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Abstract 31 

Diffuse large B-cell lymphoma (DLBCL) is characterised by pronounced genetic and biological 32 

heterogeneity. Several partially overlapping classification systems exist – developed from 33 

mutation, rearrangement or gene expression data. We apply a customised network analysis 34 

to nearly five thousand DLBCL cases to identify and quantify modules indicative of tumour 35 

biology.  We demonstrate that network-level patterns of gene co-expression can enhance 36 

the separation of DLBCL cases. This allows the resolution of communities of related cases 37 

which correlate with genetic mutation and rearrangement status, supporting and extending 38 

existing concepts of disease biology and delivering insight into relationships between 39 

differentiation state, genetic subtypes, rearrangement status and response to therapeutic 40 

intervention. We demonstrate how the resulting fine-grained resolution of expression states 41 

is critical to accurately identify potential responses to treatment.  42 

 43 

Significance statement: We demonstrate how exploiting data integration and network 44 

analysis of gene expression can enhance the segregation of diffuse large B-cell lymphoma, 45 

resolving pattens of disease biology and demonstrating how the resolution of heterogeneity 46 

can enhance the understanding of treatment response. 47 

  48 
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Introduction 49 

Heterogeneity is a characteristic feature of diffuse large B-cell lymphomas (DLBCL). 50 

Consistent subtypes have been resolved based on expression state, mutational profiles and 51 

cytogenetic features. Amongst the most significant insights has been the association of 52 

DLBCL with either germinal centre (GCB) or post-germinal centre/activated B-cell (ABC) 53 

counterparts.
1
 More recently analysis of mutation patterns in DLBCL have converged onto 54 

recurrent patterns of co-mutation that can be used to define genomic subtypes.
2-7

 A third 55 

approach widely used in clinical practice is separation by gene rearrangement status with 56 

identification of high-risk DLBCL cases based on double-hit (DH) or triple-hit (TH) 57 

rearrangements of MYC and BCL2 and/or BCL6 genes.
8-11

 58 

Expression-based classification of DLBCL is not restricted to identification of cell-of-origin 59 

(COO) classes, with the parallel consensus cluster classification (CCC) focusing on metabolic, 60 

signalling and host response features.
12

 The latter have also been identified in separate 61 

stromal survival predictors.
13

 Furthermore, high-risk DLBCL cases have been identified based 62 

on gene expression features, learned either from patterns in Burkitt lymphoma,
14

 or based 63 

on direct similarity to cases with MYC and BCL2 DH.
15

 These approaches identify overlapping 64 

sets of cases and are enriched amongst DLBCL associated with mutations of EZH2 and 65 

BCL2.
2,4,5

  66 

Single-cell expression analysis of germinal centre (GC) B-cells has provided additional 67 

insight, separating features of the two main functional populations of dark and light zones, 68 

in which B-cells undergo proliferation, somatic hypermutation and T-cell mediated 69 

selection, along with intermediate populations including those transitioning to post-GC 70 

differentiation.
16-21

 Additionally, the calculated contributions of multiple cell states, 71 

including both neoplastic B-cells and accompanying host response has been used to assign 72 

DLBCL to ecotypes;
22

 and functional expression signatures have been used to define 73 

differences in lymphoma microenvironments across both conventional COO classes and 74 

genomic DLBCL categories.
23

 However, an integrated picture unifying features of expression, 75 

mutation and rearrangement status is still developing. Here we address this issue using an 76 

approach which resolves the intrinsic structure of gene co-expression. Drawing on a broadly 77 

representative resource of close to 5000 DLBCL cases across prior studies, we demonstrate 78 
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how the resultant integrated view of DLBCL expression biology enhances the informed 79 

selection of features for expression-based classification.  80 

 81 

Results  82 

An integrated gene expression context for DLBCL 83 

To provide a comprehensive exploration of DLBCL biology from the perspective of gene 84 

expression we employed parsimonious gene correlation network analysis (PGCNA) 85 

(Supplemental Figure 1).
24

 This approach allows integration of multiple datasets across 86 

platforms and makes use of radical edge reduction to efficiently derive the configuration of 87 

large networks and optimize modularity.
24,25

 In this approach the focus for each gene is on 88 

the mostly highly correlated gene partners, hub nodes/genes in the network emerge 89 

consequent to being highly correlated partners of many other genes and the primary 90 

determinant of resolved modules is the pattern and consistency of gene co-expression in 91 

DLBCL data.  92 

We utilised a broadly representative sample of available DLBCL datasets divided into two 93 

components. For network discovery we used gene expression derived from 14 DLBCL 94 

datasets, restricting to datasets with >50 DLBCL cases, encompassing a total of 2,505 95 

cases.
2,12,13,26-35

 The resulting network reflects a representative sample of DLBCL expression 96 

data from multiple sources, mitigating against biases linked to case selection and platform 97 

features. Recent datasets that combine mutation and expression features, totalling 2,484 98 

cases, were reserved for downstream analysis.
3,5,14,36,37

 99 

The resulting DLBCL expression network resolved into 28 modules of gene co-expression, 100 

across 16,054 genes/nodes (Figure 1a, https://mcare.link/DLBCL2, Supplemental Table 1). A 101 

comprehensive gene ontology and signature enrichment was used to assess biological 102 

features associated with these modules. Representative terms were selected to identify 103 

notable expression patterns associated with each module (Figure 1b, Supplemental Figure 2, 104 

Supplemental Table 2).  105 

Several features were evident. Classifier genes used for separation of ABC and GCB classes 106 

in the original COO classifier divided discretely and exclusively between two modules: M9 107 

containing all GCB classifier genes, and M11 containing all ABC classifier genes  (M11 ABC: p-108 

value 6.95x10
-19

 and M9 GCB: 1.57x10
-11

).
38

 These two modules also capture the majority of 109 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2023. ; https://doi.org/10.1101/2022.05.23.22275358doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.23.22275358
http://creativecommons.org/licenses/by/4.0/


 5

B-cell lineage gene expression as assessed by signature enrichment (e.g. SignatureDB pan-B 110 

or Resting Blood B-cell). Thus, the fundamental separation of GCB- and ABC-related 111 

expression patterns was rediscovered as a primary feature of gene co-expression patterns in 112 

the network structure. The more numerous CCC genes divided across several modules but 113 

with significant enrichments in specific modules (M9:B-cell receptor p-value 3.27x10
-57

, 114 

M3:Host response p-value 1.64x10
-64

 and M13:Oxphos p-value 1.38x10
-05

).
12

 Additional 115 

modules separated features related to MYC function (M8), cell cycle (M7), glycolysis (M13), 116 

and sterol biosynthesis (M19). Host response/microenvironment was divided between 117 

modules related to stromal/angiogenesis (M4), T/NK-cells (M10), monocytes/macrophages 118 

