) 

0.77 

(0.02) 

.13 .88 0.91 .002 - 

38 Left inferior parietal 

lobule  

 

1.28 

(0.02) 

1.21 

(0.02) 

1.26 

(0.02) 

2.62 .08 0.18 .04 - 

39 Middle cingulate 

cortex  

 

0.99 

(0.02) 

0.97 

(0.03) 

0.92 

(0.03) 

2.37 .1 0.2 .04 - 

40 Inferior frontal gyrus  

 

1.11 

(0.02) 

1.05 

(0.03) 

1.04 

(0.02) 

3.37 .04 0.15 .06 - 

41 Middle frontal gyrus 2 

 

1.06 

(0.02) 

1.04 

(0.03) 

0.99 

(0.03) 

1.73 .18 0.32 .03 - 

42 Hippocampus 2 

 

0.83 

(0.02) 

0.84 

(0.03) 

0.81 

(0.03) 

0.29 .75 0.86 .01 - 

 

DEFAULT MODE DOMAIN 

 

43 
Precuneus 1 

1.23 

(0.02) 

1.19 

(0.02) 

1.19 

(0.02) 

1.7 .19 0.32 .03 - 
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44 Precuneus 2 

 

1.15 

(0.02) 

1.13 

(0.02) 

1.1 

(0.02) 

2 .14 0.27 .03 - 

45 Anterior cingulate 

cortex 1 

 

1.09 

(0.02) 

1.08 

(0.02) 

1.06 

(0.02) 

0.62 .54 0.73 .01 - 

46 Posterior cingulate 

cortex 1 

 

0.96 

(0.02) 

0.97 

(0.03) 

0.98 

(0.03) 

0.26 .77 0.86 .004 - 

47 Anterior cingulate 

cortex 2 

 

1.04 

(0.02) 

1.05 

(0.03) 

1.03 

(0.03) 

0.12 .89 0.91 .002 - 

48 Precuneus 3 

 

1.17 

(0.02) 

1.14 

(0.03) 

1.11 

(0.02) 

1.8 .17 0.31 .03 - 

49 Posterior cingulate 

cortex 2 

 

1.35 

(0.02) 

1.37 

(0.02) 

1.34 

(0.02) 

0.63 .54 0.73 .01 - 

 

CEREBELLAR DOMAIN 

 

50 Cerebellum 1 

 

0.98 

(0.02) 

0.93 

(0.03) 

0.89 

(0.03) 

2.71 .07 0.18 .04 - 

51 Cerebellum 2 

 

1.09 

(0.02) 

1.02 

(0.03) 

1 

(0.03) 

3.49 .03 0.13 .06 TD > SZ* 

52 Cerebellum 3 

 

0.9 

(0.02) 

0.9 

(0.03) 

0.81 

(0.03) 

3.25 .04 0.15 .05 TD > SZ* 

53 Cerebellum 4 

 

1 

(0.02) 

0.96 

(0.03) 

0.93 

(0.03) 

2.99 .05 0.16 .05 TD > SZ* 

 

3.4. Classification accuracy and feature importance in the Exploratory dataset 

Using the complete 53 Hurst feature set, the classification was: AUC = 84%, 

Sensitivity = 65%, and Specificity = 83% (Figure 1 A; please note that sensitivity and 

specificity are calculated in relation to AT).   
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Figure 1. A. Classification performance for each model and dataset. AUC: area under the curve; a 

Expl: model with all 53 H values in the Exploratory dataset; a Repl: model with the 10 H values in the 

Replication dataset; b: model with ADOS and PANSS; c: model with ADOS, PANSS, IQ, EQ, BVAQ; 

d: model with the 10 H, ADOS and PANSS; e: model with the 10 H, ADOS, PANSS, IQ, EQ, BVAQ. 

