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Abstract 

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and phonic tics, which 

several different theories, such as basal ganglia-thalamo-cortical loop dysfunction and amygdala 

hypersensitivity, have sought to explain. Previous research has shown dynamic changes in the brain 

prior to tic onset leading to tics, and this study aims to investigate the contribution of network dynamics 

to them. For this, we have employed three methods of functional connectivity to resting-state fMRI data 

- namely the static, the sliding window dynamic and the ICA based estimated dynamic; followed by an 

examination of the static and dynamic network topological properties. A leave-one-out (LOO-) 

validated regression model with LASSO regularization was used to identify the key predictors. Most 

relevant predictors were related to regions belonging to the amygdala-mediated visual social processing 

network. This is in line with a recently proposed social decision-making dysfunction hypothesis, 

opening new horizons in understanding tic pathophysiology. 
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Introduction 

Tourette syndrome (TS) is a complex and chronic neuropsychiatric disorder that presents itself with 

other comorbidities, such as attention deficit disorder (ADHD) and obsessive-compulsive disorder 

(OCD), in up to 90% of cases (1, 2). This neurodevelopmental condition is characterized by involuntary 

movements and vocalizations, known as tics, often present along with emotional and social disturbances 

(2). There is a growing tendency to understand complex neuropsychiatric disorders such as TS as a 

network problem rather than as isolated disturbances in specific brain regions (3). For this reason, the 

interplay within and between large-scale brain networks through the means of brain connectivity 

analyses is gaining particular interest. Abnormal patterns of static functional connectivity in different 

brain circuits have been shown in TS (4–6), and several different theories, such as failure of network 

maturation (7), lack of inhibition (8), basal ganglia circuits dysfunction (4) and amygdala dysfunction 

(9), have tried to explain the different dimensions of the disorder independently. However, several 

cardinal features, such as the nature of the tics, lifetime prevalence of the disorder and gender disparity, 

remain unexplained by these different theories. A more recent hypothesis proposes TS to be a disorder 

of the social decision-making network (SDM) (10), bringing together all the previous models and 

unexplained cardinal features under one umbrella. This hypothesis puts forth the idea that TS is a 

disorder of social communication resulting from developmental abnormalities at several levels of the 

SDM (10). 

The gold standard for assessing the severity of tics in patients with TS and other tic disorders is the Yale 

global tic severity scale (YGTSS). It evaluates the number, frequency, intensity, complexity, and 

interference of motor and phonic symptoms (11). It is a semi-structured interview followed by a 

questionnaire which results in five different ratings: total motor tic score, total verbal tic score, total tic 

score (motor + verbal), overall impairment rating, which reflects the impact of tics on their daily lives 

and activities and a global severity score. The global score is determined by adding together the total 

motor, verbal and impairment scores and ranges from 0-100. In clinical practice, the YGTSS is used to 

track changes in tic behaviour or to monitor treatment outcomes (12). A recent study has shown YGTSS 

to be robust against the effects of comorbidities such as OCD and ADHD, making it a good choice to 

investigate the pathophysiology of tics independently of other comorbidities (13). 

Dynamic functional connectivity (DFC) refers to the analysis of functional connectivity changes over 

time. It is effective in capturing temporal variations in spatial connectivity, enabling the identification 

of different mental states at rest (14). Several studies have shown this method to be useful in identifying 

transient states of mindfulness and mind-wandering(14), and aberrant transient states in schizophrenia 

(15) and traumatic brain injury (16).  

There are multiple approaches for obtaining the DFC from fMRI data. The most common approach is 

the use of a sliding-window to capture connectivity in short time periods for the whole duration of the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.24.22275371doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.24.22275371


4 
 

scan. This approach is useful in reliably capturing slow dynamics as the frequency is limited by temporal 

smoothing, i.e., the length of the sliding window. Typically recommended window lengths range from 

20 to 30 times the repetition time of the fMRI sequence (17). Another more recent approach to DFC is 

an estimated form of DFC as opposed to the direct sliding window approach. This is obtained via a 

group level ICA decomposition of static connectivity, followed by a generalized psycho-physiological 

interaction model (gPPI ) back-projection (18). Although an estimated form, this method allows noise 

ICA components to be removed, enabling better signal-to-noise ratio, while also making it possible to 

investigate instantaneous connectivity and faster dynamics. This is especially relevant for TS as patients 

can experience tics at any point in time, and this sudden onset of tics may be attributed to sudden 

network switching; it would not be possible to capture this with the standard static network approach. 