(M3) and IFN responses (M20). Highly co-ordinated gene batteries were resolved for 119 

nucleosome components (M18), homeobox (M23), immediate early (M26) and 120 

metallothionein genes (M25). Several modules related to structural chromosomal regions 121 

including chr6 (M16), chr7 (M14), chr17p (M17), chrX (M13) and chrY (M24).  122 

The network thus provides an integrated picture of gene expression in DLBCL encompassing 123 

details of lineage-specific gene expression set against a diverse backdrop of cell biology and 124 

microenvironment and resolving fine-grained patterns of gene co-expression. These are 125 

available as an extensive online resource covering gene correlation data, interactive 126 

network visualisations and downstream comparisons (https://mcare.link/DLBCL2).  127 

 128 

Meta-hazard ratio analysis confirms associations between biology and outcome  129 

A meta-hazard ratio analysis merging overall survival data from training datasets can 130 

illustrate the association of module and individual gene expression with outcome across the 131 

entire network. We limited analysis to cases treated with R-CHOP immunochemotherapy. 132 

The result included the segregation of good and adverse outcome between component 133 

genes of the GCB (M9) and ABC (M11) modules (Figure 1c and d), as well as adverse 134 

outcome with Mitochondrial and MYC overexpression module (M8) and Ribosome module 135 

(M7) and good outcome linked to expression of the Stromal/Angiogenesis module (M4) 136 

which encompasses features of known survival predictors.
13

 137 

 138 

Resolving detailed differentiation states in GCB and ABC modules 139 

Biological detail can be resolved at different levels of granularity in the network. An iterative 140 

analysis of gene correlation within modules can resolve the most highly related gene 141 
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neighbourhoods, and the extent to which underlying information is successfully separated 142 

by such neighbourhoods can be assessed with gene signature enrichment.
24

  143 

Assessed systematically across the network, the ABC and GCB modules were amongst those 144 

with highest neighbourhood-level information content (Supplemental Figure 3, 145 

Supplemental Table 3 and 4). Given the central importance of B-cell differentiation to 146 

lymphomagenesis,
39,40

  we focused on the relationships of the GCB and ABC 147 

neighbourhoods in more detail (Figure 2a and b, and https://mcare.link/DLBCL2). The GCB 148 

module (M9) resolved into 16 neighbourhoods (Figure 2b and c, Supplemental Table 4). 149 

These included neighbourhoods enriched for different GC B-cell subsets - LZ (M9_n2 and 150 

n6), DZ (M9_n5 and n15), CD40/NFκB responses linked to LZ B-cells (M9_n10), 151 

Intermediate-e/CCR6 memory B-cell precursor (M9_n3 and n4) and pre-memory/memory 152 

B-cells (M9_n14).
16

  A similar informative separation was observed for the ABC module 153 

which divided into 17 neighbourhoods (Figure 2b and d, Supplemental Table 4). This 154 

separated expression related to CCR6+ memory B-cell precursors (M11_n5), pre-memory B-155 

cells (M11_n5 and n7), and plasmablast/plasma cell (M11_n6). These cell state associations 156 

overlapped with targets of key transcriptional regulators IRF4 (M11_n1, n6 and n7), BLIMP1 157 

(M11_n7) XBP1 (M11_n6), and NFκB-response genes specific to the ABC modules (M11_n4 158 

and n8). 159 

The COO gene expression classifier established the paradigm for the successful application 160 

of small numbers of representative genes to separate individual DLBCL cases into distinct 161 

expression states.
38

 Genes that have a high degree of connectivity in the network may 162 

provide particularly useful information to summarise expression states of many correlated 163 

neighbours and overlapping information can be derived from different but correlated genes 164 

within network neighbourhoods/modules. The latter illustrates how different classifier gene 165 

sets can be selected to arrive at broadly similar answers for a given expression state. Many 166 

of the COO classifier genes emerged as hub nodes within the respective GCB and ABC 167 

neighbourhoods (Figure 2a). Considering the genes used in the original COO classifier, those 168 

used to classify GCB-DLBCL were all contained within the M9 module and segregated 169 

primarily between two neighbourhoods M9_n3 (BCL6, MME (CD10) and SERPINA9) and 170 

M9_n4 (DENND3, ITPKB, LMO2 and NEK6) while IRAG2 (LRMP) belonged to M9_n11. The 171 

COO ABC-classifier genes were distributed across 5 neighbourhoods in module M11 172 

(M11_n1, n2, n3, n4 and n7), illustrating that these genes sample multiple aspects of the 173 
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ABC network module (Figure 2a and Supplemental Figure 3c). We conclude that 174 

neighbourhood-level patterns of gene expression can resolve details of biology related to 175 

differentiation state and can illustrate the inter-relationship of individual genes used in 176 

targeted expression-based classifiers.  177 

 178 

Network gene expression patterns show consistent association with mutation state 179 

HMRN, REMoDL-B and Reddy datasets include both gene expression and mutation 180 

data.
5,36,37

 These studies were not used in network generation. We could therefore test 181 

whether patterns of gene co-expression in the network correlated with mutations in these 182 

independent datasets. Since many mutations in DLBCL are rare we considered both the 183 

correlation of expression and mutation within individual datasets and as a consensus meta-184 

mutation correlation across the three datasets. We summarised module- or neighbourhood-185 

level gene expression as metagenes (module or neighbourhood expression values, MEV or 186 

NEV) and assessed the correlation of these values with the presence or absence of gene 187 

mutation, reducing mutation data for each case into a mutated/unmutated binary call for 188 

each gene with annotated putative pathogenic mutations.  189 

Metagene expression patterns were significantly associated with mutation state (Figure 3 190 

and Supplemental Figure 4). At module level the primary separation was into two clusters 191 

corresponding to M9_GCB and M11_ABC mutation correlations. M9_GCB correlated 192 

significantly with a wide range of mutations consistent with known associations both of 193 

COO-defined GCB-DLBCL and follicular lymphoma (FL),
3,41

 and anticorrelated with the 194 

primary mutations linked to COO-defined ABC-DLBCL. M11_ABC exhibited the reciprocal 195 

anticorrelation with mutations linked to COO-defined GCB-DLBCL and positive correlation 196 

with mutations characteristic of COO-defined ABC-DLBCL. Modules which shared mutation 197 

correlations with M9_GCB included: M13_ChrXGlycolysis, M23_Homeobox, M28_ITGB8, 198 

M6_ZincFinger, M6_Chr6; while modules with shared mutation correlations with M11_ABC 199 

included: M8_MitochondrionMYC, M18_Nucleosome, M7_CellCyle and M17_Chr17p. An 200 

additional cluster of modules focused on shared correlations with CDKN2A mutation 201 

including M14_Chr7 and M15_Ribosome.  202 

Further subdivision was evident when modules were considered at neighbourhood-level. 203 

For instance, while most neighbourhoods in the GCB module (Figure 3 top left panel) shared 204 

correlation with a core set of gene mutations including EZH2, BCL2 and CREBBP the 205 
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neighbourhood-level analysis could discriminate heterogeneity for other genes. For 206 

example, neighbourhoods discretely separated between those with SOCS1, NFKBIA, SGK1, 207 

