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Abstract 1 

During infectious disease outbreaks, individuals may adopt protective measures like 2 

vaccination and physical distancing in response to awareness of disease burden. Prior 3 

work showed how feedback between epidemic intensity and awareness-based behavior 4 

shapes disease dynamics (e.g., producing plateaus and oscillations). These models often 5 

overlook social divisions, where population subgroups may be disproportionately 6 

impacted by a disease and more responsive to the effects of disease within their group. 7 

We hypothesize that socially divided awareness-based behavior could fundamentally 8 

alter epidemic dynamics and shift disease burden between groups. 9 

We develop a compartmental model of disease transmission in a population split into 10 

two groups to explore the impacts of awareness separation (relatively greater in- versus 11 

out-group awareness of epidemic severity) and mixing separation (relatively greater in- 12 

versus out-group contact rates). Protective measures are adopted based on awareness of 13 

recent disease-linked mortality. Using simulations, we show that groups that are more 14 

separated in awareness have smaller differences in mortality. Fatigue-driven 15 

abandonment of protective behavior can drive additional infection waves that can even 16 

exceed the size of the initial wave, particularly if uniform awareness drives early 17 

protection in one group, leaving that group largely susceptible to future infection. 18 

Finally, vaccine or infection-acquired immunity that is more protective against 19 

transmission and mortality may indirectly lead to more infections by reducing 20 

perceived risk of infection, and thereby reducing vaccine uptake. The dynamics of 21 

awareness-driven protective behavior, including relatively greater awareness of 22 

epidemic conditions in one’s own group, can dramatically impact protective behavior 23 

uptake and the course of epidemics. 24 
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Introduction 25 

When an infectious disease causes substantial disease burden and death, people may 26 

respond to the true or perceived risk of infection by modifying their behavior (1–5). In 27 

turn, protective behaviors like physical distancing, mask wearing, and vaccination may 28 

suppress transmission, reducing peak and total infections and disease-linked mortality 29 

(3, 6, 7). Bidirectional feedback between epidemic outcomes and awareness-based 30 

behavior may lead to unexpected and nonlinear dynamics, such as plateaus and 31 

oscillations in cases over time (8–11). Mathematical models that split the population into 32 

categories with respect to the disease (i.e., compartments) and mathematically define 33 

transition rates between different states are widely used to understand such complex 34 

epidemic dynamics. Compartmental models may incorporate the impact of awareness 35 

as a function of deaths or cases that reduces transmission evenly across the population 36 

(8, 9). The spread of epidemic-related information has also been modeled as an 37 

additional contagion process that is distinct from but potentially linked to disease 38 

transmission (11–15). However, real populations are sharply divided in physical 39 

interactions, demography, ideology, education, housing and employment structures, 40 

and information access; these social divisions can impact both the transmission of 41 

pathogens and information within and between groups, altering epidemic dynamics. 42 

The impacts of such asymmetrically spreading disease and awareness in a highly 43 

divided population are not well understood (16–18). 44 

Populations may be subdivided based on an array of factors (e.g., race, ethnicity, age, 45 

and geography), with marked differences in pathogen exposure and infection severity 46 

(17, 19–23). Risk of pathogen introduction may vary between groups: high income 47 

groups may encounter pathogens endemic to other regions through international travel, 48 

low income groups may have heightened likelihood of exposure connected to poor 49 

housing quality and insufficient occupational protections, and certain regions and 50 

occupations experience greater risks of exposure to zoonotic illnesses (19, 24–27). Once a 51 

pathogen is introduced, it may spread at different rates within groups based on factors 52 

like housing density and access to healthcare (20, 24, 28). Further, the severity of 53 

infection may vary directly with group identity due to underlying biological differences 54 

(e.g., age or sex), as a function of co-morbidities especially prevalent in one group due 55 

to underlying inequities (e.g., lung disease connected to environmental pollution or 56 

heart disease associated with factors driven by structural racism), or through 57 

heterogeneity in access to and quality of healthcare (20–22, 28–32). Physical barriers 58 

