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Abstract 

The excitation/inhibition (E/I) ratio has been shown to be elevated in both autism 
spectrum disorder (ASD) and schizophrenia (SZ), relative to neurotypical controls. 
However, the degree of E/I imbalance overlap and differentiation between SZ and 
ASD is not known. Our main objectives were therefore (1) to quantify group 
differences in the E/I ratio between controls, ASD and SZ, and (2) to assess the 
potential of the E/I ratio for differential diagnosis. We collected resting state fMRI 
(rsfMRI) and phenotypic data from 55 controls, 30 ASD, and 39 SZ, ages 18 to 35 
(IQ>80). For each participant, we computed the Hurst exponent (H), an indicator of 
the E/I ratio, for the timecourses of 53 independent components covering the entire 
brain. Next, using Optimal Classification Trees (OCT), we ran a classification 
analysis on the two clinical groups using five incremental feature sets (i.e., models): 
(1) Positive and Negative Syndrome Scale (PANSS) and the Autism Diagnostic 
Observation Schedule (ADOS) only; (2) PANSS, ADOS, Bermond–Vorst Alexithymia 
Questionnaire (BVAQ), Empathy Quotient (EQ), and IQ; (3) H only; (4) H, PANSS 
and ADOS; (5) H, PANSS, ADOS, BVAQ, EQ and IQ. We observed decreased H 
(i.e., increase in E/I ratio) in ASD and SZ compared to controls, and in SZ compared 
to ASD in the Cerebellar, Sensorimotor, Visual and Cognitive Control networks. The 
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OCT classification showed a consistent increase in discrimination accuracy across 
models between ASD and SZ, suggesting that the E/I ratio in combination with 
phenotypic measures can contribute to differential diagnosis in adults. 

 

1. Introduction 

Autism spectrum disorder (ASD) and schizophrenia (SZ) have been historically 
conceptualized as a continuum of the same disorder, when Eugen Bleuler posited 
autism to be a type of impairment in SZ, alongside affectivity, association, and 
ambivalence (Bleuler, 1911). In the 1970s they were recognized as independent 
diagnoses and have remained so until now (Diagnostic and Statistical Manual of 
Mental Disorders 5th ed.; DSM–5; American Psychiatric Association, 2013). While 
ASD is primarily characterized by impairments in social communication skills and by 
repetitive behaviors, a SZ diagnosis consists of positive (e.g., hallucinations, 
delusions) and negative (e.g., social withdrawal) symptoms. The heterogeneity of 
both diagnostic categories (Benkarim et al., 2022; Segal et al., 2022) and their 
phenotypic overlap (Kästner et al., 2015) can hinder accurate diagnosis. More 
precisely, ASD and SZ co-occur in approximately 4% of cases (Lai et al., 2019), and 
share both social (Oliver et al., 2020) and sensory-motor deficits (Du et al., 2021). 
Common clinical observational or self-report tools, such as the Autism Diagnostic 
Observation Schedule (ADOS) and the Positive and Negative Syndrome Scale 
(PANSS), do not have good specificity (Bastiaansen et al., 2011; Trevisan et al., 
2020), thus efforts have been made to find discriminative neuroimaging biomarkers 
(Horien et al., 2022). A recent international machine learning challenge aimed to 
classify ASD and controls showed that fMRI data can yield a diagnosis accuracy of ~ 
80% (Traut et al., 2022). However, the challenge is even greater when tackling the 
overlap of different disorders, such as ASD and SZ, that share both genetic and 
neuroimaging commonalities (Moreau et al., 2021).  

One explanatory hypothesis for the observed sensory deficits in ASD has been that 
of increased excitation/inhibition (E/I) ratio, first proposed by Rubenstein and 
Merzenich (2003). Among the evidence they cite is the fact that parietal and 
cerebellar areas of the ASD brain show ~50% less glutamic acid decarboxylase 
(GAD), the enzyme that synthesizes the inhibitory neurotransmitter γ -aminobutyric 
acid (GABA), compared to controls (Fatemi et al., 2002). Additionally, in ASD, 
cortical minicolumns, which are functional units composed of GABAergic and 
glutamatergic neurons processing thalamic inputs, are smaller and more numerous 
in ASD compared to controls (Casanova et al., 2002). A more recent summary 
specifically points towards the relationship between reduced inhibition and its 
negative impact on cortical and hippocampal functioning in ASD (Sohal & 
Rubenstein, 2019). Whether the E/I imbalance (hereafter, we use the term E/I 
imbalance to indicate an elevated E/I ratio in patients vs. controls) is mainly due to 
excessive excitatory activity, or deficient inhibitory activity, is not entirely clear 
(Dickinson, Jones & Milne, 2016; Ford & Crewther, 2016), but recent evidence points 
to the E/I imbalance in ASD being caused by concomitant increase in excitation and 
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decrease in inhibition (for an excellent summary of findings see Canitano & Palumbi, 
2021). 

Post-mortem and genetic evidence point to the presence of E/I imbalance in SZ as 
well (Anticevic & Lisman, 2017), and computational modeling revealed that this 
imbalance causes hyperconnectivity in association brain areas (Yang et al., 2016). In 
addition, a review has shown a link between an E/I imbalance and aberrant internal 
sensory processing in SZ, such as hallucinations (Jardri et al., 2016). Finally, 
dopamine appears to be crucial in maintaining the E/I balance by modulating the 
excitability of glutamate and GABAergic neurons (Purves-Tyson et al., 2021), with 
direct impact on memory function and prefrontal dysconnectivity (see Winterer and 
Weinberger, 2004, for an extended account). 

Supportive evidence in favor of the E/I imbalance in ASD and SZ has been 
corroborated by animal models and post-mortem human studies, as well as by 
experimental, genetic and magnetic resonance spectroscopy studies (MRS) (for a 
comprehensive review, see Dickinson, Jones & Milne, 2016). It has been proposed 
that there are common neuronal pathways underlying E/I imbalance in both ASD and 
SZ (Canitano & Pallagrosi, 2017; Foss-Feig et al., 2017), and that this relies in turn 
on shared genotype (Gao & Penzes, 2015). Additionally, a recent meta-analysis also 
showed that comorbidity of ASD and SZ has a 4% prevalence (Lai et al., 2019). 
However, given the substantial heterogeneity in both SZ and ASD (e.g., Segal et al., 
2022), it is difficult to ascertain to which extent and in which brain areas or networks 
there is overlap between the two diagnoses.  