IRF8, TNFRSF14, S1PR2, CD83, STAT6 mutation association and those with MYC, CDKN2A 208 

mutation association. Additionally, mutation in several genes including BTG2, DDX3X, 209 

FOXO1, RHOA, PAX5 or STAT6 Y419 hotspot mutations associated with select patterns of 210 

GCB neighbourhood expression. Similarly, in the ABC module (Figure 3 top right panel) most 211 

neighbourhoods shared association with a common set of mutated genes including MYD88, 212 

CD79B, PIM1, ETV6, TBL1XR1, BTG2, PRDM1. However, more selective associations were 213 

evident for BCL10, IRF4, CDKN2A, NOTCH2, TMEM30A. Other M11_ABC neighbourhoods 214 

captured quite distinct mutation associations lacking positive correlation with the MYD88, 215 

CD79B mutation cluster and showing associations with NFKBIA, SOCS1, SGK1, BTG1 or with 216 

BCL2 mutation and features transitional to a GCB-like pattern.  217 

Further examples of informative separation at neighbourhood-level are illustrated by the 218 

M3_ImmuneResponseMonocyteEnriched and M7_CellCycle neighbourhoods. For the 219 

M3_ImmuneResponseMonocyteEnriched module (Figure 3 bottom left panel) common 220 

association was observed for mutation in CD58. However, select neighbourhoods (M3_n6, 221 

M3_n8 and M3_n11) were also associated with mutation in either TET2 or DNMT3A. For the 222 

M7_CellCycle module (Figure 3 bottom right panel), TP53 mutation, was significantly 223 

associated with 12/15 of neighbourhoods which contrasted with its lack of significant 224 

association with any M8_GCB or M11_ABC neighbourhoods. Interestingly, 8/12 225 

neighbourhoods linked to TP53 mutation also share association with mutation of TMEM30A, 226 

recently identified as a tumour suppressor inactivated in DLBCL, but in contrast to TP53 227 

linked to a favourable response to R-CHOP therapy.
42

 Multiple M7_CellCycle 228 

neighbourhoods shared association with mutation of genes such as MYD88, CD79B, PIM1, 229 

ETV6 characteristically linked to the ABC-state, while from the perspective of GCB-linked 230 

associations select M7_CellCycle neighbourhoods were associated with mutation in MYC 231 

and DDX3X.  232 

While this analysis is limited to the sets of genes tested in targeted mutation panels, the 233 

most important known mutational features of DLBCL are included. The results identify 234 

distinct and significant associations of network derived gene co-expression patterns with 235 

driver mutations and argue that the granularity provided by the network at module and 236 

neighbourhood-level is informative of underlying tumour biology. 237 
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 238 

Network-level gene expression patterns enhance consistent segregation of DLBCL  239 

Given the consistent association between modules/neighbourhoods and mutation state we 240 

reasoned that network-level information may contribute to enhanced expression-based 241 

segregation of DLBCL cases. To evaluate this, we tested how recurrently discoverable the 242 

co-segregation of DLBCL cases was with different selections of features and different 243 

clustering methods. To select informative features for clustering we split all modules into 244 

neighbourhoods and considered features either at the level of individual genes or collapsing 245 

genes within neighbourhoods or modules into single values (MEV/NEVs). We then selected 246 

the most informative features at either gene, NEV or MEV level using several different 247 

approaches. The selected features were then used to cluster the DLBCL datasets (n=16, see 248 

Supplemental Table 1, DatasetInfo) using either PGCNA or consensus clustering (CC).
43

  The 249 

resultant clusterings were compared based on the extent of recurrently discoverable co-250 

segregation of DLBCL cases.  In total 33 attribute sets were examined (see Supplemental 251 

Table 5). This showed (Figure 4a): i) that selections based on PGCNA network modules with 252 

edge information (Net+Strct) outperformed ranking without edge information (Network); ii) 253 

that having only M9/M11 at neighbourhood-level (NEV_M9M11) outperformed selections 254 

using all neighbourhoods; iii) that collapsing genes per module/neighbourhood to 255 

MEV/NEVs outperformed gene-level clusterings; and iv) that using network structure and 256 

edge information (Net+Strct) to inform gene choice and collapsing genes to 257 

module/neighbourhood values (MEV/NEVs) significantly outperformed gene selection based 258 

on most variant expression (Top1000/5000). We conclude from this that use of network 259 

information can enhance the selection of attributes for consistent clustering of DLBCL cases. 260 

 261 

Network information resolves communities of lymphoma cases with shared biology 262 

A common feature of classification based on multiple parameters is the identification of 263 

consensus cases on which various classification tools can agree when using the same 264 

features for classification, and edge cases where the classification is more ambiguous.
44

 265 

Therefore, extending the concept of consensus or ensemble clustering,
12,45

 we focused on 266 

cases co-clustered by both CC and PGCNA methods. This identified 12 ensemble case 267 

clusters (Figure 4b), which we refer to as Lymphoma Communities (LCs). These cases were 268 

then used as a reference set to train a machine learning tool. The machine learning tool was 269 
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used to reclassify all cases in the HMRN (Figure 4b) and other datasets (see Supplemental 270 

Methods for details). A similar distribution of cases falling into these communities was 271 

recovered across a range of datasets (Figure 4c and Supplemental Figure 5 & 6). These 272 

communities were named according to patterns of module expression or associated 273 

pathological/molecular features that were identified in downstream analyses. 274 

Amongst the 12 LCs (Figure 4b, Supplemental Figure 6) two communities identified cases 275 

dominated by ABC module gene expression which were distinguished by differences in 276 

immune response-related features as immune response poor (lcABC) or immune rich (lcABC-277 

IR). Cases with plasmablastic features (lcPBL) were distinguished by expression of XBP1 278 

targets and cancer testis antigens. A distinct subset of cases with ABC-related features 279 

shared the expression of cancer testis antigens (lcCT). Amongst cases with weak B-cell 280 

patterns, two communities were dominated by immune response modules (lcIR and lcIR-281 

TET2 - distinguished by TET2 mutation enrichment, see below). Six communities were 282 

characterised by expression of multiple GCB-related neighbourhoods. These included a 283 

community with GCB features and distinct stromal/EMT-related gene expression (lcGCB-284 

EMT) and a community with mixed GCB and ABC expression features along with cell cycle, 285 

MYC, and sterol biosynthesis modules, suggestive of transition from GCB to an ABC/post-GC 286 

state (lcGCB-Xit, Supplemental Figure 6). Similar proliferation and growth-related module 287 

expression were combined with polarised high GC DZ and low GC LZ neighbourhood 288 

expression, along with low CD40/NFκB and MHC-II genes in a GCB DZ-like community 289 