The sudden onset of tics during the resting state has been monitored using a video camera system (19), 

and changes in brain activation patterns from 2 seconds before tic onset until the actual tic onset have 

been shown in previous studies (20). 

The assessment of network topological properties of the brain allows us to understand the organization 

and communication strategies employed by the brain. Previous studies on TS have shown  disruptions 

in the balance between local specialization and global integration mechanisms in whole brain-structural 

networks (21) and defects in network maturation, reflected by losses of hub regions in resting-state 

cortico-basal ganglia functional networks (6). Classical static functional networks show the overall 

picture of functional organization (division of roles, designation of subnetworks for specialized 

information processing etc.) in the brain (18, 22–28). However, they lack information about transients 

or fluctuations in network organization. To bridge this gap, there is growing interest in the temporal 

network organization or the dynamic graph theory approach (29). This approach offers temporal 

equivalents of the static graph metrics, and applying it in conjunction with DFC enables the 

characterization of functional network dynamics. Being a relatively new technique, this study is the first 

of its kind to investigate its importance in TS. 

With converging evidence showing TS as a network disorder and the need to obtain a complete picture 

of tic pathophysiology, the investigation of network dynamics seems to be a crucial step. Therefore, in 

this study, we have examined the ability of direct and indirect dynamic network metrics to predict tic 

severity.  
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Results 

Data scope 

Imaging data comprising structural MRI, resting-state fMRI, task fMRI and diffusion MRI were 

acquired from 36 adult TS patients at a 1.5T Siemens scanner as described in (20). Data quality was 

inspected based on completeness of demographic information, susceptibility and coverage artefacts and 

length of the scrubbing vector (i.e. no. of valid scans > 50%), and poor-quality data were excluded from 

further analyses. Hereafter, resting-state fMRI data from 17 adult TS  patients were preprocessed using 

the standard preprocessing procedures described in the Methods section and corrected for artefacts. The 

patient demographic information and distribution of the YGTSS can be found in Table 1. 

Table 1 Demographic information 

Age range Gender Medication YGTSS Comorbidities 

41-45 f - 33  

36-40 m - 68  

21-25 m 10 mg ESC 40  

21-25 f - 57  

41-45 m 200 mg TIA 59  

56-60 f 40 mg CIT, 400 mg CBZ 63 OCD 

46-50 f - 46  

46-50 m - 54  

26-30 m - 17  

36-40 m 200 mg AMS, 50 mg TIA 80 OCD 

21-25 m - 2  

26-30 m - 63 OCD, ADHD 

21-25 m 20 mg CIT, 200 mg TIA 66 OCD 

26-30 m 50 mg TRIM 44  

21-25 f 10 mg ARI, 20 mg FLX 27  

16-20 m 80 mg ZPR 60  

21-25 m - 62  

 

CIT – CITALOPRAM, CBZ – CARBAMAZEPINE, PIM – PIMOZIDE, MPH – METHYLPHENIDATE, TIA – TIAPRIDE, AMS – 

AMISULPIRIDE, TRIM – TRIMIPRAMINE, FLX – FLUOXETINE, ZPR – ZIPRASIDONE, ARI – ARIPIPRAZOLE, ESC - 

ESCITALOPRAM 

OCD – OBSESSIVE-COMPULSIVE DISORDER, AHDH – ATTENTION DEFICIT HYPERACTIVITY DISORDER 

 

Connectivity estimation 

The brain was divided into 105 regions of interest (ROIs) covering the cortical and subcortical areas 

(based on the Harvard-Oxford cortical and subcortical atlases), and the average time series of each ROI 

was computed. Three types of functional connectivity were computed from each ROI time series, 

namely: 

- The static functional connectivity (sFC), which was obtained by applying a weighted GLM 

model (bivariate correlation with hrf weighting) to pairs of ROIs.  
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- The sliding window dynamic connectivity (dSW), which was obtained by temporal 

decomposition of the ROI time series into sliding windows of length 100s and overlap 75s 

followed by the computation of bivariate Pearson’s correlation in each sliding window.  

- The ICA based dynamic functional connectivity (dICA), which was obtained by group ICA 

decomposition of the time series of all the subjects followed by gPPI back projection of the 

independent components to obtain the ROI BOLD responses. The data were decomposed into 

20 ICs, and temporal smoothing was applied for 10s. The connectivity ICs arranged in the order 

of increasing kurtosis can be found in Figure 1. The top 5 ICs in the figure were removed 

before back-projection and dynamic functional connectivity estimation (ICs with kurtosis < 3 

were removed; images with low spatial kurtosis yield noise components by identifying 

uniformly distributed or global connectivity). 