In recent years, numerous machine learning approaches have been employed to 
improve differential diagnosis of mental disorders. Among these, interpretable 
models, such as classification trees, have become increasingly popular due to their 
transparency, as opposed to the traditional “black box” methods, such as deep 
learning models (Murdoch et al., 2019; Rudin, 2019). Interpretable machine learning 
has been successfully used in ASD research across multiple independent samples 
and has shown good accuracy ( ~78%) when differentiating ASD from typically 
developed individuals (TD) using brain imaging derived features (Supekar et al., 
2022). Similarly, decision trees with a feature set comprising items from several 
psychosis rating tools, have been used to distinguish between schizophrenia, schizo-
affective disorder, depression and bipolar disorder with remarkable performance 
(Gibbons et al., 2021). Likewise, a decision tree approach yielded high accuracy in 
diagnosing ASD based on a large collection of features documenting family history, 
longitudinal information of symptom onset and severity, and clinical ratings (Hassan 
& Mokhtar, 2019). Finally, two decision tree approaches have been used to 
distinguish between ASD and SZ. One was based on structural features, and its 
accuracy did not exceed 65% (Yassin et al., 2020), while the other one used 
neuropsychological and self-report measures with accuracy of ~ 83% (Demetriou et 
al., 2020).  

Traditional decision tree algorithms have however been shown to suffer from various 
limitations which can cause the classification performance to reflect local rather than 
exhaustive characteristics of the dataset (for a more detailed explanation, see 
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section 2.4 as well as Bertsimas & Dunn, 2017). In the present study, we therefore 
used a novel and improved decision tree algorithm, Optimal Classification Trees 
(OCT), developed by Bertsimas & Dunn (2017). Classifications based on decision 
tree algorithms traditionally operate through successive binary decision splits 
according to feature values along decision branches. Previous classification trees all 
share a common shortcoming in that they are biased towards finding local optimal 
solutions which may not accurately characterize the best global model fit. The main 
advantage of OCT is that it allows to overcome this limitation by fitting the whole tree 
in one optimized step, as opposed to using successive splits. The advantage of this 
approach is that it optimizes the trade-off between model complexity and accuracy, 
thus enabling us to compare the performance of different models containing a 
varying number of features. Finally, OCT also allows for a multivariate classification, 
where each split is decided upon a combination of features instead of one feature at 
a time. Although multivariate splits were previously proposed by Murthy, Kasif and 
Salzberg (1994), this was still in the context of a greedy optimization approach (i.e., 
using as many variables as possible in the first split and then proceeding with many 
successive splits) which could lead to extreme overfitting. OCT prevents this 
shortcoming by aiming to achieve a best global fit with fewer variables in the first 
split. For this study, OCT enabled us to leverage the combined predictive power of 
all the phenotypic and neuroimaging-based information and find the features that 
lead to the most generalizable classification performance.  

To classify ASD and SZ patients, we used five distinct sets of features comprising 
phenotypic and clinical assessment scores, the E/I ratio (as indexed by the H 
exponent) of multiple brain areas, or both. For each model, we also assessed the 
relative importance of each feature included in that respective model. To quantify the 
E/I imbalance based on resting state functional magnetic resonance (rsfMRI) 
timeseries, one approach is to compute the Hurst exponent (H) of predefined 
functional brain areas. The H exponent has been refined as a reliable computational 
approximation of synaptic E/I based on extensive physiological and in silico studies, 
and conventionally takes values between 0 and 1 (e.g., Trakoshis et al., 2020). 
However, Trakoshis et al. (2020) advise that the upper bound should not be limited 
to 1 in order to avoid ceiling effects and thus risk not capturing individual differences. 
We have opted for the same approach in the current paper, as further detailed in 
section 2.4. below. For the clinical features we focused on core symptoms 
assessments: ADOS — measuring social and communication impairments, and 
PANSS — measuring positive (e.g. delusions, hallucinations) and negative (e.g., 
social withdrawal) symptoms and general psychopathology (e.g., attention deficits), 
the IQ estimate, and two social cognitive measures: EQ — measuring empathy, and 
BVAQ — measuring alexithymia, both of which have been shown to be impaired in 
ASD and SZ (van’t Wout et al., 2007; Warrier et al., 2018; Kinnaird, Stewart & 
Tchanturia, 2019). 

 

2. Methods 

2.1. Participants 
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Participants were recruited via the Olin Neuropsychiatry Research Center (ONRC) 
and the Yale University School of Medicine and underwent resting state fMRI 
scanning for the current study. After discarding datasets displaying head motion > 
10 mm, our dataset contained 58 TD, 39 ASD, and 41 SZ. Of these, some were 
subsequently excluded to incomplete phenotypic assessment information, thus 
resulting in the following final samples: 55 TD, 30 ASD, and 39 SZ. As this dataset 
has been previously used by Hyatt et al. (2020, 2021) and Rabany et al. (2019), the 
exclusion criteria were the same, namely: intellectual disability (i.e., estimated IQ < 
80), neurological disorder (e.g. epilepsy), current drug use as indicated by pre-
scanning interview and urine test, incompatibility with MRI safety measures (e.g., 
metal implants), and a history of psychiatric diagnoses in HC.  

2.2. Clinical and phenotypical assessment 

The clinical assessment targeted the severity of psychotic and autistic symptoms, 
while phenotypic measures quantified empathy, alexithymia and IQ. The severity of 
psychotic symptoms was assessed using the Positive and Negative Syndrome Scale 
(PANSS; Kay et al., 1987) in both the ASD and SZ groups. The PANSS scores can 
be interpreted along three subscales: positive symptoms, reflecting the severity of 
hallucinations and delusions; negative symptoms, reflecting the severity of blunted 
affect and anhedonia, and a general subscale quantifying other psychopathology 
such as poor attention and lack of insight. The ADOS, module 4 (Lord et al., 2000) 
was administered to all participants and the total score was used in this study, to 
confirm/rule out ASD diagnosis. Intelligence Quotient (IQ) was calculated for the 
entire sample using the Vocabulary and Block Design subtests of the Wechsler 
Scale of Adult Intelligence-III (WAIS-III; Wechsler, 1997; Sattler and Ryan, 1999). 
Additionally, all participants were asked to complete the Empathizing Quotient (EQ; 
Wakabayashi, Baron-Cohen & Wheelwright, 2006) which  measures general 
empathy including both the affective and the cognitive empathy components, and the 
Bermond–Vorst Alexithymia Questionnaire (BVAQ; Vorst & Bermond, 2001). BVAQ 
subscores are computed along five distinct dimensions: “verbalizing” reflects one’s 
propensity to talk about one’s feelings; “identifying” reflect the extent to which one is 
able to accurately define one’s emotional states; “analyzing” quantifies the extent to 
which one seeks to understand the reason for one’s emotions; “fantasizing” 
quantifies one’s tendency to day-dream, and “emotionalizing” reflects the extent to 
which a person is emotionally aroused by emoting inducing events. Means and 
standard deviations, as well as group comparison tests of the above-mentioned 
instruments are given in Table 1 below. The Structured clinical interview for DSM-IV-
TR axis I disorders (SCID; First et al., 2002) was additionally used to confirm SZ 
diagnosis and the absence of any Axis I diagnoses in HC.  
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Table 1. Means and standard deviations (in parentheses) of demographics, phenotypic and clinical 
instrument scores for all three groups. est. IQ = estimated Intelligence Quotient; EQ = Empathy 
Quotient; ADOS = Autism Diagnostic Observation Schedule module 4; BVAQ = Bermond–Vorst 
Alexithymia Questionnaire; FD = framewise displacement. Group statistics are shown in the last four 
columns. Pairwise comparisons were performed using Welch two-samples t test. Both uncorrected 
(i.e., p) and false discovery rate corrected (i.e., pFDR) p values are shown. 