(lcGCB-DZ). The remaining three GCB communities were distinguished by different patterns 290 

of GCB neighbourhood expression, wider network features and other associations in 291 

downstream analyses (lcGCB - most canonical GCB-like,  lcGCB-FL - underlying FL diagnosis, 292 

lcGCB-SOCS1 – selective SOCS1 mutation association).  293 

The combination of overview and gene-level granularity provided by the network afforded a 294 

further means to assess relationships between the resolved communities across all network 295 

genes or those specific to the GCB/ABC differentiation state (Supplemental Figure 7 and 8). 296 

This is exemplified at the level of GCB and ABC neighbourhood genes, where the lcGCB-Xit 297 

community straddles both key GCB and ABC features and contrasts with the more discrete 298 

patterns of other communities such as lcGCB-DZ and lcABC (Supplemental Figure 7). At the 299 

whole network level, wider differences in gene expression within modules are further 300 

illustrated as seen for the comparison between lcGCB-FL and lcGCB (Supplemental Figure 8).  301 
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Thus the 12 DLBCL LCs reinforced the significance of segregation into ABC and GCB 302 

expression patterns while distinguishing heterogeneity within these broad categories. 303 

 304 

DLBCL communities link to mutation patterns  305 

An important test of the DLBCL LCs was whether these also showed significant association 306 

with mutation state. To address this we analysed the enrichment of mutations in DLBCL 307 

communities by integrating enrichment p-values derived across the individual HMRN, 308 

REMoDL-B and Reddy datasets.
5,36,37

 At a p-value threshold <0.01 (in ≥ 2 datasets) the 309 

communities showed significant and distinct associations with mutation patterns. These 310 

separated in concordance with the expression states between mutational features linked to 311 

ABC, GCB, and host/immune response characteristics (Figure 5a). Thus, lcABC and lcABC-IR 312 

shared association with MYD88, CD79B, PIM1, PRDM1, CDKN2A and differed in association 313 

of with ETV6, TBL1XR1 and IRF4 mutations. The ABC-related lcCT community was selectively 314 

enriched for MYD88 and PIM1 mutations and was additionally enriched for BCL10, TP53, 315 

MEF2B mutations. These patterns separated most distinctly from lcGCB and lcGCB-DZ. These 316 

shared enrichment for BCL2, EZH2, DDX3X, IRF8, PTEN, TNFRSF14, GNA13 mutation. GCB-DZ 317 

was additionally enriched for CREBBP, KMT2D, BTK, POU2F2, S1PR2, FOXO1, MYC, MEF2B 318 

mutation, while lcGCB was enriched for CARD11, B2M, EBF1, MSH6, RHOA, TET2, SGK1 319 

mutation.  lcGCB-FL shared association with CREBBP, KMT2D, TNFRSF14 but was 320 

distinguished by association with STAT6 mutations including significant enrichment of the 321 

STAT6 Y419 hotspot mutation. lcGCB-EMT shared enrichment of SGK1 and TNFRSF14 with 322 

lcGCB but otherwise lacked distinct associations.  lcGCB-SOCS1 and lcGCB-Xit differed from 323 

other GCB-related expression groups. lcGCB-SOCS1 associated with SOCS1, NFKBIA, SGK1, 324 

BTG1, GNA13, CD83, NFKBIE, ZFP36L1 and STAT6 but not the STAT6 Y419 mutation hotspot, 325 

while lcGCB-Xit showed a further distinctive pattern with selective enrichment for CD70, 326 

CCND3, BTG2 mutations. While lcIR only displayed anti-correlations with mutation state 327 

likely reflecting the diluting effect of host response components, lcIR-TET2 cases were 328 

selectively associated with TET2 mutations.  329 

The observed associations between LCs and mutations resembled the patterns in recent 330 

mutation-based classifications of DLBCL. We therefore assessed the relationship between 331 

LCs and mutational classes assigned in HMRN data with either the LymphGen,
46

 or the 332 

HMRN classification (Figure 5b).
5
 These classifications though independently derived,

4,5
 are 333 
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largely concordant,
46

 and recapitulate the features of the C1-C5 Harvard classification.
2
 The 334 

LymphGen MCD class was significantly associated with lcABC and lcABC-IR, while lcCT was 335 

associated with cases with ambivalent MCD/ST2 calls. LymphGen N1 showed enrichment in 336 

lcABC while BN2 was significantly and selectively associated with lcGCB-Xit. EZB was most 337 

significantly enriched amongst lcGCB, lcGCB-DZ and GCB-FL, while EZB-MYC+ was selectively 338 

enriched amongst lcGCB-DZ. ST2 cases mapped selective on to lcGCB-SOCS1. Similar patterns 339 

of association were evident when considering the associations of LCs with the independent 340 

but related HMRN mutational classification. We conclude that the mutation-based 341 

subdivision of DLBCL in LymphGen and related classifications overlaps significantly with LCs 342 

derived independently from gene co-expression patterns.  343 

 344 

Lymphoma communities underline distinctions between double-hit lymphomas  345 

In DLBCL the occurrence of double- or triple-hit with rearrangement of MYC and BCL2 346 

(MYC_BCL2_DH) or MYC and BCL6 (MYC_BCL6_DH), or MYC, BCL2 and BCL6 347 

(MYC_BCL2_BCL6_TH) identifies high-risk disease.
8-11

 The relationships of these 348 

rearrangement-based categories to gene expression and mutation features is relatively 349 

clear-cut for MYC_BCL2_DH,  but remains less well-defined for MYC_BCL6_DH.
47-49

 We 350 

therefore tested the association of rearrangement status and LCs in the HMRN cohort. 351 

lcGCB-DZ was highly enriched for MYC_BCL2_DH and MYC_BCL2_BCL6_TH cases (Figure 5b). 352 

In contrast, a more modest enrichment of MYC_BCL2_DH cases was evident in lcGCB, while 353 

lcGCB-FL was selectively enriched for BCL2_SH. lcGCB-Xit was selectively enriched for 354 

MYC_BCL6_DH and BCL6_SH status but was not associated with any combination of BCL2 355 

rearrangement, while lcABC was enriched for cases with MYC_SH. 356 

We further assessed whether the LCs were significantly associated with morphological 357 

diagnosis, COO class and molecular high grade (MHG) or double-hit signature (DHITsig) 358 

status.
14,15

 Two communities, lcGCB-FL and to a lesser extent lcGCB-DZ were linked to 359 

concurrent or previous diagnosis of underlying FL supporting a primary separation of 360 

disease biology in transformed FL cases (Figure 5b). lcPBL was selectively enriched for 361 

plasmablastic lymphoma morphological diagnosis, lcIR and lcIR-TET2 for T-cell histiocyte rich 362 

large B-cell lymphoma and lcGCB-SOCS1 for primary mediastinal large B-cell lymphoma. At 363 

gene expression level the LC communities recovered appropriate enrichments of GCB, ABC 364 

and unclassified cases. lcGCB-DZ was selectively enriched for cases designated as MHG and 365 
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cases that were DHITsig positive. Notably DHITsig differed from MHG in also showing 366 

significant enrichment amongst lcPBL. We conclude that the DLBCL LCs separate 367 

meaningfully in relation to underlying rearrangement status, morphological diagnosis, 368 

previous expression-based classifiers of high-risk disease and the presence of underlying FL.  369 