 

 

 

Calculation of network measures 

The connectivity estimates were used to investigate network properties in the brain. Classical static 

network theory was applied to the static functional connectivity, and a newer dynamic network theory 

was applied to the dynamic functional connectivity. Both approaches used binarized adjacency 

matrices, and the binarization threshold was chosen as 0.45 for the correlation coefficient between two 

ROIs. Thus connections >0.45 or <-0.45 were retained as 1s and others were converted to 0s. This 

threshold was chosen to retain the maximum number of connections while at the same time obtaining a 

Figure 1: Spatial properties of ICs obtained. The matrices are fully connected, but only connections with z-

score > 2 have been displayed. The first five ICs with low spatial kurtosis (<3) were removed before back 

projection and estimation of the dynamic functional connectivity. 
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small world distribution (maximum separation between a random graph and a regular lattice), after 

inspecting the variable threshold explorer in CONN v20.b. The static network distribution, along with 

the comparison of regular versus a random graph for different thresholds, can be found in Figure 2. To 

maintain consistency, the same threshold was used for obtaining the dynamic networks. The static and 

dynamic network measures average path length, clustering coefficient/temporal correlation coefficient, 

betweenness centrality and small worldness were calculated for each ROI for each subject. The mean 

and standard deviation of the network measures for each subject can be found in Figure 3.  

 

 

 

Figure 2: Threshold determination for static network. Variable threshold explorer in CONN v20.b. As 

we can see, the separation between a random graph and lattice can be best observed between the 

threshold values 0.4 to 0.6. A value of 0.45 was chosen to retain as many connections as possible while 

maintaining optimal separation. 
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Figure 3: Distribution of network measures. (A) mean and standard deviation of the static, slow 

dynamic and fast dynamic average path length, clustering coefficient/temporal correlation coefficient 

and betweenness centrality of all subjects. (B) Stem plot of the static, slow dynamic and fast dynamic 

network small worldness. 
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Predicting tic severity using LASSO regression 

A predictor model for tic severity was created by applying linear regression with LASSO regularization 

to the network measures. This was preceded by a feature pre-selection step in which the Kendall’s tau 

between each measure of each ROI and the YGTSS was computed, and those with a p-uncorrected < 

0.05 were selected for the regression model. Gender and medication were used as additional binary 

covariates for the model. The leave one out validated LASSO regression model yielded a minimum 

mean squared error (MSE) of 0.55 at a lambda (positive regularization parameter) of 0.019 (Figure 

4(A)). Figure 4(B) shows the line between the predicted YGTSS and the actual YGTSS using this value 

of lambda. The coefficient of determination (R2), representing the goodness of fit, was found to be 0.97.  

 

 

 

Feature space examination 

Upon inspecting the feature space obtained by the model, eight predictors were identified, all at the 

region level, seven of which were dynamic network measures, and one was a static measure (Table 1). 

The clustering coefficient/ temporal correlation coefficient (CC/tCC) was the most relevant measure, 

with five out of eight identified features involving this measure. Two of the features involved the 

temporal betweenness centrality (tBC). Lastly, one of the identified features involved the average 

temporal path length (tAPL). The network-level features, the small worldness (SW) and the temporal 

Figure 4: Results of prediction model. (A) mean squared error (MSE) with error bars for LOO-

validation of LASSO regression for different values of lambda. The value of lambda with the minimum 

MSE (shown by the green line) was chosen as the optimal model, and the predicted YGTSS was plotted 

against the actual YGTSS as shown in (B). The coefficient of determination (R2), representing the 

goodness of fit, was found to be 0.97 
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small worldness (tSW), were not significantly correlated with the YGTSS during the feature selection 

step and thus were not included in the regression model. Both binary predictors, gender and medication, 

were reflected by the model in predicting tic severity; however they had very low weights (-0.15, 0.12 

and 0.02, 0.001, respectively), indicating a small effect. The specific regions and the corresponding 

features are explained in further detail in the following subsections. 

 

- The static network (sFC network) 

Only one of the predictors selected by the model belonged to the sFC network. This was the clustering 

coefficient of the right superior lateral occipital cortex (sLOC r). The Kendall’s correlation coefficient 

with the YGTSS was -0.37, and its weight in the model was -0.20. The static clustering coefficient is a 

measure of functional segregation, and a high value indicates a densely interconnected subnetwork 

organization engaged in specialized functioning. Thus, a negative correlation to the YGTSS  sFC 

network indicates that a reduction in the functional segregation of the sLOC r may be associated with 

tics. The sLOC r was visualized on a 3D brain surface and can be seen in Figure 5(A). 