 TD ASD SZ ASD v. SZ v. TD ASD > TD ASD > SZ TD > SZ 

 

Females/Males 

 

29/26 5/25 8/31 χ2(2) = 15.8, 
<.000 

 

   

    F(2, 121), p t(df), p, pFDR t(df), p, pFDR t(df), p, pFDR 

 

FD 0.08 
(0.03) 

0.09 
(0.04) 

0.11 
(0.1) 

5.23, .007 2.52 (66.6), 
.014, .021 

-0.772 (69.6), 
.443, .443 

-2.71 (54.3), 
.009, .021 

Age 24 
(3.73) 

22 
(3.74) 

26 
(3.58) 

 -1.98 (79.8), 
.051, .051 

-4.06 (76.9), 
<.000, <.000 

-2.46 (88), .016, 
.024 

est. IQ 112.26 
(14.62) 

109.1 
(15.21) 

99.41 
(13.3

4) 

9.366, <.000 -1.33 (82.8), 
.186, .186 

3.26 (77), .002, 
.003 

4.97 (90.5), 
<.000, <.000 

EQ 49 
(10.28) 

33.57 
(11.1) 

39.8 
(12.2

6) 

22.37, <.000 -6.73 (72.2), 
<.000, <.000 

-2.50 (73.9), 
.015, .015 

3.65 (72.2), 
<.000, <.000 

ADOS 1.87 
(1.45) 

10.1 
(2.61) 

8.41 
(5.26) 

78.26, < .000 17.5 (52.2), 
<.000, <.000 

1.67 (58.8), 
1.72, 1.72 

-7.62 (44.2), 
<.000, <.000 

BVAQ 

Verbalizing 

 

18.55 
(5.51) 

22.2 
(4.54) 

22 
(5.03) 

7.02, .001 3.07 (81.4), 
.003, .005 

-0.0571 (75.1), 
.955, .955 

-3.22 (90.4), 
.002, .005 

BVAQ 

Fantasizing 

19.69 
(5.12) 

 

17.9 
(6.03) 

21.36 
(5.48) 

4, .02 -1.17 (73.5), 
.247, .247 

-2.72 (75.2), 
.008, .024 

-1.88 (82.8), 
.064, .096 

BVAQ 

Identifying 

 

15.53 

(4.82) 

18.57 

(6.4) 

20.41 

(4.96) 

10.43, <.000 2.59 (63), .012, 
.018 

-1.29 (68.2), 
.203, .203 

-4.79 (85.2), 
<.000, <.000 

BVAQ 

Emotionalizing 

 

22.38 

(3.74) 

21.83 

(3.51) 

22.56 

(4.2) 

0.6, .55 -0.810 (81.4), 
.421, .632 

-1.07 (74), .289, 
.632 

-0.389 (77.9), 
.698, .698 

BVAQ 

Analyzing 

 

17.91 
(4.43) 

18.47 
(4.27) 

19.9 

(4.5) 

2.81, 0.6 0.576 (81.9), 
.566, .566 

-1.62 (76), .11, 
.165 

-2.27 (85.4), 
.026, .078 

PANSS 

Positive 

 

 12.1 
(2.86) 

15.36 
(4.86) 

  -3.88 (66.96), 
<.000, 0 
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PANSS 

Negative 

 

 15.57 
(4.7) 

19.26 
(6.2) 

  -2.644 (72.75), 
.01, 1 

 

PANSS 

General 

 

 26.7 
(5.62) 

31.59 
(6.98) 

  -3.716 (73), 
<.000, 0 

 

 

 

2.3. Imaging data acquisition and preprocessing 

Resting state fMRI scans lasted 7.5 min and were collected using a Siemens Skyra 
3 T scanner at the ONRC. Participants lay still, with eyes open, while fixating a 
centrally presented cross. Blood oxygenation level dependent (BOLD) signal was 
obtained with T2*-weighted echo planar imaging (EPI) sequence: 
TR/TE = 475/30 msec, flip-angle = 60 deg, 48 slices, multiband (8), interleaved slice 
order, 3 mm3 voxels.  

Neuroimaging data were preprocessed using SPM8 
(www.fil.ion.ucl.ac.uk/spm/software/spm8/). Each dataset was realigned to the first 
T2* image using the INRIAlign toolbox (https://www-
sop.inria.fr/epidaure/Collaborations/IRMf/INRIAlign.html), coregistered to their 
corresponding high signal-to-noise single-band reference image (sbREF; (Glasser et 
al., 2013)), spatially normalized to the Montreal Neurological Institute (MNI) standard 
template (Friston et al., 1995), and spatially smoothed (6 mm3). Finally, framewise 
displacement (FD) motion parameters were computed according to the FSL library 
algorithm (Jenkinson et al., 2012) and used the mean FD value for each run as a 
covariate in group analyses. 

2.4. Data analysis 

We ran a fully automated independent component analysis (ICA) on the 
preprocessed fMRI data, using the Group ICA for fMRI Toolbox (GIFT v4.0c; 
https://trendscenter.org/software/gift/; Calhoun et al., 2001) to define functional brain 
regions. The 53 replicable independent component (IC) templates from the 
NeuroMark pipeline (Du et al., 2020) were used to estimate participant-specific 
spatially-independent components using a spatially-constrained ICA algorithm (Du et 
al., 2018). A complete list of the NeuroMark IC templates, arranged into seven 
functional domains, and peak MNI coordinates for each IC template are given in 
Supplement Table 1 and illustrated in Supplement Figure 1. After detrending and 
despiking using 3dDespike (AFNI, 1995), the resulting 53 IC timecourses for each 
participant were used to compute the Hurst exponent. 

The Hurst exponent (H) was estimated for each component and participant using the 
nonfractal MATLAB toolbox (https://github.com/wonsang/nonfractal; Wonsang et al., 
2012). Specifically, we used the function bfn_mfin_ml.m with the “filter” argument set 
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to “haar” and the “ub” and “lb” arguments set to [1.5,10] and [-0.5,0], respectively, as 
previously recommended by Trakoshis et al. (2020).  

Finally, we classified the ASD and SZ groups using the OCT procedure (Bertsimas & 
Dunn, 2017), as implemented in the Interpretable Artificial Intelligence (IAI) toolbox 
(https://www.interpretable.ai/) and accessible through the R 5.2 interface (R Core 
Team, 2018). Five models were used for the OCT classification of SZ and ASD, 
containing the following features: (a) PANSS 3 factor scores and ADOS total scores; 
(b) PANSS, ADOS, EQ, BVAQ and IQ scores; (c) the H only values of the 53 brain 
areas; (d) the 53 H values plus the PANSS and ADOS scores, and (e) the 53 H 
values plus the PANSS, ADOS, EQ, BVAQ and IQ scores. Of each of the two clinical 
groups, 80% of the participants were allocated to the training group, while the rest 
20% were used to test the generalizability of the classification. 