(e.g., geographic boundaries, schools, residential segregation, and incarceration) and 59 

preferential mixing with members of one’s own group may reduce contact and 60 

subsequent transmission between groups, a characteristic we describe as separated 61 

mixing (19, 33–36). Infectious disease models that account for differences in 62 
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vulnerability within subgroups of a population and separated mixing can help to 63 

illustrate the emergence of health inequities and justify structural interventions to 64 

reduce these disparities (37–40). However, such models may miss an important 65 

behavioral dimension by failing to account for variation in awareness-based behavior 66 

changes among groups. 67 

Awareness and behavioral heterogeneity can significantly alter disease dynamics: for 68 

example, local awareness in a network with strong clustering can stop the pathogen 69 

from spreading altogether, while clustering in vaccine exemptions may lead to 70 

outbreaks (14, 41, 42). Although personal risk perception may be responsive to risk in 71 

other groups, and behavior may be influenced by population-level social norms and 72 

mass media, attitudes toward diseases and protective behaviors may also vary 73 

considerably between groups and correspond to actual risk and personal experiences of 74 

close social ties with the disease (43–48). While prior awareness-based models have 75 

examined outcomes given different sources of information (i.e., local or global), we aim 76 

to characterize risk perception based on group-level information in a population split 77 

into two distinct and well-defined groups (49). We define separated awareness as greater 78 

in- versus out-group awareness in a split population and predict that, by producing 79 

behavioral responses more reflective of each group’s risk, it may reduce differences 80 

between groups in disease burden (50). Understanding the impacts of separation with 81 

respect to mixing and awareness on disease dynamics may be important for 82 

characterizing differences in epidemic burden and effectively intervening to mitigate 83 

population inequities (37, 39, 40, 50, 51). 84 

Here, we investigate the impacts of intergroup divisions on epidemic dynamics using 85 

an awareness-based model for transmission of an infectious disease, in which adoption 86 

of protective measures (either nonpharmaceutical interventions or vaccinations) is 87 

linked to recent epidemic conditions and mediated by awareness. 88 

We ask: 89 

1. How do separated awareness and mixing interact to affect differences between 90 

groups in epidemic dynamics? 91 

2. How does fatigue interact with awareness separation to affect long-term 92 

epidemic dynamics? 93 

3. When vaccines are introduced, how does immunity interact with awareness 94 

separation to affect long-term epidemic dynamics? 95 
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Results 96 

1. Separated mixing and awareness  97 

To understand how separation in awareness and mixing interact to alter short-term 98 

epidemic dynamics in a split population, we model awareness-based adoption of 99 

nonpharmaceutical interventions (Equation 1); all model parameters are defined in 100 

Supplementary Table 1 and a compartmental diagram is provided as Supplementary 101 

Figure 1. The population is split into two groups: group a and group b, and individuals 102 

in each group can switch between unprotective behavior and protective behavior that 103 

reduces transmission but cannot change their group. We arbitrarily designate group a 104 

as having greater underlying vulnerability to infection or disease-linked mortality in all 105 

of the following scenarios. Specifically, in this section the sole initial difference between 106 

groups is caused by introducing the pathogen into group a alone at prevalence ���0� �107 

0.001; all other parameters are equivalent between groups. To simplify short-term 108 

awareness-based behavior, this scenario does not incorporate memory or fatigue (ℓ � 1 109 

and 	 � 0). First, we allow both mixing (
; which drives the contact and contagion 110 

process) and awareness (�; which drives protective behavior adoption) to be either 111 

uniform (functioning like a single population) (0.5) or highly separated (0.99). 112 

The groups experience identical epidemic dynamics when mixing is uniform (Figure 113 

1A, B), as the pathogen introduced into group a quickly spreads into group b and 114 

circulates evenly within and between groups. When groups mix separately, differences 115 

in epidemic dynamics between groups arise and depend on awareness separation 116 

(Figure 1C, D). When mixing is separated but awareness is uniform, epidemic shape 117 

differs in both timing and magnitude between groups, increasing the peak size and total 118 

infections in the more vulnerable (earlier epidemic introduction) group a and 119 

decreasing both in group b (Figure 1C). Specifically, uniform awareness reduces total 120 

infections in group b, which adopts protective behavior by observing mortality in group 121 

a at a point when infections within group b remain relatively low (Figure 1C, 122 