 

- The direct slow dynamic network (dSW network) 

Five of the eight identified predictors belonged to the dSW network. Of these, three were the temporal 

correlation coefficients (tCC) of the left precentral gyrus (PreCG l), the right temporooccipital fusiform 

cortex (TOFusC r) and the frontal medial cortex (MedFC), with Kendall’s correlation coefficients of 

0.36, -0.37, -0.40 and model weights of 0.76, -0.45 and -0.29, respectively. As tics are typically motor 

in origin, it is no surprise that the primary motor cortex (i.e., PreCG l) appears as the predictor with the 

highest weight of 0.76 in the model. The temporal correlation coefficient indicates the stability of a 

node’s subnetwork during the dynamic course of information processing. This means that over a broad 

temporal scale, the precentral gyrus typically switches communication channels, receiving from and 

sending information to different subnetworks over the course of time. Failure to do so results in the 

constant subnetwork participation observed in relation to tic severity. In contrast, the negative 

correlation of the tCC of the TOFusC r and the MedFC to the YGTSS indicates that an unstable 

subnetwork organization of these two regions may be related to tics. 

One predictor was the average temporal path length (tAPL) of the right occipital pole, with a Kendall’s 

correlation coefficient of 0.42 and model weight of 0.29. The last predictor of the dSW network was 

the temporal betweenness centrality (tBC) of the right posterior middle temporal gyrus (pMTG r), with 

a Kendall’s correlation coefficient of 0.37 and the least model weight of -0.07. The tAPL reflects how 

fast information is transferred between different subnetworks in time. A smaller temporal path length 

indicates that a node is well connected to other nodes across time and is thus active in dynamics, rapidly 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.24.22275371doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.24.22275371


11 
 

passing on information to other nodes. Consequently, our findings indicate selective connectedness and 

slow participation of the OP in time contributing to tic severity. Conversely, the tBC is the fraction of 

temporal short paths passing through a node, reflecting its importance in dynamic communication. 

Thus, a positive correlation indicates that greater involvement of the pMTG r in dynamic 

communication is instrumental in tic severity.  

The predictors of the dSW network with their respective Kendall’s coefficients and weights were 

visualized on a 3D brain surface can be seen in Figure 5(B). 

 

- The indirect fast dynamic network (dICA network) 

Two of the obtained predictors were from the dICA network. One was the temporal correlation 

coefficient (tCC) of the right supracalcarine cortex (SCC r), with a Kendall’s tau of -0.36 and model 

weight of 0.48, and the was the temporal betweenness centrality (tBC) of the left supracalcarine cortex 

(SCC l), with a Kendall’s tau of 0.36 and model weight of 0.20. The temporal correlation coefficient 

(tCC) of the right supracalcarine cortex (SCC r) was found to be the second most important predictor 

obtained by the model after the dSW-tCC of the PreCG I. As explained above, the tCC reflects a node’s 

subnetwork stability, and the tBC is the reflection of a node’s importance. The dICA networks are an 

indirect measure of the dynamicity of communication at a fine temporal scale. Hence, our findings 

indicate that an unstable subnetwork organization, along with significant involvement of the SCC, 

contributes to tic severity. The predictors of the dSW network with their respective Kendall’s 

coefficients and weights were visualized on a 3D brain surface can be seen in Figure 5(C). 
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Figure 5: Predictors of tic severity visualized. The features obtained by the LASSO regression model visualized on the 

brain surface. Red indicates a positive correlation with YGTSS, and blue indicates a negative correlation. The value of 

the Kendall’s correlation coefficient is provided in the first parentheses, the network measure followed by its weight 

in the LASSO model is given in the second parentheses. The subfigures represent (A) static network, (B) slow 

dynamic network and (C) fast dynamic network. The effects of gender and medication were non-zero but had low 

weights of -0.15, 0.12 and 0.02, 0.001, respectively, indicating both had only a mild effect on the tic severity. 
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Discussion 

This study investigates the functional network correlates of tic severity in Tourette syndrome (TS) by 

using machine learning. Resting-state fMRI data from TS patients were preprocessed and quality 

controlled, and static and dynamic functional connectivity were calculated. Network theory was applied 

to evaluate brain communication strategies, and the topological metrics were included in a LASSO 

regression model against the Yale global tic severity scale (the YGTSS) to identify the network features 

which yield the best predictability.  