Other statistical analyses, performed with R 5.2., included ANCOVA with Age, Sex, 
IQ and FD as covariates, and two-sided two-sample Welch t tests, which were used 
to further compare groups to each-other.  

 

3. Results 

3.1. Group differences in demographic, clinical and phenotypic assessment 

The demographics such as age and sex were significantly different between groups 
(see Table 1). Therefore, these variables (together with average FD, as described 
above) were included as covariates in all further group-comparison analyses. With 
respect to the clinical assessment, the two patient groups did not significantly differ 
in their social and communication skills, as indicated by the ADOS scores, but the 
PANSS scores on all three domains (i.e., positive and negative symptom severity 
and general psychopathology) were significantly elevated in SZ compared to ASD. 
Finally, with respect to phenotypic measures, the alexithymia scores indicating 
fantasizing were significantly decreased in ASD compared to SZ. Estimated IQ also 
significantly differed between groups, and was therefore used as a covariate 
alongside FD, age and sex. Empathy was significantly decreased in ASD compared 
to both SZ and TD, and in SZ compared to TD. 

 

3.2. Group differences in H 

Overall group comparisons of the H values from each component are given in Table 
2 below. Due to concerns that Age, Sex, IQ and FD might act as confounded 
variables when assessing group differences in H, we ran ANCOVA analyses using 
Age, Sex, IQ and FD as covariates (see Table 2). Two-sided two-sample Welch t 
tests were used to further compare groups to each-other (see Table 3). 

The areas most sensitive to overall group differences, after controlling for Age, Sex, 
IQ and FD belonged to the Sensorimotor (i.e., left and light postcentral gyrus and 
paracentral lobule — IC no. 9, 11, and 10 respectively), Visual (i.e., calcarine gyrus, 
middle occipital gyrus, cuneus, right middle occipital gyrus, fusiform gyrus, inferior 
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occipital gyrus and lingual gyrus — IC no. 17, 18, 20, 21, 22, 23 and 24) and the 
Cerebellar domains — IC no. 50 - 53). In addition, the supplementary motor area and 
inferior frontal gyrus (IC no. 34, 35), associated with the Cognitive Control domain, 
also yielded significant group differences (see Table 2).  

 

Table 2. Group differences in Hurst exponent (H) per component, after controlling for Age, Sex, IQ and FD. The effect size was 
calculated using ηp2. 

  H mean (sd)   

IC no. TD ASD SZ F(2, 117) p pfdr ηp2 

  

SUBCORTICAL DOMAIN 

 

1 Caudate 1 

 

1.05 (0.15) 0.99 (0.12) 0.96 
(0.15) 

2.55 .08 0.18 .04 

2 Subthalamus/hypothalamus 

 

0.8 (0.14) 0.84 (0.12) 0.75 
(0.12) 

2.38 .1 0.2 .04 

3 Putamen  

 

0.98 (0.14) 0.98 (0.12) 0.91 
(0.16) 

1 .36 0.56 .02 

4 Caudate 2 

 

0.98 (0.13) 0.97 (0.13) 0.95 
(0.14) 

0.01 .6 0.78 .01 

5 Thalamus  

 

0.94 (0.18) 0.93 (0.15) 0.84 
(0.16) 

2.8 .07 0.18 .05 

  

AUDITORY DOMAIN 

 

6 Superior temporal gyrus  

 

0.99 (0.16) 0.99 (0.14) 1.01 
(0.16) 

0.99 .37 0.56 .02 

7 Middle temporal gyrus  

 

0.91 (0.14) 0.95 (0.14) 0.92 
(0.12) 

0.33 .72 0.86 .01 

  

SENSORIMOTOR DOMAIN 

 

8 Postcentral gyrus 1 

 

1.37 (0.17) 1.32 (0.13) 1.23 
(0.17) 

2.55 .08 0.18 .04 

9 
Left postcentral gyrus 

1.29 (0.18) 1.24 (0.15) 1.15 
(0.17) 

6.18 .003 0.02 .1 
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10 Paracentral lobule 1 

 

1.18 (0.17) 1.15 (0.19) 1.05 
(0.18) 

6.25 .003 0.02 .1 

11 Right postcentral gyrus  

 

1.3 (0.19) 1.28 (0.16) 1.15 
(0.19) 

4.57 .01 0.05 .7 

12 Superior parietal lobule  

 

1.2 (0.15) 1.19 (0.18) 1.09 
(0.17) 

2.8 .07 0.18 .05 

13 Paracentral lobule 2 

 

1.11 (0.15) 1.09 (0.18) 0.99 
(0.15) 

3 .05 0.16 .05 

14 Precentral gyrus  

 

1.22 (0.16) 1.23 (0.12) 1.12 
(0.14) 

2.78 .07 0.18 .05 

15 Superior parietal lobule  

 

1.26 (0.13) 1.24 (0.13) 1.17 
(0.18) 

0.5 .61 0.78 .008 

16 Postcentral gyrus 2 

 

1.29 (0.13) 1.26 (0.14) 1.17 
(0.19) 

1.93 .15 0.28 .03 

  

VISUAL DOMAIN 

 

17 Calcarine gyrus  

 

1.31 (0.16) 1.22 (0.16) 1.15 
(0.15) 

6.23 .003 0.02 .1 

18 Middle occipital gyrus  

 

1.19 (0.16) 1.13 (0.16) 1.01 
(0.17) 

5.76 .004 0.03 .09 

19 Middle temporal gyrus  

 

1.2 (0.16) 1.15 (0.13) 1.03 
(0.14) 

6.33 .003 0.02 .1 

20 Cuneus 

 

1.28 (0.17) 1.21 (0.17) 1.12 
(0.16) 

3.79 .03 0.13 .06 

21 Right middle occipital 
gyrus  

 

1.18 (0.14) 1.12 (0.14) 1.01 
(0.14) 

8.46 <.00
0 

0 .13 

22 Fusiform gyrus  

 

1.03 (0.14) 1.01 (0.1) 0.93 
(0.13) 

3 .05 0.16 .05 

23 Inferior occipital gyrus  

 

1.11 (0.14) 1.06 (0.12) 0.94 
(0.15) 

8.25 <.00
0 

0 .12 

24 
Lingual gyrus  

1.25 (0.18) 1.17 (0.17) 1.05 
(0.14) 

7.9 <.00
0 

0 .12 
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25 Middle temporal gyrus  

 

1.04 (0.15) 1.02 (0.12) 0.93 
(0.14) 

2.69 .7 0.86 .04 

  

COGNITIVE CONTROL DOMAIN 

 

26 Inferior parietal lobule 1 

 

1.39 (0.1) 1.37 (0.12) 1.35 
(0.15) 