Supplementary Figure 3B, D, E). Meanwhile, uniform awareness causes group a to 123 

underestimate disease severity due to the lack of early mortality in group b, leading to 124 

decreased early protective behavior and a larger outbreak (Figure 1C, Supplementary 125 

Figure 3A, C, E). When awareness is separated, group b has little awareness of the 126 

emerging epidemic localized to group a, while group a responds to its relatively higher 127 

early disease burden with increased awareness, driving epidemic dynamics between 128 

the two groups to be similar in shape but delayed in time for group b (Figure 1D). 129 

Therefore, awareness separation reduces the differences between groups in epidemic 130 

shape (e.g., peak size, total infections), while mixing separation offsets them in time 131 

(Figure 1C, D).  132 
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The finding that awareness separation reduces differences between groups in severe 133 

outcomes also holds when groups differ in their transmission coefficients, infectious 134 

periods, and infection fatality rates (Supplementary Figures 4, 5, 6). 135 

 136 

Figure 1.  Epidemic peaks are offset in time between groups when mixing is separated 137 

(C, D), and in magnitude when awareness is uniform but mixing is separated (C). Plots 138 

show numbers of infections over time in group a (maroon) and group b (blue) under four 139 

scenarios: awareness is uniform (A, C; � � 0.5) or separated (B, D; � � 0.99); mixing is 140 

uniform (A, B; 
 � 0.5) or separated (C, D; 
 � 0.99). We assume the pathogen is introduced 141 

only in group a (maroon) at prevalence 0.001 and that all other parameters are equivalent 142 

between groups: transmission coefficient (� � 0.2), infectious period (
�

� 
 � 10), infection fatality 143 

rate (� � 0.01), protective measure efficacy (� � 0.3), responsiveness (� � 100), memory 144 

(ℓ � 1), and fatigue (	 � 0). Lines overlap under separated mixing (top row). 145 
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2. Fatigue and awareness separation 146 

We introduce memory and fatigue to examine the long-term impacts of separated 147 

awareness when awareness-driven protective behavior is abandoned over time. Once 148 

again, the pathogen is introduced into group a alone and all other parameters are 149 

equivalent between groups. To maintain between-group differences, we assume 150 

separated mixing (h = 0.99). 151 

In all cases, when protective behavior wanes with fatigue, three distinct peaks emerge 152 

before transmission plateaus at low levels and declines gradually (Figure 2). The initial 153 

difference between groups with uniform awareness (Figures 1C, 2A) means that group 154 

b retains a relatively larger proportion of susceptible individuals who avoided infection 155 

in the first wave by rapidly adopting protective behaviors. As a result, the second and 156 

third wave in group b exceed its first wave in peak and total infections (Figure 2A). 157 

Meanwhile, uniform awareness causes the second wave in group a to be smaller and 158 

delayed by about 400 days compared to separated awareness (Figure 2A vs. B). As 159 

shown in the case without memory and fatigue (Figure 1), when both mixing and 160 

awareness are separated, the groups differ mainly in the timing of epidemic peaks 161 

rather than in their magnitude, before converging on a long and slow decline (i.e., 162 

shoulder; Figure 2B) (9). 163 
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 164 

Figure 2. Fatigue and long-term memory produce multiple epidemic peaks, which exceed 165 

the size of the initial peak in group b when uniform awareness and separated mixing 166 

leave that group with a high proportion of susceptible people following the first wave. 167 

We initialize the model with separated mixing (
 � 0.99), long-term memory (ℓ � 30), and 168 

fatigue (	 � 0.02); all other parameters are the same as in Figure 1. We consider infections in 169 

group a (maroon) and group b (blue) over a longer time period (1000 days, compared to 200 days 170 

in Figure 1). The panels correspond to (A) uniform awareness (� � 0.5) and (B) separated 171 

awareness (� � 0.99).  172 
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3. Immunity and awareness separation 173 