From the static network (sFC network), the clustering coefficient (CC) of the right superior lateral 

occipital cortex (sLOC-r) was identified as a predictor of tic severity. The lateral occipital cortex is 

known to be involved in attentional processing (30). It has also been shown that attention to tics 

increases and away from them reduces their frequency (31). Furthermore,  Misirlisoy and colleagues 

(31) have proposed attentional modulation of motor noise as a contributing factor to tic generation, and 

Adolphs and Spezio have explained the role of the amygdala in controlling inward attention (towards 

the body and encoded emotional associations), proposing that malfunction in these networks leads to 

negative ideation and sensations accompanying mental illness (32) . The negative correlation of the CC 

to the YGTSS indicates a lack of adequate connections in the subnetwork of the sLOC-r in relation to 

tics, perhaps leading to the improper attentional modulation observed in tics.  

Most of the identified predictors belonged to the slow dynamic network (dSW network). Of these, the 

temporal correlation coefficient (tCC) was the most relevant metric with three significant regions, 

namely the left precentral gyrus (PreCG-l), the frontal medial cortex (MedFC) and the right temporo-

occipital fusiform cortex (TOFusC-r). In contrast, the tCC of the PreCG-l was positively correlated with 

the YGTSS, indicating a consistency in the subnetwork of the PreCG-l during dynamic communication 

contributing to tic severity. Conversely, the tCC of the MedFC and TOFuSC-r were negatively 

correlated with the YGTSS, indicating that changes in the subnetworks of these two regions during 

dynamic communication may be instrumental in tic severity.  The preCG is the primary motor cortex 

that constantly communicates with other motor areas and subcortical brain regions to plan and execute 

movements (33). Thus, the lack of network switching observed in dynamics indicates support for the 

lack of inhibition hypothesis (8, 34). In normal brain functioning, spontaneous involuntary movements 

would be constantly balanced by inhibitory signals from other brain regions (observed as changing 

subnetworks in dynamics), and this failure of inhibitory control (observed as a constant subnetwork in 

dynamics) would lead to the sustained motor action observed in tics. Consistent activations in the pre-

central gyrus have been reported 2 s and 1 s prior to tic onset and at tic onset (20).  

The frontal medial cortex (overlapping with the ventromedial prefrontal cortex (vmPFC)) is a key 

region of the default mode network and is involved in many critical networks and functions, such as 

self-referential processing (35), personal and social decision making (36), emotional regulation through 
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the amygdala (37, 38) and processing of risk and fear (39). Unlike the precentral gyrus, this finding, 

together with all the critical functions of the vmPFC, indicates the necessity of a stable subnetwork 

organization for healthy functioning, in which the vmPFC  constantly receives and integrates inputs 

from all its different branches. The vmPFC has also been shown to be involved in exerting inhibitory 

control over the pre-SMA (40). The pre-SMA is known to be involved in the cognitive control of actions 

that require inhibition or switching (41). This complements the finding relating to the dSW-tCC in the 

preCG, wherein a dysfunction in one leads to a dysfunction in the other.  

The TOFusC in our atlas corresponds to the subregion of the fusiform cortex specializing in face 

perception known as the fusiform face area (FFA) (42). It has been proposed that the FFA encodes 

abstract semantic information associated with faces, which is then later retrieved for social 

computations (43). The social dimension of tics has been emphasized in literature (10), where it is 

proposed that TS is a disorder of the social decision-making network (SDM hypothesis). In this recent 

review article (10), Albin has shed light on the possibility of tics being distorted social signals, 

emphasizing the role of typical tic movements, such as head, neck, facial and hand movements, in non-

verbal emotional communication (44). The framework of this new hypothesis puts together different 

pieces of the complex puzzle, explaining the cardinal features of tic disorders, such as the nature of tics, 

sex disparity and natural course of the illness, together with the basal ganglia and amygdala 

abnormalities observed in imaging (9, 45, 46) and post-mortem studies (10). In this paper, Albin has 

further highlighted the three-fold role of the amygdala in social processing, i.e. in social perception, 

affliction and aversion, proposing the idea that the performance of the amygdala in the social 

functioning networks centred around it is altered by task engagement and attentional loading, thus 

explaining the modulation of tics during task engagement. The involvement of the amygdala in social 

processing has also been highlighted by Adolphs and Spezio (32). They have put forth the idea that the 

amygdala attentionally modulates the visual and somatosensory cortices, directing visuospatial 

attention to face gaze, thus guiding contextual social behaviour. This framework brings together the 

somatosensory, visual and attentional networks under the umbrella of the amygdala, making it the key 

background integrator of all these different networks. Thus, our findings relating to sLOC and TOFusC 

indicate that the sLOC and the TOFusC could be working in tandem via the amygdala, causing attention 

to be directed to abstract semantic information stored in relation to facial expressions of present or past 

experiences and further motivating social behaviour. An inadequate subnetwork organization of one 

and the unstable subnetwork organization of the other could together lead to misinformed social signals. 