 370 

Lymphoma communities have prognostic significance in R-CHOP treated cases 371 

Given the fact that LCs segregate cases with common pathological features, we assessed 372 

whether LCs showed significant and reproducible survival differences. We addressed this 373 

across 6 datasets encompassing sufficient cases treated with R-CHOP chemo-374 

immunotherapy.
3,5,13,29,36,37

  Across multiple datasets the DLBCL community structure 375 

separated risk (Figure 6) albeit with variation evident between cohorts most notably for 376 

lcGCB-DZ and lcCT. Most adverse risk, in terms of meta-HR across the 6 datasets, was 377 

observed for assignment of cases to lcPBL, followed by lcABC-IR, lcGCB-Xit, lcABC and lcIR-378 

TET2. Intermediate and variable risk was observed for lcCT and lcGCB-DZ. At the other end of 379 

the spectrum particularly good risk was associated with lcGCB-FL, lcGCB-SOCS1, lcGCB and 380 

lcGCB-EMT. We conclude that the refined break down of DLBCLs in the 12-fold LC structure 381 

has potential utility to refine the separation of risk groups, while remaining aligned to the 382 

concept of the COO differentiation state. 383 

 384 

Lymphoma communities show distinct responses to RB-CHOP  385 

The REMoDL-B trial recently reported on extended follow-up identifying a benefit for 386 

proteasome inhibitor bortezomib with R-CHOP in cases classified as ABC-DLBCL.
50

 We were 387 

therefore interested to test whether LCs could provide further insight into responses to RB-388 

CHOP. For overall (OS) and progression-free (PFS) survival the LCs were significantly 389 

separated overall in the R-CHOP arm of the trial. In the RB-CHOP arm the significance of 390 

separation for the LCs declined for both OS (R-CHOP p=0.0013, RB-CHOP p=0.11) and PFS (R-391 

CHOP p=0.002, RB-CHOP p=0.02) (Figure 7). While there are inherent limitations in post hoc 392 

analysis and the impact of 12-fold classification on case numbers, we were interested to 393 

further compare the response for R-CHOP and RB-CHOP arms of the trial for each LC 394 

(Supplemental Figure 9 and 10). While some indication of improved responses for the RB-395 

CHOP arm was evident, for example for lcPBL case that achieved a 90%+ OS in the RB-CHOP 396 
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treated arm (OS p=0.04, PFS p=0.014), surprisingly, no difference in outcome was observed 397 

for lcABC or lcABC-IR between R-CHOP and RB-CHOP arms.  398 

 399 

Bortezomib response in ABC cases with variant expression features  400 

The absence of survival difference between the two arms of the trial for cases classified as 401 

lcABC contrasted with the apparent benefit of RB-CHOP amongst cases classified as ABC-402 

DLBCL using the trial classifier (TABC). We therefore examined the relative distribution of 403 

TABC cases across the LC assignments in REMoDL-B (Figure 8A). Of the 249 TABC cases 120 404 

were also assigned to lcABC and 47 were assigned to lcABC-IR (together 67% of TABC). These 405 

intersects included cases with most characteristic ABC expression patterns and showed no 406 

significant survival separation between RB-CHOP and R-CHOP arms of the trial. In contrast 407 

there was a suggestion of benefit for RB-CHOP over R-CHOP in TABC cases assigned to other 408 

LCs. Thus, we conclude that response to RB-CHOP rather than being associated with the 409 

most typical of ABC expression patterns is instead associated with cases that combine some 410 

ABC expression features with additional features that lead to other (non-ABC) assignments 411 

in the LC structure.  412 

 413 

Discussion 414 

Heterogeneity is a dominant feature of DLBCL biology. This has led to partially intersecting 415 

taxonomies. The most widely accepted of these are classification based on MYC and BCL2 416 

rearrangement status, COO classification based on gene expression patterns, and the recent 417 

mutational classifications defined in the LymphGen, Harvard and HMRN classifications.
1-4

 418 

However, there remains uncertainty about the inter-relationships between rearrangement, 419 

expression and mutation-based classifications. 420 

Here we have used a framework of consistent patterns of gene expression and an inclusive, 421 

correlation-centred approach to address these questions from a different perspective. Our 422 

analysis learned from 2,500 cases drawing on broadly representative contributions of the 423 

DLBCL research community and was tested in nearly 2,500 additional cases from recent 424 

studies.
2,12,13,26-35

  The network generated using PGCNA derives modules of co-expressed 425 

genes that reflect inherent features of DLBCL expression data and reinforces the central 426 

importance of the subdivision between ABC and GCB states. The analysis illustrates how 427 
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individual genes relate to each other within this context. Exemplifying this, the original COO 428 

classifier genes segregate discretely between the two primary modules linked to features of 429 

B-cell lineage, and many of the classifier genes and those in alternate COO classifiers, 430 

emerge as hub-nodes with high information content in the network.
34,38

 The pattern of gene 431 

correlation at network level, illustrates how for any module or neighbourhood closely 432 

correlated genes could be selected to report similarly on the expression state.  433 

When applying the network to expression-based classification, we have found that using 434 

correlation patterns captured in the network structure to select genes which are then 435 

collapsed into metagenes reflecting module- or neighbourhood-level expression features, as 436 

opposed to selecting highly variant genes and using these at gene-level, adds significant 437 

value to the reproducibility of classification. For DLBCL, while the prevailing models for COO 438 

classification enhanced with assessments such as MHG/DHITsig status or host response 439 

features already provide significant value to identify subsets of disease,
14,15,22,23,34,38,44

 our 440 

analysis illustrates that the integration of network features can discriminate expression 441 

patterns that are not captured in previous approaches. In terms of clinical practice, the LC 442 

structure could potentially be developed for case-by-case application, but that has not been 443 

the intent of the current study.  444 

Our approach is distinct from and complimentary to other recent studies of DLBCL 445 

expression biology such as the Ecotyper that highlight the importance of distinct patterns of 446 

host response in DLBCL biology.
22,23

 These concepts build from earlier work identifying 447 

features of host response that are linked to good outcome.
12,13

 The importance of immune 448 

and stromal response features is underlined by the contribution that the related network 449 

modules make to distinguishing subsets of cases. An interesting example is the link between 450 

specific patterns of the M3_ImmuneResponseMonocyteEnriched neighbourhoods and 451 

mutations in TET2 and DNMT3A. Indeed, an association between COO unclassified DLBCL 452 

and TET2 mutation enrichment has previously been identified,
3
 and our analysis extends this 453 

to refine the subgroup of immune response-rich DLBCL with TET2 mutation association. 454 

TET2 inactivation can contribute to lymphomagenesis in a B-lineage intrinsic fashion in 455 

murine models. However, TET2 inactivation contributes as an early event in haematopoiesis 456 

in these models and mutations in TET2 shared between DLBCL and subsequent 457 

myelodysplasia/leukaemia in individual patients have been reported.
51-53

 Similar to TET2, 458 

DNMT3A mutations are also common features of clonal haematopoiesis/clonal cytopenia of 459 
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undetermined significance.
54-56