Next, we consider the implications of awareness-based vaccine uptake in a split 174 

population given waning immune protection against infection and durable protection 175 

against mortality (Equation 3, Supplementary Figure 2). We model immunity from 176 

prior infection as equivalent to immunity from vaccination. Unlike in the previous 177 

analyses, the pathogen is now introduced at the same prevalence in both populations 178 

simultaneously to ensure that group a and b begin the post-vaccine period with similar 179 

levels of immunity. Group differences are driven by an infection fatality rate in group a 180 

that is twice that of group b. Again, we assume separated mixing (h = 0.99) to maintain 181 

distinct dynamics between the groups. 182 

After an initial large wave, vaccination and waning immunity lead to damped cycles of 183 

infections and deaths (Figure 3). As was the case with the nonpharmaceutical 184 

intervention model (Figure 1), when awareness drives vaccination behavior, separated 185 

awareness helps to reduce differences between-group differences in mortality (Figure 186 

3D vs. C). Group a becomes vaccinated at a higher rate in response to the greater 187 

number of deaths observed in group a, an effect that is most notable during the second 188 

epidemic peak (Figure 3D). Therefore, with separated awareness group a also has fewer 189 

infections than group b in later waves (Figure 3B), while infection dynamics remain 190 

identical (despite the larger disparity in deaths) in the uninform awareness scenario 191 

(Figure 3A), the opposite of the nonpharmaceutical intervention scenario (Figure 2). 192 

Because vaccination protects against infections and deaths, and recent deaths feed back 193 

to influence awareness-driven vaccine uptake, we explored the tradeoff between 194 

immune protection and epidemic dynamics in the post-vaccine period. Assuming that 195 

vaccination and infection reduce both the transmission coefficient and infection fatality 196 

rate to an equivalent extent, we examine the total effect of variation in immune 197 

protection on epidemic dynamics and their feedbacks on vaccine uptake rate. As 198 

expected, greater immune protection reduces the number of deaths by directly reducing 199 

the infection fatality rate. However, because of awareness-driven vaccine uptake, 200 

vaccination can produce diminishing returns at the population scale where doubling 201 

immune protection from death and infection only reduces total deaths by about one 202 

eighth due to the compensatory reduction in vaccine uptake (Figure 4A), despite 203 

doubling individual protection for vaccinated people. Since a more effective immune 204 

response reduces mortality, the perceived risk associated with infection declines and 205 

fewer people become vaccinated (Figure 4B). The tradeoff between the direct impacts of 206 

immune protection on preventing infections and reduced uptake produces a nonlinear 207 

relationship between total infections and immune protection (Figure 4C). At low 208 

immune protection, infections remain approximately constant as immune protection 209 
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improves. At higher levels of immune protection, reduced uptake with improving 210 

immune protection leads to more infections (Figure 4C). 211 

Separated awareness drives greater differences between groups in vaccination 212 

behavior—the higher-risk group a gets vaccinated at a higher rate in response to 213 

awareness of the higher numbers of deaths in that group (Figure 4B). This in turn 214 

increases differences in infections (group a experiences lower infection rates; Figure 4C) 215 

but decreases differences in mortality between groups (death rates are lower for group a 216 

but higher for group b than in the uniform awareness scenario; Figure 4A). Since group 217 

a is at a higher inherent risk of mortality given infection, separated awareness 218 

differentially promotes vaccination and reduces infection in this group, while uniform 219 

awareness misleads group a into ignoring its higher risk of mortality (Figure 4A, B, 220 

solid versus dashed lines).  221 

 222 

 223 

 224 

 225 

 226 

 227 
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 228 

Figure 3. Waning immunity and awareness-based vaccination drive epidemic cycles; 229 

separated awareness reduces the disparity in deaths (C vs. D) as more-vulnerable group 230 

a members become vaccinated at a higher rate. We consider infections (A, B) and deaths (C, 231 

D) given awareness-based vaccination, where vaccination begins at day 200, indicated with 232 

vertical arrows. In the pre-vaccine period, regardless of awareness separation, infection dynamics 233 

are identical between groups but deaths are higher in group a (maroon) than group b (blue) due 234 

to a doubly high infection fatality rate (�� � 0.02 and �� � 0.01; C, D). In the post-vaccine 235 

period, we compare uniform awareness (� � 0.5) (A, C) and separated awareness (� � 0.99) (B, 236 