The other two predictors of the dSW network were the average temporal path length (tAPL) of the right 

occipital pole (OP-r) and the temporal betweenness centrality (tBC) of the right posterior middle 

temporal gyrus (pMTG-r). These predictors suggest that delayed dynamic information transfer through 

the OP-r and increased involvement of the pMTG-r may be instrumental in increasing tic severity. A 

recent meta-analysis on the neuroimaging of the Cyberball game showed a reliable involvement of the 
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OP in the experience of social exclusion (47). Within the framework of the SDM hypothesis, this could 

indicate the lack of adequate connections to counter the experience of social exclusion, leading to a 

sustained social exclusion experience, which, once triggered, misinforms other networks to act on it. 

An H2
15O-PET study has shown the MTG to be active in face perception and  the posterior region has 

been specifically associated in the perception of fear (48).  In a previous study, we showed increased 

connectivity of the pMTG-r with several basal ganglia regions, such as the caudate, putamen and the 

pallidum in TS patients as compared to healthy controls (45). Another study has shown that basal 

ganglia output modulated by striatal dopamine regulates social context-dependent behaviour (49). In 

addition to this, Pourtois and colleagues (48)  have shown the amygdala to be consistently activated in 

response to fearful faces. In one of our previous studies on TS using an emotional face task (50), we 

showed amygdala hypersensitivity in TS patients as compared to healthy controls in response to all 

emotions. The activation was higher for negative emotions, i.e., angry and fearful, but neutral when 

compared to happy emotions. Taken together, these findings suggest that fear is overperceived by TS 

patients, and that this misperceived fear is quickly communicated to the basal ganglia by the pMTG, 

thus motivating misinformed social behaviour leading to tics. Consequently, the increased importance 

of the pMTG supports the suggestion that TS patients with more severe tics have higher levels of 

misperceived fear via the pMTG during dynamic communication.  

Finally, the indirect fast dynamic network (dICA network) reflected the involvement of the 

supracalcarine cortex (SCC) in the severity of tics. Lower subnetwork stability (tCC of SCC-r) or higher 

node importance (tBC of SCC-l) was found to be related to higher severity of tics. The SCC, together 

with the occipital pole (OP), is the location of the primary visual cortex (51); however, preferential 

activation to face-targets over non-face visual stimuli have been reported in the SCC in an fMRI study 

(52). This indicates its role in social processing and is in line with the SDM hypothesis of TS (10). An 

unstable subnetwork organization, while playing a key role in information transfer, could indicate 

misinterpreted social signals (such as facial expressions) being transmitted to other subnetworks, 

driving inappropriate social behaviour, leading to tics (10). 

In addition to the primary motor cortex and prefrontal cortex, our findings emphasize the role of several 

novel regions of the temporo-occipital cortex in TS. The temporo-occipital cortex is most well-known 

for its function as the visual cortex; however, more recently, its involvement in social processing (32, 

52) and psychiatric disorders, such as major depression (53), have come to light. These findings point 

to a new dimension of understanding that is in line with the emerging hypothesis of TS as a disorder of 

the social decision-making network (10). A proposed visual social processing network mediated by the 

amygdala (32) involves communication between the regions obtained in our study through the 

amygdala. Thus, our network-based analysis approach helps in understanding how information is 

processed (both dynamically and overall) by each specific region engaged in this network in relation to 

tics in TS. It is interesting to note that, while several studies have shown a direct implication of the 
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amygdala in TS (9, 34), our study demonstrates that the network properties of the amygdala itself are 

not direct predictors of tic severity, rather, the regions it communicates with in the social processing 

context are. This broadens our understanding on the roles played by other regions in the network in 

addition to the amygdala itself. 
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Limitations 

 

The main limitation of this study is the small sample size. However, despite this, we observed 

convergence during leave one out validation, indicating the strength of our findings. Future studies with 

larger sample sizes could be used to replicate the findings and to explore network dynamics in Tourette 

syndrome in further detail.   
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Methods 

Participants 

Following prior informed consent, a total of 36 adult patients fulfilling the DSM-IV-TR (54) criteria 

for TS participated in this study. Of these, five patients additionally suffered from obsessive-compulsive 

disorder (OCD), and two from attention-deficit-hyperactivity disorder (ADHD), as per the DSM-IV 

classification. Fourteen of the patients were on medication. Tic severity was measured using the 

YGTSS. Subsets of subjects from this dataset focusing on other analysis strategies have been previously 

published in (4, 20, 46). Subjects with incomplete imaging or demographic data or with images 

corrupted by artefacts (motion, coverage, susceptibility etc.) were excluded from further analyses. After 

exclusion, 17 patients (12 male, 5 female, age: 32 ± 11 years) were subjected to further analyses, 

demographic details of which can be found in Table 1. All patients had normal or corrected-to-normal 

vision, no hearing loss and reported a strong right-hand preference (46). The study was conducted 

according to the Declaration of Helsinki and under granted approval from the ethics committee of the 

medical faculty RWTH Aachen, Germany. 