B. Misclassification of participants. AT: autism; SZ: schizophrenia 

 

Next, we used the ten ICs with the highest Hurst feature importance from the RF 

classification of the Exploratory dataset to simplify the feature set for RF 

classification of the Replication dataset. We selected these ten Hurst ICs as follows: 

the precuneus and the anterior cingulate cortex (i.e., ICs 43, 44, 47, and 48) from the 

Default Mode Network, the superior frontal gyrus (i.e., IC 35) of the Cognitive Control 

domain, the paracentral lobule and the precentral gyrus (ICs 10 and 14), from the 

Visual domain, and the middle occipital gyrus, the inferior occipital gyrus, and the 

lingual gyrus (i.e., ICs 18, 23, and 24), from the Sensorimotor domain (Supplement 

Figure 2).  
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3.5. Classification results in the Replication dataset 

In the Replication dataset, we obtained the following classification performance, 

outlined in Figure 1A: For model (a), using the reduced Hurst feature set (10 ICs), 

AUC = 72%, Sensitivity = 64%, and Specificity = 67%. For model (b), using the 

PANSS and ADOS as features, AUC = 78%, Sensitivity = 65%, and Specificity = 

73%. For model (c), using the PANSS, ADOS, EQ, IQ, and BVAQ as features, AUC 

= 76%, Sensitivity = 62%, and Specificity = 76%. For model (d), using the reduced 

Hurst feature set in combination with PANSS and ADOS, AUC = 81%, Sensitivity = 

67%, and Specificity = 76%. Finally, for model (e), using the reduced Hurst feature 

set in combination with PANSS, ADOS, EQ, IQ, and BVAQ, AUC = 83%, Sensitivity 

= 68%, and Specificity = 79%.  

In the Replication dataset, for each classification instance, we inspected the scaled 

contribution of each feature included in each of the five models. In order to account 

for the different number of features included in each classification model, we scaled 

the raw feature importance values (Supplement Figure 3) by multiplying them by the 

number of features included in that respective model (Supplement Figure 4). As can 

be seen in Supplement Figure 4, the precentral gyrus (IC 14), the inferior occipital 

gyrus (IC 23), the lingual gyrus (IC 24), and the precuneus (IC 48) are the most 

important H features overall. The most important symptom scores are the ADOS 

total, followed by PANSS positive and negative. However, the most important feature 

overall was the estimated IQ, which prompted our concern that the IQ might bias our 

classification output and misleadingly appear as being more important than the Hurst 
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features in model (e), given that our groups were not matched for IQ (Table 1). We 

therefore repeated the classification for models (c) and (e) and found that 

performance remained virtually unchanged (i.e., AUC = 0.75, Sensitivity = 0.6, 

Specificity = 0. 76, and AUC = 0.83, Sensitivity = 0.68, Specificity = 0. 81 

respectively). Following the elimination of the IQ feature from this last run of models 

(c) and (e), feature importance also remained unchanged compared to that shown in 

Supplement Figure 4. 

Finally, inspection of misclassified participants (Figure 1 B), showed that on average, 

SZ were increasingly more accurately classified as we moved from models (a) 

through (e), while AT were more accurately classified when Hurst features were 

included (i.e., models a, d, and e).  

 

4. Discussion 

The current paper assessed the feasibility of using the E/I ratio, as estimated by the 

H exponent, to distinguish between AT and SZ. We had two main goals: (1) perform 

an out-of-sample replication of the classification model using a reduced set of brain-

based features (i.e., the H exponent from the ten most important brain components), 

and (2) compare the classification accuracy when different sets of clinical, 

phenotypic and imaging features were combined. 

We first explored group differences between the three groups, in each independent 

dataset (Tables 2 and 3). The most consistent findings across both datasets 

reflected a significantly reduced H (i.e., increased E/I) in SZ compared to TD in most 

areas of the cerebellar domain, the bilateral postcentral gyrus and paracentral lobule, 

from the sensorimotor domain, and all but one area of the visual domain. Given that 
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levels of glutamate and GABA have been reported to vary inconsistently across SZ, 

and moreover, to be impacted by both medication and disease progression (see, 

e.g., Foss-Feig et al., 2017, for an in-depth overview), we believe that the replicability 

of these group differences are all the more notable. What is more, this may suggest 

that despite the aforementioned medication and disease progression related 

neurotransmitter variations in SZ, a persistently elevated E/I ratio remains, 

predominantly in visual processing brain areas.  