D). Other parameter values are: � � 0.2 (transmission coefficient), � � 0.05 (transmission-237 

reducing immunity), � � 0.05 (mortality-reducing immunity), � � 	 � 0.01 (waning 238 

immunity), infectious period (
�

� 
 � 10), � � 20 (responsiveness), ℓ � 30 (memory), 
 � 0.99 239 

(separated mixing), �� � 0.001 (initial infection prevalence). 240 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.20.22275407doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.20.22275407
http://creativecommons.org/licenses/by/4.0/


 241 

 242 

Figure 4. Greater immune protection (from vaccination and infection) leads to lower 243 

death rates (A), which in turn decreases vaccination rates (B) and increases infection 244 

rates (C); separated awareness reduces disparities in death rates (A) as groups are 245 

vaccinated at different rates proportional to their risks of death (B), creating 246 

differences in infection rates (C). We vary transmission-reducing immunity and mortality-247 

reducing immunity, assigning both parameters the same values (� � �) and define this quantity 248 

as immune protection, which we assume is equivalent for vaccine- and infection-derived 249 

immunity. The x-axis is reversed because smaller values indicate stronger protection. We 250 

examine the impacts of stronger immune protection (lower values of � and �) on total deaths (A), 251 

vaccinations (B), and infections (C) in the post-vaccine period (t = 200 through t = 2000), 252 

depending on awareness separation. We compute each quantity for group a (maroon) and group 253 

b (blue) given uniform (dashed lines; � � 0.5) or separated (solid lines; � � 0.99) awareness. 254 

Other parameter values are the same as Figure 3. 255 

  256 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.20.22275407doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.20.22275407
http://creativecommons.org/licenses/by/4.0/


Discussion 257 

Awareness separation and social divisions may interact to fundamentally alter disease 258 

dynamics, creating or erasing differences among groups in the timing and magnitude of 259 

epidemic peaks. Uniform awareness can exacerbate differences between population 260 

subgroups when the more vulnerable group (e.g., the group where the pathogen is 261 

introduced or the group with higher infection fatality rates) underestimates the in-262 

group risk of disease and fails to adopt early protective measures (Figures 1, 4). At the 263 

same time, the initially less-vulnerable group receives indirect protection from 264 

observing and responding to epidemic effects in the more vulnerable group, adopting 265 

protective measures that reduce their total and peak infections (Figures 1, 4). However, 266 

when awareness-driven behavior fades with fatigue, the relative disease burden may 267 

shift between groups such that the group that initially had fewer infections has 268 

relatively more infections in subsequent waves, especially when uniform awareness 269 

protects the initially less-vulnerable group during the first wave of infection (Figure 2). 270 

Awareness separation diminishes between-group differences in severe outcomes 271 

(Figures 1, 2, 3, 4, Supplementary Figures 3, 4, 5, 6), but may do so by increasing 272 

differences in behavior and infections (Figures 3, 4, Supplementary Figure 6). For 273 

example, when the more vulnerable group has a higher rate of disease-linked mortality, 274 

awareness separation leads them to have higher vaccine uptake in response to their 275 

heightened perceived (and actual) risk, narrowing the difference in mortality (Figure 4). 276 

More broadly, awareness separation generally closes differences between groups by 277 

producing preferential uptake of preventative measures by the group with the greatest 278 

recent mortality, which is usually the group at greatest current risk. 279 

In this model, greater awareness separation generally reduces differences in severe 280 

outcomes between groups because the awareness process explicitly responds to severe 281 

outcomes (deaths). But the magnitude of these impacts may vary depending on 282 

behavioral and social processes. To assess the robustness of our conclusions about the 283 

effects of awareness separation, the same scenarios could be evaluated across different 284 

models of awareness-based behavior changes, including saturation at a certain 285 

threshold for deaths (9), consideration of both lethal and non-lethal impacts of disease 286 