0.29 .75 0.86 .01 

27 Insula  

 

1.04 (0.12) 1.03 (0.12) 0.97 
(0.14) 

0.7 .5 0.73 .01 

28 Superior medial frontal gyrus  

 

1.16 (0.14) 1.14 (0.13) 1.13 
(0.16) 

0.24 .78 0.86 .004 

29 Inferior frontal gyrus 

 

1.14 (0.1) 1.11 (0.14) 1.07 
(0.15) 

0.18 .83 0.88 .003 

30 Right inferior frontal gyrus  

 

1.21 (0.12) 1.18 (0.13) 1.14 
(0.12) 

0.63 .54 0.73 .01 

31 Middle frontal gyrus  

 

1.2 (0.12) 1.18 (0.12) 1.1 (0.16) 0.48 .62 0.78 .01 

32 Inferior parietal lobule 2 

 

1.37 (0.11) 1.33 (0.1) 1.29 
(0.15) 

1.63 .2 0.33 .03 

33 Left inferior parietal lobule  

 

1.31 (0.14) 1.29 (0.13) 1.23 
(0.14) 

0.08 .93 0.93 .001 

34 Supplementary motor area  

 

1.26 (0.11) 1.2 (0.14) 1.22 
(0.12) 

5.1 .008 0.05 .08 

35 Superior frontal gyrus  

 

1.22 (0.1) 1.19 (0.1) 1.2 (0.14) 1.4 .25 0.4 .02 

36 Middle frontal gyrus 1 

 

1.11 (0.13) 1.1 (0.13) 1.04 
(0.17) 

.21 .81 0.88 .004 

37 Hippocampus 1 

 

0.77 (0.14) 0.79 (0.11) 0.76 
(0.12) 

.13 .88 0.91 .002 

38 Left inferior parietal lobule  

 

1.29 (0.11) 1.23 (0.13) 1.22 
(0.14) 

2.62 .08 0.18 .04 

39 Middle cingulate cortex  1 (0.13) 0.98 (0.14) 0.9 (0.15) 2.37 .1 0.2 .04 
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40 Inferior frontal gyrus  

 

1.12 (0.12) 1.06 (0.12) 1.01 
(0.15) 

3.37 .04 0.15 .06 

41 Middle frontal gyrus 2 

 

1.06 (0.14) 1.06 (0.14) 0.96 
(0.14) 

1.73 .18 0.32 .03 

42 Hippocampus 2 

 

0.83 (0.12) 0.87 (0.14) 0.81 
(0.18) 

0.29 .75 0.86 .01 

 

DEFAULT MODE DOMAIN 

 

43 Precuneus 1 

 

1.25 (0.1) 1.2 (0.11) 1.15 
(0.15) 

1.7 .19 0.32 .03 

44 Precuneus 2 

 

1.16 (0.12) 1.13 (0.08) 1.09 
(0.12) 

2 .14 0.27 .03 

45 Anterior cingulate cortex 1 

 

1.1 (0.11) 1.09 (0.1) 1.02 
(0.15) 

0.62 .54 0.73 .01 

46 Posterior cingulate cortex 1 

 

0.96 (0.12) 0.98 (0.13) 0.97 
(0.16) 

0.26 .77 0.86 .004 

47 Anterior cingulate cortex 2 

 

1.04 (0.14) 1.03 (0.13) 1.01 
(0.18) 

0.12 .89 0.91 .002 

48 Precuneus 3 

 

1.18 (0.14) 1.17 (0.11) 1.08 
(0.13) 

1.8 .17 0.31 .03 

49 Posterior cingulate cortex 2 

 

1.36 (0.11) 1.37 (0.12) 1.31 
(0.14) 

0.63 .54 0.73 .01 

 

CEREBELLAR DOMAIN 

 

50 Cerebellum 1 

 

0.98 (0.17) 0.95 (0.16) 0.87 
(0.17) 

2.71 .07 0.18 .04 

51 Cerebellum 2 

 

1.1 (0.14) 1.04 (0.16) 0.98 
(0.15) 

3.49 .03 0.13 .06 

52 Cerebellum 3 

 

0.89 (0.16) 0.91 (0.17) 0.8 (0.17) 3.25 .04 0.15 .05 
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53 Cerebellum 4 

 

1.02 (0.14) 0.98 (0.18) 0.91 
(0.14) 

2.99 .05 0.16 .05 

 

Direct group comparisons revealed that ASD exhibited significantly smaller H values 
(i.e., reduced E/I ratio) compared to TD in areas of the Visual network (i.e., calcarine 
gyrus, right middle occipital gyrus, and lingual gyrus), Cognitive Control network (i.e., 
supplementary motor area, left inferior parietal lobule, and inferior frontal gyrus), and 
Default Mode network (i.e., precuneus). Significantly smaller H values (i.e., reduced 
E/I ratio) were also found in SZ compared to TD in areas of the Subcortical domain 
(i.e., caudate, putamen, and thalamus), the entire Sensorimotor domain (i.e., 
precentral and postcentral gyrus, paracentral lobule, superior parietal lobule, and 
middle occipital gyrus), the entire Visual domain (i.e., calcarine, fusiform, inferior 
occipital and lingual gyrus, cuneus, middle occipital and temporal gyrus), some areas 
of the Cognitive Control domain (i.e., insula, inferior and middle frontal gyrus, inferior 
parietal lobule, and middle cingulate cortex), some areas of the Default Mode 
domain (i.e., precuneus and anterior cingulate cortex), and the entire Cerebellar 
domain. Finally, significantly larger H values (i.e., reduced E/I ratio) were found in 
ASD compared to SZ in areas of the Subcortical network (putamen and thalamus), 
the entire Sensorimotor domain (i.e., precentral and postcentral gyrus, paracentral 
lobule, superior parietal lobule, and middle occipital gyrus), the Visual domain 
(fusiform, inferior occipital and lingual gyrus, cuneus, middle occipital and temporal 
gyrus), some areas of the Cognitive Control domain (middle and inferior frontal 
gyrus, and middle cingulate gyrus), some areas of the Default Mode domain 
(precuneus and anterior cingulate cortex), and two areas of the Cerebellar domain. 
The statistical values for all the above-listed findings are listed in Table 3. 

Table 3. Group differences in Hurst exponent (H) per component, as calculated using two-sided two-
sample Welch t-tests. Both uncorrected and false discovery rate corrected p values are provided, as 
well as Hedge’s g effect sizes. Degrees of freedom (df) are provided in parentheses, next to the t 
values. 