Group differences were less consistent between TD and AT, and the effects mostly 

displayed opposite directions in the two independent datasets. Namely, in the 

Exploratory dataset, significantly larger H (i.e., reduced E/I) were found in AT 

compared to TD in the precuneus, the cerebellum, the frontal cortex, the left inferior 

parietal lobule, some areas of the visual domain (i.e., calcarine, fusiform, inferior 

occipital, and middle temporal gyrus). In the Replication dataset, the supplementary 

motor area showed significantly reduced H (i.e., increased E/I) in AT compared to 

TD. We believe that one potential explanation that could account for this reduced 

replicability in this case could be the increased heterogeneity of AT which may 

simply not have been sufficiently captured given the limited size of the Replication 

dataset. Indeed, Foss-Feig et al. (2017) also suggest that E/I variations appear to be 

more heterogenous in AT than SZ. Another aspect that could contribute to these 

inconsistent findings might be due to sex differences, which we were unable to 

assess in the current project given insufficient female AT participants. Previously, 

Trakoshis et al. (2020) reported that the H of the ventromedial prefrontal cortex was 

significantly elevated in female AT, but significantly decreased in male AT compared 

to TD. Thus, a more extensive exploration of sex differences in larger samples of AT 

could give a clearer picture on this aspect. 
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A direct comparison of H in AT v. SZ revealed no significant differences in the 

Replication dataset, but showed a consistent pattern of significantly increased H (i.e., 

decreased E/I) in AT compared to SZ, in all but six of the 53 brain areas. These 

findings however require further validation given the heterogeneity in data collection 

between these two groups in the Exploratory dataset.  

Classification performance of AT and SZ, using the H values of all 53 brain areas, in 

the Exploratory dataset, was very good (AUC = 84%), with especially high specificity 

for SZ (83%). A similar trend was maintained when using a reduced classification 

model comprising the ten most important H-based features in the Replication dataset 

(Figure 1.A), though classification performance was overall reduced, as was to be 

expected in an out-of-sample replication, and given the limited size of the Replication 

dataset. We further explored how augmenting the feature set in the Replication 

dataset could improve classification performance. We found that while using PANSS 

and ADOS resulted in increased classification performance compared to using H 

alone, performance increased further when combining H, PANSS and ADOS, and 

was the highest when using H, PANSS, ADOS, as well as IQ, EQ and BVAQ. This 

steady increase in performance appeared to be mostly driven by a steady decrease 

in misclassified SZ (Figure 1.B). Due to some concerns that unmatched IQ between 

AT and SZ might be biasing these results, we re-ran these classification models 

without IQ as a feature, and obtained extremely similar results. We may therefore 

conclude that: (1) classification performance based on E/I, as estimated by H, is 

substantial and replicable across independent datasets, and (2) classification 

performance is the highest when H and clinical assessment are combined, resulting 

in notably decreased misclassification instances in both AT and SZ (Figure 1.B). 

Interestingly, AT were more frequently misclassified when only clinical assessment 
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data were used, compared to both H only and H combined with clinical assessment 

(Figure 1.B). Given that both AT and SZ in the Replication dataset were acquired 

using the same protocol and testing environment, we surmise that inherent AT 

heterogeneity could best explain these different trajectories in classification 

performance. 

While the Exploratory dataset that we used in the first step of our classification 

analysis offered a satisfactory amount of data, it does have the limitation that these 

data were collected using a variety of protocols and acquisition sites. On the other 

hand, while the Replication dataset offered us the possibility to test different 

classification models, given that identical clinical assessment protocols were used for 

both AT and SZ, it offered a rather small number of participants. Nevertheless, we 

believe that especially given these limitations, the replicated results are noteworthy. 

Another limitation which we were unable to address using the currently available 

datasets were sex differences. This is especially true for AT, given the historic bias 

which has resulted in currently available samples being overwhelmingly dominated 

by male participants. Finally, future systematic and longitudinal studies could further 

clarify how H may be influenced by age (of onset), disease progression and 

medication in SZ.  
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Supplement 

 

Supplement Figure 1. The 53 Neuromark components and corresponding domains (based on Du et 

al., 2020) 
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Supplement Figure 2. Raw feature importance values from the Exploratory dataset. The ten most 

important features (above the red dotted line) were selected to be used in the next classification step, 

using the Replication dataset. 
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Supplement Figure 3. Raw feature 

importance values in the Replication 

dataset, in each of the five models. The 

x axis displays raw importance values. 

On the y axis, feature names are 

displayed; numbers correspond to the 

ten areas mentioned in section 3.4. 
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Supplement Figure 4. Scaled feature importance values in the Replication dataset, across all five 

models. The x axis displays scaled importance values (i.e., obtained by multiplying raw importance 

values by the number of features in that respective model). On the y axis, feature names are 

displayed; numbers correspond to the ten areas mentioned in section 3.4. 
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