Data acquisition 

The image acquisition protocol comprised structural MRI, resting-state fMRI, task fMRI and diffusion 

MRI sessions acquired on a 1.5T whole-body MR system (Sonata, Siemens, Germany) at the 

Forschungszentrum Jülich. An MR-compatible video camera system was used to monitor tics in TS 

patients during the scanning sessions (19). The resting-state fMRI data were acquired using a T2*-

weighted echo-planar imaging sequence (scanning parameters: TE = 60 ms, TR = 3200 ms, flip angle = 

90°, 30 axial slices 4 mm thick, FOV = 200 mm, in-plane resolution = 3.125 mm × 3.125 mm, 12 mins 

220 volumes, eyes closed) and structural MRI acquired using a T1-weighted gradient-echo MP-RAGE 

sequence (scanning parameters: TI = 1200 ms, TR = 2200 ms, TE = 3.93 ms, 15° flip angle, 

FOV = 256 × 256 mm2, matrix size = 256 × 256, 176 sagittal slices generated, slice thickness = 1 mm, 

resolution = 1 mm isotropic) were used for further investigation in this study. 

Data pre-processing 

The data were processed using standard pre-processing pipelines in CONN v20.b (26), based on SPM12 

(55). Functional pre-processing involved the following steps: realignment and unwarp (for motion and 

field map correction), translation of the image centre (to the origin 0,0,0), slice-timing correction, outlier 

scan detection and scrubbing (using ART: artefact removal toolbox, parameters: global-signal z-value 

threshold: 5, subject-motion threshold: 0.9mm ), and spatial normalization to an MNI152 (2 mm) 

template (using SPM’s unified segmentation (56), parameters: functional target resolution 2mm) and 

functional smoothing (FWHM 8mm). Pre-processing of the structural images involved the following 

steps: translation of the image centre (to the origin 0,0,0), segmentation and normalization into MNI-
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space (using SPM’s unified segmentation (56), parameters: structural target resolution: 1mm). Pre-

processing was followed by nuisance regression of the following confounds: noise components of WM 

and CSF (aCompCor: first five principal components of time series (26)), estimated subject-motion 

parameters (six realignment parameters and their first derivatives), outlier scans identified (scrubbing) 

and the effect of rest (to compensate for initial magnetization transient). This was followed by temporal 

band-pass filtering at 0.008–0.09 Hz (to minimize the impact of physiological noise stemming from 

respiration and heartbeat) and linear detrending. (Figure 6(A) outlines the pre-processing steps) 

Static and dynamic network analyses 

All connectivity analyses were performed using CONN v20.b. For static connectivity (sFC), an ROI-

based functional connectivity model (bivariate correlation) was specified in the 1st-level analysis. The 

model included 105 regions covering the cortex (91 regions) and subcortex (14 regions) provided with 

CONN (parcellations as per the Harvard-Oxford cortical and subcortical maximum likelihood atlases). 

The cerebellum was excluded from the ROIs due to coverage artefacts in the images. Normalization of 

correlation values was performed using Fisher’s z-transformation.  

For dynamic connectivity, two approaches were employed. The direct approach involved decomposing 

each session into 24 sliding windows of length 100 s and step size 25 s. Each window comprised 35 

fMRI volumes. Following this, ROI-based functional connectivity was obtained for each sliding 

window in a similar way to the static connectivity approach (dSW).  

The indirect dynamic connectivity, or dynamic ICA approach (dICA), is a relatively new approach that 

was introduced with the CONN toolbox. Here, the dynamic connectivity is estimated by first obtaining 

the different modulatory circuits and the rate of connectivity change between the ROIs at the group 

level, which are then back-projected to the individual level in a gPPI model (18). The computation 

involved group-level ICA decomposition of the ROI-ROI connectivity timeseries into 20 components 

(selected by default in CONN), removal of ICs with spatial kurtosis < 3 (resulted in removal of five 

components), gPPI back-projection of the remaining ICs to the individual subject level followed by 

temporal smoothing of 10 s.  