  

 

TD > ASD TD > SZ ASD > SZ 

IC no. t(df)  

  

p unc pfdr g t(df)   p 
unc. 

pfdr g t(df)   p unc. pfdr g 

 

SUBCORTICAL DOMAIN 

 

1 Caudate 1 

 

1.88 
(69.83)     

.06 0.35 0.4 2.82 
(83.2) 

.006 0.01 0.58 0.92 
(66.32) 

.36 0.44 0.22

2 Subthalamus/hypothalamus 

 

-1.33 
(65.54) 

.19 0.5 -0.29 1.83 
(87.67) 

.07 0.09 0.37 2.96 
(62) 

.004 0.02 0.71

3 
Putamen  

-0.2 
(65.16) 

.85 0.88 -0.04 2  .05 0.07 0.43 2.03 
(66.95) 

.05 0.09 0.47
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 (74.75) 

4 Caudate 2 

 

0.43 
(59.17) 

.67 0.84 0.1 1 

(76.95) 

.33 0.38 0.21 0.47 
(64.85) 

.64 0.71 0.11

5 Thalamus  

 

0.39 
(70.27) 

.7 0.84 0.08 2.76 
(88.28) 

.007 0.01 0.56 2.24 
(64.1) 

.03 0.06 0.53

 

AUDITORY DOMAIN 

 

6 Superior temporal gyrus  

 

0.18 
(65.02) 

.86 0.88 0.04 -0.36 
(80.57) 

.72 0.73 -0.08 -0.49 
(65.73) 

.63 0.71 -0.12

7 Middle temporal gyrus  

 

-1.27 
(61.56) 

.21 0.53 -0.28 -0.54 
(88.77) 

.59 0.64 -0.11 0.81 
(58.29) 

.42 0.49 0.2 

 

SENSORIMOTOR DOMAIN 

 

8 Postcentral gyrus 1 

 

1.5 
(73.27) 

.14 0.47 0.31 3.83 
(80.59) 

<.00
0 

0 0.8 2.4  

(67) 

.02 0.05 0.56

9 Left postcentral gyrus 

 

1.42 
(66.98) 

.16 0.47 0.31 3.98 
(83.22) 

<.00
0 

0 0.82 2.36 
(65.42) 

.02 0.05 0.56

10 Paracentral lobule 1 

 

0.76 
(53.5) 

.45 0.77 0.18 3.73 
(78.64) 

<.00
0 

0 0.78 2.32 
(60.4) 

.02 0.05 0.56

11 Right postcentral gyrus  

 

0.54 
(68.6) 

.59 0.79 0.12 3.91 
(82.34) 

<.00
0 

0 0.81 3.17 
(66.24) 

.003 0.02 0.75

12 Superior parietal lobule  

 

0.26 
(53.33) 

.8 0.87 0.06 3.22 
(76.31) 

.002 0 0.68 2.39 
(61.74) 

.02 0.05 0.58

13 Paracentral lobule 2 

 

0.5 
(53.33) 

.6 0.79 0.12 3.87 
(84.4) 

<.00
0 

0 0.8 2.57 
(56.05) 

.02 0.05 0.63

14 Precentral gyrus  

 

-0.35 
(74.22) 

.73 0.84 -0.73 3.15 
(86.1) 

.002 0 0.65 3.45 
(66.6) 

<.000 0 0.81

15 Superior parietal lobule  

 

0.58 
(59.58) 

.56 0.79 0.13 2.77 
(65.3) 

.007 0.01 0.61 2.04 
(66.83) 

.05 0.09 0.47

16 Postcentral gyrus 2 

 

0.97 
(57.13) 

.34 0.77 0.22 3.39 
(63.43) 

.001 0 0.75 2.26 
(66.88) 

.03 0.06 0.52

 

VISUAL DOMAIN 
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17 Calcarine gyrus  

 

2.64 
(61.68) 

.01 0.35 0.59 5 

(87.27) 

<.00
0 

0 1 1.77 
(59.89) 

.08 0.14 0.43

18 Middle occipital gyrus  

 

1.47 
(60.96) 

.15 0.47 0.33 4.93 
(78.86) 

<.00
0 

0 1 3  

(64.83) 

.004 0.02 0.71

19 Middle temporal gyrus  

 

1.59 
(68.33) 

.12 0.47 0.34 5.66 
(87.42) 

<.00
0 

0 1 3.7 
(63.74) 

<.000 0 0.88

20 Cuneus 

 

1.89 
(58.58) 

.06 0.35 0.43 4.88 
(85.75) 

<.00
0 

0 1 2.27 
(59.1) 

.03 0.06 0.55

21 Right middle occipital 
gyrus  

 

1.98 
(57.13) 

.05 0.35 0.45 6  

(80.41) 

<.00
0 

0 1.26 3.24 
(61.88) 

.002 0.02 0.78

22 Fusiform gyrus  

 

0.78 
(75.36) 

.44 0.77 0.16 3.58 
(85.74) 

<.00
0 

0 0.73 2.83 
(66.86) 

.006 0.03 0.66

23 Inferior occipital gyrus  

 

1.73 
(65.92) 

.09 0.47 0.38 5.67 
(79.31) 

<.00
0 

0 1.19 3.66 
(66.36) 

<.000 0 0.86

24 Lingual gyrus  

 

2.04 
(62.82) 

.05 0.35 0.45 6.1  

(91) 

<.00
0 

0 1.21 3.18 
(55.96) 

.002 0.02 0.78

25 Middle temporal gyrus  

 

0.8 
(71.27) 

.43 0.77 0.17 3.67 
(85.35) 

<.00
0 

0 0.75 2.76 
(66.05) 

.007 0.03 0.65

 

COGNITIVE CONTROL DOMAIN 

 

26 Inferior parietal lobule 1 

 

0.7 
(49.47) 

.49 0.79 0.17 1.16 
(61.1) 

.25 0.3 0.26 0.41 
(66.59) 

.69 0.71 0.1 

27 Insula  

 

0.53 
(61.49) 

.6 0.79 0.12 2.45 
(74.89) 

.02 0.03 0.52 1.73 
(66.36) 

.09 0.14 0.41

28 Superior medial frontal 
gyrus  

 

0.54 
(61.29) 

.6 0.79 0.12 0.94 
(72.17) 

.35 0.39 0.2 0.39 
(66.82) 

.7 0.71 0.1 

29 Inferior frontal gyrus 

 

0.88 
(47) 

.39 0.77 0.22 2.26 
(61.9) 

.03 0.04 0.5 1.1 
(65.25) 

.28 0.37 0.26

30 Right inferior frontal 
gyrus  

 

1.21 
(55.76) 

.23 0.55 0.28 2.59 
(80.7) 

.01 0.01 0.54 1 

(60.74) 

.32 0.41 0.24

31 Middle frontal gyrus  

 

0.83 
(60.78) 

.41 0.77 0.19 3.35 
(66.88) 

.001 0 0.73 2.37 
(66.89) 

.02 0.05 0.55

32 Inferior parietal lobule 2 

 

1.46 
(61.83) 

.15 0.47 0.32 2.84 
(65.08) 

.006 0.01 0.62 1.47 
(66.39) 

.15 0.2 0.34

33 Left inferior parietal 
lobule  

0.81 
(64.79) 

.42 0.77 0.18 2.75 
(81.92) 

.008 0.01 0.57 1.72 
(65.12) 