 In angioimmunoblastic T-cell lymphoma TET2 and DNMT3A 460 

mutation have been identified as early events shared with both concurrent clonal 461 

haematopoiesis and subsequent DLBCL or other haematological malignancy.
57

 It will 462 

therefore be interesting to establish to what extent the expression patterns of lcIR-TET2 463 

identifies patients with DLBCL who have associated clonal haematopoiesis and whether the 464 

mutations in such DLBCL derive exclusively from neoplastic B-cells, or potentially in some 465 

cases from components of the host response.  466 

We demonstrate that the network-based approach can facilitate the recognition of groups 467 

of cases based on expression state that overlap with mutational classifications, 468 

rearrangement status and the presence of underlying FL. In the context of cases with 469 

underlying FL the cases separate between those with balanced GCB neighbourhood-level 470 

expression patterns and excellent prognosis on R-CHOP treatment and those with a 471 

dominant DZ-like expression profile with a poorer prognosis. The lcGCB-DZ cases are also 472 

enriched for high-risk features such as MYC and BCL2 rearrangement and MHG and DHITsig 473 

expression profiles.
8,10,14,49,58

 In contrast the good risk lcGCB-FL category is significantly 474 

enriched for STAT6 mutations including the Y419F hotspot which has been characterised as 475 

a distinctive feature of a subset of FL.
41,59-62

 The lcGCB-FL category is in many ways 476 

consistent with recent studies showing that DLBCL with concurrent or underlying FL at 477 

diagnosis is not necessarily associated with adverse prognosis.
63,64

 Together the lcGCB-DZ 478 

and lcGCB-FL categories argue for divergent patterns of FL evolution that are distinguished 479 

on the one hand by MYC rearrangement and related expression features for lcGCB-DZ and 480 

on the other for lcGCB-FL a link with underlying STAT6 mutation.  481 

The treatment landscape of DLBCL is rapidly evolving and introduction of polatuzumab 482 

vedoitin targeting CD79b is changing frontline therapy.
65

 However, it remains of interest to 483 

explore refined separation of expression state in R-CHOP based trial data. Recently the 484 

longer-term follow-up in the REMoDL-B trial has been reported identifying a significant 485 

survival benefit in the trial-classified ABC or MHG cases.
50

 Our analysis demonstrates that 486 

the apparent response to RB-CHOP in the ABC-DLBCL subset observed in the trial 487 

classifications is not associated with the set of cases that are identified both by the trial and 488 

the LC classification as ABC. This overlap includes cases with the most typical ABC 489 

expression patterns. Instead, the response appears to reside in cases with variant features 490 

related to host response or differentiation state. We acknowledge that the post hoc 491 
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subdivision of trial classified cases into multiple subgroups raises substantial caveats. 492 

However, a notable feature is that cases identified as plasmablastic (lcPBL) and treated with 493 

RB-CHOP in the REMoDL-B trial show a favourable outcome. This is  notable because lcPBL 494 

cases in other case series have the worst outcome overall when treated with R-CHOP, which 495 

has until recently been widely used for such cases.
66

 Our analysis of the REMoDL-B data 496 

supports the arguments put forward from other studies that bortezomib-containing 497 

regimens should be considered in DLBCL with plasmablastic features.
66-70

  498 

We conclude that our network-based approach yields an encompassing map of DLBCL 499 

tumour biology and illustrates how data integration and network analysis can refine 500 

expression-based stratification of DLBCL. Our analysis supports the argument that such 501 

refined stratification is needed to accurately identify treatment responses even within 502 

existing molecular subtypes. 503 

 504 

Methods  505 

(See also Supplemental Methods) 506 

Expression datasets 507 

Thirteen  expression datasets were used for PGCNA (GSE4475, GSE4732, GSE10846, 508 

GSE12195, GSE19246, GSE22470, GSE31312, GSE32918, GSE34171, GSE53786, GSE87371, 509 

GSE98588, Monti).
2,12,13,26-35

  For validation 4 datasets were used: HMRN (GSE181063), NCI 510 

(NCICCR-DLBCL), REMoDLB (GSE117556) and Reddy (EGAS00001002606), (Supplemental 511 

Table 1).
3,5,13,29,36,37

 For RNA-seq datasets (NCI, Reddy) count data was processed using 512 

DESeq2 v1.22.2 with VST-normalised data used for analysis. Probes were re-annotated 513 

(http://mygene.info) ambiguous mappings were manually assigned.  Datasets were quantile 514 

normalised (Python qnorm) and probe sets merged (median value for probe sets with 515 

Pearson correlation ≥0.2 and maximum value for those with correlation <0.2). 516 

 517 

Network generation 518 

Discovery datasets (GSE10846 split into CHOP/RCHOP-treated) were processed using 519 

PGCNA2 (https://github.com/medmaca/PGCNA/tree/master/PGCNA2), retaining the top 520 

70% most variant genes present in ≥50% of the datasets, carrying out 1000 Leidenalg 521 

clusterings and selecting the best using Scaled cluster enrichment scores.  The resulting 522 
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network contained 16,054 genes (44,730 edges) split into 28 modules (Supplemental Table 523 

1).  The network was visualised using Gephi (version 0.9.2), and interactive HTML5 web 524 

visualisations exported using the sigma.js library. Interactive networks are at 525 

https://mcare.link/DLBCL2.  526 

 527 

Network analysis 528 

Clustering samples 529 

See supplemental methods: Before clustering, we split each module into 530 

submodules/neighbourhoods and collapsed the genes within these to single values 531 

(MEV/NEVs).  The most informative genes/MEV/NEVs were selected using several 532 

approaches, and used to cluster the DLBCL datasets using two different approaches 533 

PGCNA/ConsensusClustering (CC)
1
.  We used cluster results to explore how recurrently 534 

discoverable the DLBCL communities were, allowing the selection of the most informative 535 

attributes for clustering.  The best results for the HMRN dataset were combined between 536 

PGCNA/CC to generate ensemble Lymphoma Communities (LC).  These were used to train a 537 

machine learning tool to recover the LCs in every dataset. 538 

 539 

Neighbourhoods 540 

Each of the 28 modules was sub-clustered to create neighbourhoods.  The existing PGCNA 541 

edge file was split at the module level and then clustered 5,000 times using Leidenalg.  The 542 

best clustering (based on modularity score) for each module was retained.  Multiple 543 

different runs converged onto the same answer.  The neighbourhoods are detailed in 544 

Extended Data Figure 3. 545 

 546 

Module Expression Values and Lymphoma communities 547 

Genes per module/neighbourhood were collapsed down to single values: within each 548 

dataset, which vary in available genes, the genes per module/neighbourhood were ranked 549 

by gene_strength (sum of genes edges/correlations within its module). Representative 550 

genes were selected and converted into a MEV or NEV by: 551 

1. Per module/neighbourhood select top 10 genes based on ranks. 552 

2. Per gene, standardize (z-score) the quantile-normalized log2 expression data. 553 
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3. Per sample (patient) calculate the median of the 10 z-scores to give a MEV/NEV. 554 