All the connectivity matrices were then imported into MATLAB R2021a, converted to raw correlation 

values and binarized using an absolute threshold of 0.45 (correlation values >0.45 or <-0.45 were 

retained). The value 0.45 was chosen after evaluating the network global efficiency distributions for 

optimal separation between random and ordered networks (maintaining optimal small-worldness) using 

CONN’s variable threshold explorer. Brain networks have been typically shown to be small world in 

nature (57). Static and dynamic graph theory was applied to the binary adjacency matrices. Binary 

adjacency matrices can be visualized as binary graphs with ROIs as nodes and the connections between 

them as the edges of the graphs. An edge exists if the connectivity between them is greater than the 
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applied threshold (in our case, correlation >0.45 or <-0.45). In this context, the following metrics were 

calculated: 

1. Average path length: The path length is defined as the number of edges between two nodes 

(minimum number of edges for shortest path length), and the average path length (APL) of a 

given node is the average of the shortest path lengths between that node and all other nodes in 

the network. It reflects the functional integration ability and the speed of serial communication 

through a node (22, 25). The temporal equivalent of the shortest path length is called the latency 

or the minimum number of time points that need to pass before the information can travel from 

one node to the other. Thus, temporal average path length (tAPL) is the average of the latencies 

between that node and all other nodes in the network. As before, it reflects the speed of 

communication in the dynamic network (27). 

2. Clustering coefficient / temporal correlation coefficient: Clustering coefficient (CC) is 

defined as the proportion of a node’s neighbours that are also neighbours of each other. It is a 

measure of functional segregation reflecting the extent of the specialized information 

processing a node is involved in. It reflects the average density and intra-connectedness of the 

node’s subnetwork (58). Temporal correlation coefficient (tCC) is the average topological 

overlap of a node’s neighbours between two successive time points (27). Based on this 

definition, tCC reflects the stability of a node’s subnetwork in dynamic performance. Nodes 

with a higher tCC would have a relatively stable subnetwork organization throughout the 

network dynamics.   

3. Betweenness centrality: The fraction of shortest paths of the entire network passing through a 

given node is defined as its betweenness centrality (BC). It reflects a node’s importance and 

helps in identifying the hubs of a network (24). Similarly, temporal betweenness centrality 

(tBC) is the fraction of the fastest paths passing through the node and reflects its importance in 

the dynamic network (27). 

4. Small worldness: Small worldness (SW) is a network property defined as the ratio of the 

clustering coefficient to the characteristic path length compared to random networks (22). Small 

world networks combine high clustering of regular networks with short path lengths of random 

networks and lead to more efficient information processing. Similarly temporal small worldness 

(tSW) is defined as the ratio of the temporal correlation coefficient to the characteristic temporal 

path length when compared to null models (27). (Figure 6(B) outlines the network analyses)  

 

Feature selection and prediction 

After calculation of network and node metrics for all the ROIs, the Kendall’s coefficient of concordance 

with the YGTSS was calculated for each measure. Without correction for multiple comparisons, the 
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measures that were significantly correlated (p-value < 0.05) were selected as features for the YGTSS 

prediction model. (Supplementary Table S1 lists the Kendall’s tau for each measure). For this 

purpose, a leave-one-out (LOO) validated LASSO regression model was selected, in which the network 

features were used as continuous independent variables. The Fisher’s z transformed YGTSS was the 

continuous dependent variable, and gender and medication were categorical variables. LASSO 

regression applies a regularization term to linear regression in order to perform variable selection, 

thereby assigning weights to predictor variables in their order of significance and setting the weights of 

non-significant predictor variables to 0. Hereafter, the non-zero predictor variables identified by the 

model were inspected and have been discussed further.  (Figure 6(C) outlines the steps of the 

prediction model) 
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Figure 6: Data processing and analysis pipeline. (A) default preprocessing and denoising pipeline using 

CONN; (B) Static and dynamic network analysis: calculation of static functional connectivity(sFC), dynamic 

ICA based dynamic functional connectivity (dICA) and sliding window dynamic connectivity (dSW) 

followed by application of static and dynamic graph theory; (C) feature selection and prediction: feature pre-

selection using p-unc<0.05 on Kendall’s tau between the YGTSS and each network measure, selected features 

are then fed to a leave one out (LOO-) LASSO regression model to obtain optimal parameters for the 

prediction of the YGTSS; finally the weights of the features in the optimal model are investigated.  
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Data Availability 

 

All data are available for research purposes only upon request from the corresponding author. The 

data cannot be made publicly available due to ethical concerns regarding patient data. 

 

Code Availability 

 

All code is available upon request from the corresponding author.   
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