.09 0.14 0.41
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34 Supplementary motor 
area  

 

2.26 
(50.17) 

.03 0.35 0.54 1.68 
(79.22) 

.1 0.12 0.36 -0.81 
(57.13) 

.42 0.49 -0.2 

35 Superior frontal gyrus  

 

1.6  

(58.8) 

.11 0.47 0.36 1 
(65.29) 

.3 0.35 0.22 -0.39 
(66.92) 

.7 0.71 -0.09

36 Middle frontal gyrus 1 

 

0.28 
(60.63) 

.78 0.86 0.06 2.2 
(66.52) 

.03 0.04 0.48 1.77 
(66.86) 

.08 0.14 0.41

37 Hippocampus 1 

 

-0.55  

(69) 

.58 0.79 -0.12 0.43 
(86.83) 

.67 0.7 0.09 0.94 
(64.45) 

.35 0.44 0.22

38 Left inferior parietal 
lobule  

 

2.3 
(53.29) 

.03 0.35 0.54 2.73 
(69.5) 

.008 0.01 0.6 0.32 
(65.23) 

.75 0.75 0.08

39 Middle cingulate cortex  

 

0.57 
(53.56) 

.57 0.79 0.13 3.41 
(73.54) 

.001 0 0.73 2.31 
(63.48) 

.02 0.05 0.55

40 Inferior frontal gyrus  

 

2.1  

(59.5) 

.05 0.35 0.47 3.8 
(68.83) 

<.00
0 

0 0.82 1.67 
(66.97) 

.1 0.15 0.39

41 Middle frontal gyrus 2 

 

0.16 
(61.37) 

.88 0.88 0.035 3.27 
(81.17) 

.002 0 0.68 2.73 
(63.92) 

.008 0.04 0.65

42 Hippocampus 2 

 

-1.4 
(54.7) 

.17 0.47 -0.33 0.43 
(61.34) 

.67 0.7 0.1 1.46 
(66.9) 

.15 0.2 0.34

 

DEFAULT MODE DOMAIN 

 

43 Precuneus 1 

 

1.97 
(56.16) 

.05 0.35 0.45 3.39 
(62.92) 

.001 0 0.75 1.45 
(66.93) 

.15 0.2 0.34

44 Precuneus 2 

 

1.48 
(79.1) 

.14 0.47 0.3 2.86 
(79.23) 

.005 0.01 0.6 1.66 
(65.1) 

.01 0.04 0.38

45 Anterior cingulate cortex 
1 

 

0.4  

(64.7) 

.69 0.84 .09 2.85 
(69.47) 

.006 0.01 0.62 2.32 
(66.74) 

.02 0.05 0.54

46 Posterior cingulate cortex 1 

 

-0.72 
(54.78) 

.48 0.79 -0.17 -0.31 
(67.64) 

.76 0.76 -0.07 0.33 
(66.4) 

.7 0.71 0.08

47 Anterior cingulate cortex 2 

 

0.15 
(66.27) 

.88 0.88 0.03 0.91 
(70.6) 

.37 0.41 0.2 0.73 
(66.67) 

.47 0.54 0.17

48 Precuneus 3 

 

0.45 
(73.98) 

.66 0.84 .09 3.49 
(85.08) 

<.00
0 

0 0.72 3 

(66.76) 

.004 0.02 0.7 

49 Posterior cingulate cortex 2 

 

-0.28 
(54.68) 

.78 0.86 -0.07 1.72 
(68.94) 

.09 0.11 0.37 1.71 
(66) 

.09 0.14 0.4 
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3.3. Classification accuracy 

Using the “misclassification” criterion, we obtained the following classification 
accuracy on the test set for each of the five models: (a) 50%; (b) 64%; (c) 78%; (d) 
78%, and (e) 85%. A comparison of classification accuracy across models is 
illustrated in Figure 1 below, displaying the receiver operating characteristic (ROC) 
for each model. 

The best learner classification trees produced during training for each of the five 
models are also illustrated in Supplement Figure 2. Each hyperplane shows the 
features that most contributed to achieving a maximal training performance, as well 
as their respective weights. 
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Figure 1. Receiver operating characteristic (ROC) for each model. Note that there is only one inflection point in each ROC 
curve because for all five classification instances the decision tree achieved its best performance by splitting only once. AUC: 
area under the curve; ADOS: Autism Diagnostic Observation Schedule; PANSS: Positive and Negative Syndrome Scale; EQ: 
Empathy Quotient; BVAQ: Bermond–Vorst Alexithymia Questionnaire; IQ: Intelligence Quotient. [could you do this for more 
thresholds to get smoother curves? 

 

For each classification instance, we also inspected the contribution of each feature 
included in that respective model. More specifically, for each model, a ranking 
reflects each feature’s overall contribution, or ‘importance’, to the classification 
accuracy during training. These feature importance values per model are 
summarized in Supplement Table 2. For an overview of feature importance across 
all five models, we refer the reader to Figure 2. In order to account for the different 
number of features included in each model we scaled the feature importance values 
in Figure 2 by multiplying raw importance values for each feature (i.e., in Supplement 
Table 2) by the number of features included in that model. We chose this approach 
to improve interpretability of importance values when all five models are visualized 
together in the stacked bar plots of Figure 2. 
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Figure 2. Scaled importance values of features across all five models. The x axis displays scaled importance values (i.e., 
obtained by multiplying raw importance values from Table 5 by the number of features in the model from which the values were 
obtained). On the y axis, feature names are displayed; the ones represented by numbers reflect the NeuroMark components 
from which the H values were computed (with corresponding labels given in Table 2). The other abbreviated feature labels on 
the y axis reflect the following phenotypic measures: PANSS_P = PANSS positive total; PANSS_N = PANSS negative total; 
PANSS_G = PANSS general total; BVAQ_Ana = BVAQ analyzing; BVAQ_Emo = BVAQ emotionalizing. Features which did not 
have a contribution > 0 are not shown in this plot, but are listed in Table 5 in the Supplement. 

Discussion 

The current paper assessed the feasibility of using the E/I ratio, as estimated by the 
H exponent, to distinguish between ASD and SZ. Of primary interest was to compare 
the classification accuracy of the two patient groups when different sets of clinical, 
phenotypic and imaging features were combined. We obtained an increasingly 
higher classification accuracy (see Figure 1) as we integrated the neuroimaging and 
phenotypic features, with the lowest performance being given by model (a), 
containing ADOS and PANSS scores only (50% testing accuracy) and the highest by 
model (e), containing H, ADOS, PANSS, BVAQ, EQ and IQ (85% testing accuracy). 
The second to last classification accuracy was achieved by model (b), containing 
PANSS, ADOS, BVAQ, EQ and IQ (64% testing accuracy). Next, a classification 
accuracy of 78% testing accuracy was achieved by both model (c), using H only, and 
by model (d), combining H with ADOS and PANSS. We note that comparing 
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classification models of different complexity (i.e., number of features) can be 
problematic, especially with conventional classification tree algorithms, due to their 
greedy nature (i.e., maximizing local, but not global performance). With OCT, 
however, this limitation is contained given the optimized trade-off between model 
accuracy and complexity by fitting the tree within one global step. 