 555 

Lymphoma Community machine learning tool 556 

Clustering results for HMRN were merged by selecting significant overlaps (p-value < 557 

0.0001) that form a community in either CC/PGCNA containing > 5 samples (Supplemental 558 

Figure 1 & Supplemental Methods).  This generated a high confidence set of LCs (n=298) 559 

that formed a training dataset (Figure 4b top) that was used to train a machine learning 560 

(ML) tool to recover the LC in other datasets.  The training dataset was split using the 561 

python Scikit-learn test_train_split function, stratifying on the LC class label, to give class-562 

balanced randomised training (n=238) and validation (n=60) datasets.  The validation 563 

dataset was set aside to test the final selected model. The training data was used to carry 564 

out stratified 5-fold cross-validation across 7 different machine learning methods. In total 565 

4,802 parameters were tested across the ML tools, scoring with the Matthews correlation 566 

coefficient (MCC). The best 3 models, using their optimal parameters, were combined using 567 

soft voting to give a model with mean MCC of 0.89 across the 5-folds.  This model was then 568 

tested on the unseen validation data (n=60) with MCC of 0.87. This final model, termed 569 

ML_LC, was retrained using all 298 training samples and was used for all subsequent 570 

classifications, including the HMRN dataset (Figure 4b bottom). 571 

 572 

Survival analysis 573 

Right-censored survival data, where available, was analysed using Survival library for R.  The 574 

expression of each gene (as z-score) or the ML_LC p-value was used as a continuous variable 575 

in a Cox Proportional Hazards model and the ML_LC community for a Kaplan-Meier 576 

estimator (using merged survival data).  Meta-analysis across datasets was conducted by 577 

fitting a fixed-effect model to hazard ratios, weighted by dataset size. 578 

 579 

Mutation analysis 580 

Analysis was carried out for HMRN (188 genes/431 samples), REMoDLB (70 genes/400 581 

samples) and Reddy (150 genes/624 samples) datasets.  Mutations were converted to a 582 

binary matrix for downstream analysis. For each dataset the point-biserial correlations were 583 

calculated between all pairs of mutated gene and MEV/NEV.  The resulting correlation p-584 
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values were converted to z-scores (python stats.norm.ppf) to convey the ±correlation along 585 

with its significance. Significance of overlap between mutations and LC was calculated using 586 

hypergeometric testing within each dataset.  To generate meta results MEV/Community 587 

mutation analysis p-values were combined using the Stouffer’s Z method. 588 

 589 

Data Availability Statement 590 

The underlying primary datasets are available at the indicated data source (see above under 591 

Expression Datasets). All resulting gene correlation data, module and neighbourhood gene 592 

lists, and signature/ontology enrichments are available at https://mcare.link/DLBCL2. 593 

 594 

Code Availability Statement 595 

The DLBCL LC classifier and networks are available at https://mcare.link/DLBCL2. 596 

PGCNA is available at https://github.com/medmaca/PGCNA/tree/master/PGCNA2 597 

All other code is available on request. 598 
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Figure 1. PGCNA network visualization for DLBCL
(a) DLBCL network with modules colour-coded, modules outlines are approximated with ellipses of same colour with module summary term indicated. 
Interactive versions are available at https://mcare.link/DLBCL for detailed exploration. (b) Separation of module signature and ontology associations is 
illustrated as a heatmap (filtered FDR <0.05 and ≥ 5 and ≤ 1000 genes; top 15 most significant signatures per module). Significant enrichment or 
depletion illustrated on red/blue scale, x-axis (modules) and y-axis (signatures). Hierarchical clustering according to gene signature enrichment. For 
high-resolution version and extended data see Extended Data Figure 2 and Supplemental Table 2. (c) Overlay of meta-hazard ratio (HR) of death 
across available meta-data in training datasets. Corresponding module outline approximations are illustrated as in (a).  Colour scales: outcome blue 
(low HR - good outcome) to red (high HR - poor outcome). Interactive version available at https://mcare.link/DLBCL for detailed exploration, along 
with additional meta-data overlays. (d) Ranked module level association with HR of death. Distribution of HR associations for module genes with 
p-value < 0.05, along with median (blue square) and IQR.
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Figure 2. GCB and ABC module neighbourhoods provide fine-grained resolution
(a) Modules M9_GCB (blue) and M11_ABC (yellow) are displayed as a merged ABC/GCB specific network with node sizes reflecting degree. (b) The 
ABC/GCB specific network structure as in (a) colour coded according to gene neighbourhood membership, with colour key provided to the right. (c) 
and (d) Separation of neighbourhood signature and ontology associations are illustrated as a bubble plot for M9_GCB (c) and M11_ABC (d) (showing 
select signatures). Significant enrichment illustrated by colour and bubble size, x-axis (neighbourhoods) and y-axis (signatures) for relevant 
signatures.  For high-resolution version and extended data see Extended Data Figure 3 and Supplemental Table 4.
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Figure 3. Relationship between MEV/NEVs and mutations
Association of Module/Neighbourhood Expression Values (MEV/NEV) with mutations.  Shown are combined significance (Stouffer method) of p-value 
based on point-biserial correlations between binary mutation status and MEV/NEVs across 3 datasets (HMRN, Reddy & REMoDLB).  Only mutations 
with p-value < 0.001, occurring in ≥ 2 datasets were retained, Z-scores for p-values > 0.001 were set to 0.  Significance is shown as z-scores on a 
blue (significant depletion) to red (significant enrichment) scale (-5 to +5).  Centre shows the relationship between MEVs and mutations. Outside 
shows the relationship between select NEVs and mutations.
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Figure 4. Attribute selection and building a Lymphoma Community classifier.
The attributes used for clustering samples were tested using a machine learning (ML) approach (see EDF1) that assessed the recurrence of discovered clusters between 
clusterings of different DLBCL datasets. (a) displays violin plots of Z-scores showing the significance of cluster recurrence based on overlaps between clusters in different 
DLBCL datasets (comparing unsupervised/supervised clusterings between each pair of datasets (n=16), yielding 240 comparisons (per K level); see EDF1, ST5 and 
Supplemental Methods).  Attributes were clustered using CC (linkage:average and method: HC/PAM) or with PGCNA.  The bars at the top show the level – gene or collapsed 
to MEV/NEV and the attribute type – Top1000: top 1000 genes with highest median absolute deviation, Network: most variant genes per neighbourhood (SelectG_MADS), 
Net+Strct: most variant neighbourhoods (genes per neighbourhood selected based on network edge strength; SelectG_NEV-MADM) and Net+Strct/NEV_M9M11: most 
variant modules/neighbourhoods (genes per module/neighbourhood selected based on network edge strength; SelectG_NEV-MADM) with only modules M9 and M11 at the 
neighbourhood level.  Violin plots show the median (solid line) and Q1/Q3 (dotted lines) along with each comparison (white dot, n=240) for the k=12 CC results.  The 
horizontal black line is set at the highest median value. (b) using the most informative attribute set (MEV/NEV NEV_M9M11; n=41 MEV/NEV) the overlapping CC_K12 and 
PGCNA clusterings of the HMRN dataset formed a training dataset to build a ML classifier.  The top heatmap shows the training data and the bottom shows the total HMRN 
dataset reclassified using the trained ML tool (ML_LC).  Each row shows the expression of the displayed MEV/NEV across the samples on a blue (low) to red (high) z-score 
colour scale. (c) the fraction of each LC across the datasets classified using ML_LC.

GSE10846_RCHOP GSE31312 HMRN NCI-DLBCL Reddy REMoDLB

0.00

0.05

0.10

0.15

0.20

0.25

Fr
ac

tio
n

C
relative

-3 -1.5 0 1.5 3

LymphomaCommunity

PGCNA

M
od

ul
eCC_K12

ML_LC

M
od

ul
e

M9 GCB - M9_n3
M9 GCB - M9_n1
M9 GCB - M9_n6
M9 GCB - M9_n11
M9 GCB - M9_n4
M9 GCB - M9_n13
M9 GCB - M9_n9
M9 GCB - M9_n8
M9 GCB - M9_n2
M9 GCB - M9_n7
M9 GCB - M9_n5
M9 GCB - M9_n12
M11 ABC - M11_n1
M9 GCB - M9_n14
M9 GCB - M9_n10
M11 ABC - M11_n8

M11 ABC - M11_n9
M11 ABC - M11_n14
M11 ABC - M11_n17

M7 CellCycle E2F_EGFR
M18 Nucleosome

M23 Homeobox

M28 Novel1

M11 ABC - M11_n2
M11 ABC - M11_n4
M11 ABC - M11_n6
M11 ABC - M11_n5
M11 ABC - M11_n3
M11 ABC - M11_n7
M11 ABC - M11_n11
M11 ABC - M11_n12

M11 ABC - M11_n10

M11 ABC - M11_n13

M4 EMT_Angiogenesis
M26 EGF-TNFA-NRG1_Signaling

M3 ImmuneResponse MonocyteEnriched
M10 ImmuneResponse Tcell
M20 ImmuneResponse IFN
M25 Metalthiolate

M27 Hemoglobin

M21 Immunoglobulins

M9 GCB - M9_n4
M9 GCB - M9_n3
M9 GCB - M9_n1
M9 GCB - M9_n6
M9 GCB - M9_n11
M9 GCB - M9_n13
M9 GCB - M9_n2
M9 GCB - M9_n7
M9 GCB - M9_n5
M9 GCB - M9_n12
M9 GCB - M9_n14
M9 GCB - M9_n8
M9 GCB - M9_n9
M9 GCB - M9_n10

M11 ABC - M11_n17

M7 CellCycle E2F_EGFR
M18 Nucleosome

M23 Homeobox

M28 Novel1

M11 ABC - M11_n2
M11 ABC - M11_n4
M11 ABC - M11_n6
M11 ABC - M11_n5
M11 ABC - M11_n3
M11 ABC - M11_n1
M11 ABC - M11_n7
M11 ABC - M11_n11
M11 ABC - M11_n9
M11 ABC - M11_n14
M11 ABC - M11_n8
M11 ABC - M11_n12

M11 ABC - M11_n10

M11 ABC - M11_n13

M4 EMT_Angiogenesis
M26 EGF-TNFA-NRG1_Signaling

M3 ImmuneResponse MonocyteEnriched
M10 ImmuneResponse Tcell
M20 ImmuneResponse IFN
M25 Metalthiolate

M27 Hemoglobin

M21 Immunoglobulins

b

0

5

10

15

20

25

30

35

40

Zs
co

re
s

a

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2023. ; https://doi.org/10.1101/2022.05.23.22275358doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.23.22275358
http://creativecommons.org/licenses/by/4.0/


global

-5 0 5

Figure 5. Lymphoma Communities (LC) have distinct mutational and rearrangement associations.
Association of LC with mutation and rearrangement status. (a) The differential enrichment of gene mutations across LC integrated across three 
datasets. Shown is combined significance (Stouffer method) of LC enrichment/depletion of mutations as z-scores on a blue (significant depletion) to 
red (significant enrichment) scale (-5 to +5). X-axis shows hierarchically clustered LC and y-axis gene symbols. Only mutations with p-value < 0.01, 
occurring in ≥ 2 datasets were retained, Z-scores for p-values > 0.01 were set to 0. (b) Significance of enrichment/depletion of LC with LymphGen, 
HMRN mutational group (PMID: 32187361), Hit-status (rearrangement status for MYC, BCL2 and BCL6 indicating single hit (SH), double hit MYC_B-
CL2-DH or MYC_BCL6-DH, or triple hit MYC_BCL2_BCL6-TH), Diagnostic-Group, cell-of-origin/MHG and DHITsig assignments in the HMRN 
dataset.  X-axis hierarchically clustered LC, against y-axis clustered within each group.  Z-scores with p-value > 0.05 were set to 0.
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Figure 6. Lymphoma communities are significantly associated with overall survival
(a) Lymphoma Communities (LC) across the indicated datasets show consistent associations for hazard ratio (HR) of overall survival for R-CHOP 
treated patients. Heatmaps shows HR on a blue (good) to red (poor) colour scale across 6 datasets ordered by metaHR (from Cox proportional 
hazards regression; ML_LC LC p-value as the explanatory variable).  The left chart shows the median fraction size of each LC across the 6 datasets. 
The right charts show the Log10 MetaHR (red) and -Log10 p-value (grey) with p<0.05 indicated by a dashed-line. (b) Kaplan-Meier plots of overall 
survival for R-CHOP treated patients across the 6 DLBCL datasets for shown LC; p-value from log-rank test.
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Figure 7. lcPBL and lcCT show improved survival with addition of bortezomib
Shows Kaplan-Meier plots of survival for the indicated Lymphoma Communities (LC) within the REMoDLB dataset split by treatment (R-CHOP or with 
addition of bortezomib; RB-CHOP) and survival (overall-survival:OS, progression-free-survival:PFS). (a) R-CHOP OS, (b) R-CHOP PFS, (c) 
RB-CHOP OS and (d) RB-CHOP PFS.  P-value from log-rank test.
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Figure 8. High confidence ABC does not show significant survival advantage with addition of bortezomib
(a) shows the overlap between REMoDLB trial COO assignments (rows) and Lymphoma Communities (columns).  The samples used in part b have a 
black border.  (b) Shows Kaplan-Meier plots of survival for Lymphoma Community overlap subsets of the TABC group.  Each plot compares the 
treatments: R-CHOP (lighter-line) and RB-CHOP (darker-line) with overall-survival (top row) and progression-free-survival (bottom row).  P-value from 
log-rank test.
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