Despite the SZ group showing significantly higher PANSS symptom severity,BVAQ 
fantasizing and EQ scores as well as lower IQ scores compared to the ASD group, 
using clinical and phenotypic measures alone allowed only chance-level 
classification accuracy. Previous data has shown that PANSS and ADOS do not 
excel at distinguishing between ASD and SZ, but positive symptom severity does 
tend to perform better (Bastiaansen et al., 2011; Trevisan et al., 2020). Indeed, in our 
analysis PANSS-positive scores contributed more than PANSS-negative and general 
scores to the group discriminability across the models including these features (i.e., 
a, b, d and e). Additionally, a recent comprehensive meta-analysis comparing social 
cognitive performance between SZ and ASD revealed no significant group 
differences with respect to either theory of mind or emotion processing (Oliver et al., 
2020). Finally, the BVAQ has recently been shown to have a sub-optimal factor 
structure upon which improvements can be made (Williams & Gotham, 2021). In our 
sample, only the fantasizing dimension of the BVAQ reflected significant group 
differences between the patient samples, while the analyzing and the emotionalizing 
dimensions contributed, albeit modestly, to the classification of the ASD and SZ 
samples. Empathy scores also contributed relatively highly to distinguishing between 
the two clinical groups, and similarly to previously reported results (Pepper et al., 
2019), the ASD in our sample scored significantly lower on self-reported empathy 
compared to both SZ and TD. 

The group differences that were statistically significant reflected decreased H values 
(i.e., increased E/I ratio) in ASD compared to TD, which is in line with previous 
findings (e.g., Lai et al., 2010; Trakoshis et al., 2020). Likewise, we found decreased 
H values in SZ compared to TD, indicating an increased E/I ratio, as was previously 
reported by Sokunbi et al. (2014). This finding supports previous results showing a 
disruption of inhibitory transmission in SZ (Purves-Tyson et al., 2021; Taylor & Tso, 
2015). Finally, in our sample, ASD exhibited increased H (i.e., reduced E/I ratio) 
compared to SZ. To the best of our knowledge, no previous studies have directly 
compared the E/I ratio, as estimated via H, between these two clinical samples.  

The brain networks whose E/I ratio contributed the most to patient classification were 
the Visual network (the middle temporal gyrus and the right middle occipital gyrus, 
corresponding to ICs 19 and 21; see Figure 2), the Subcortical network 
(thalamus/hypothalamus — IC 2), the Cognitive Control domain (the inferior parietal 
lobule — IC 26, and the Sensorimotor domain (the precentral gyrus, corresponding 
to IC 14). These areas have been previously documented to reflect effects (e.g., 
dysconnectivity, decrease in cognitive performance) linked to E/I imbalance in both 
ASD and SZ. In ASD, a study combining fMRI with Proton Magnetic Resonance 
Spectroscopy (MRS) showed a negative correlation between increased levels of 
excitatory metabolites and decreased functional connectivity between the dorsal 
anterior cingulate cortex and the insula, parietal and limbic regions, while this 
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association was positive in controls (Siegel-Ramsay et al., 2021). A link between 
altered GABAergic neurotransmission in visual areas and diminished binocular 
rivalry in ASD has also been established with the help of MRS (e.g., Robertson et al., 
2016). Increased levels of glutamatergic metabolites in the dorsal anterior cingulate 
cortex have previously been linked to poorer social functioning in ASD compared to 
TD (Cochran et al., 2015). In SZ, Dempster et al. (2015) showed that increased 
levels of excitatory metabolites in the dorsal anterior cingulate cortex and the 
thalamus, as measured with MRS, correlated negatively with executive functioning 
performance. Increased levels of excitatory metabolites in these same areas have 
also been shown to positively correlate with increased severity of negative symptoms 
and decreased global functioning (Egerton et al., 2012). Additionally, disrupted 
thalamo-cortical inhibitory control has been shown to negatively impact sustained 
attention and thus lead to increased distractibility (John et al., 2018).  

A limitation inherent to the top-down approach we took in this study is that diagnosis 
overlap between ASD and SZ cannot be fully characterized given the a priori 
reliance on clinically pre-defined group labels (Moreau et a., 2021), especially due to 
the heterogeneity of ASD and SZ (Port, Oberman & Roberts, 2019; Benkarim et al., 
2022). For example, it has been shown that the relationship between the E/I balance 
and the cerebro-cerebellar functional connectivity in ASD is not uniform across 
samples (Hegarty et al., 2018), therefore a bottom-up approach in a larger sample 
would be extremely valuable to inform on different E/I-based clinical subtypes. In 
addition, due to the small number of female participants, we were unable to assess 
sex differences in the current study. This is a particularly relevant aspect to be 
addressed in future studies, as sex-specific effects of GABA concentrations have 
been reported in ASD, with higher concentrations found in males compared to 
females (Fung et al., 2021). At the same time, rsfMRI studies have reported 
decreased H values in ASD males, but not females, in prefrontal areas, compared to 
controls (Trakoshis et al., 2020). Finally, it has been shown that H values 
differentially change in various brain areas as a natural consequence of healthy 
aging. For example, Wink et al., (2016) showed that with age H increased in the 
hippocampus, while Dong et al. (2018) showed a decrease of H in the left insula, 
bilateral parahippocampal gyrus, left superior temporal gyrus, and bilateral superior 
temporal pole, concomitant with an increase of H in the left angular gyrus and the left 
superior parietal gyrus. At the same time, interactions between age and sex have not 
been definitively established (for a summary, see Dong et al., 2018). Future studies 
should investigate the long-term changes in H in patient groups, some of which, such 
as SZ, have been shown to exhibit premature brain aging (e.g., Chen et al., 2020). 
Finally, since the co-occurrence of epilepsy and ASD is considerable (> 4 %; 
Strasser et al., 2017), we chose to exclude participants with a history of epilepsy. 
However, since the E/I ratio has been shown to be perturbed in ASD populations 
who have epilepsy (Bozzi, Provenzano and Casarosa, 2017), it would be interesting, 
as a future direction, to see how the H can be used to capture even more specific E/I 
group differences in ASD with and without epilepsy. 

In conclusion, in the current study, we explored how the E/I ratio, as estimated via H, 
can contribute to the differential diagnosis of ASD and SZ. In addition, we used a 
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novel interpretable machine learning approach, OCT, to classify the two groups 
based on various sets of features. We showed that H alone is superior to traditional 
observational clinical tools with respect to classification accuracy, and that 
differential diagnosis can be best achieved when neuroimaging features are 
combined with certain traditional clinical scores. In summary, our study highlights the 
potential for the E/I ratio and H to serve in developing personalized psychiatric tools 
for differential diagnosis. 
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