(e.g., hospitalizations and cases), or optimization to balance the benefits of protection 287 

against the costs of various measures (8, 10, 52). The latter approach may clarify a point 288 

that is not addressed in our analysis: although awareness separation may reduce 289 

disparities in severe disease-linked outcomes, this phenomenon is not necessarily 290 

equitable or desirable. In fact, if self-protection is associated with significant costs, 291 

already-vulnerable populations may suffer compounding costs as they balance self-292 

protection against significant disease risk without adequate support from a broader 293 

community that does not share their risks (52–55). Further, structural inequities often 294 
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leave population subgroups that are vulnerable to larger, more severe outbreaks with 295 

reduced access to protective measures like health education, treatment, vaccination, and 296 

paid leave (5, 20, 46, 48, 56–60). Resulting differences in rates of protective behavior 297 

uptake and effectiveness can compound disparities between groups and reduce the 298 

protective impact of awareness separation for more-vulnerable groups. 299 

Epidemics are complex phenomena that typically involve heterogeneous mixing among 300 

groups of people that differ in biological and social risk factors, dynamic evolution of 301 

host behavior, pathogen infectiousness, and immune evasion, and ever-changing 302 

epidemiological and policy responses to real and perceived risk. Despite this range of 303 

potential drivers, we show here that a simple model that captures two key social 304 

processes—awareness-driven protective behavior in a split population that can be 305 

separated in mixing and awareness—can drive many of the complex dynamics 306 

observed in emerging epidemics like Covid-19. For example, when awareness is 307 

uniform and mixing is separated, the group in which the pathogen is introduced later 308 

can experience second and third waves that exceed the initial wave in size (Figure 2). 309 

This trend resembles one observed in the United States during the first year of the 310 

Covid-19 pandemic, where certain regions where the virus was introduced early (e.g., 311 

New York City metropolitan area) experienced a large early wave and relatively few 312 

infections over the rest of the year, while other regions (e.g., the southern United States) 313 

generally had small early waves and larger second and third waves. Many hypotheses 314 

have been introduced to explain this phenomenon (e.g., seasonal climate factors and 315 

population density) and several factors may have contributed to this pattern (61, 62). 316 

Yet, in our model these dramatic differences among populations in epidemic waves 317 

occur despite the groups being identical in transmission rates and disease outcomes and 318 

are entirely due to awareness-driven behavior with uniform awareness among groups 319 

(Figure 2). Although the current analysis does not examine causation, we have 320 

demonstrated how a simple behavioral process can qualitatively reproduce complex 321 

epidemic dynamics observed in real populations. 322 

Feedback between vaccine efficacy and awareness-based vaccine uptake can also 323 

produce the counterintuitive scenario where vaccines that cause a greater reduction in 324 

transmission and mortality lead to more total infections, even as deaths are reduced 325 

(Figure 4). If, as we assume here, protective behavior is driven by awareness of severe 326 

outcomes like mortality, awareness separation may reduce differences in deaths 327 

between groups while widening differences in cases (Figures 3, 4). Accounting for 328 

awareness-based adoption of protective behavior is therefore critical for understanding 329 

complicated epidemic dynamics such as plateaus and cycles (Figures 2, 3), accurately 330 

deploying protective measures, and assessing their impact across different diseases and 331 

population subgroups (8, 9, 50). 332 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.20.22275407doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.20.22275407
http://creativecommons.org/licenses/by/4.0/


Here we have considered arbitrarily defined groups that can be separated in mixing 333 

and awareness but initially differ only in the timing of pathogen introduction (Figures 334 

1, 2) or in infection fatality rate (Figures 3, 4), but real social groupings may fall along a 335 

number of social, demographic, and geographic lines. The most relevant groupings 336 

with respect to awareness and disease risk may depend on the disease, while the 337 

assumption of two distinct and identifiable groups may not fully capture relevant social 338 

dynamics. For infectious diseases that are generally more prevalent and severe in 339 

children (e.g., pertussis and measles), risk may depend on age while awareness is split 340 

between parents of young children versus adults without children or among parents 341 

with different sentiments towards childhood vaccination (63). In the context of Covid-342 

19, disease burden and attitudes toward preventative measures (e.g., masks and 343 

vaccines) have differed markedly across race, age, and socioeconomic status and over 344 

time, demonstrating how intersecting and imperfectly overlapping identities may 345 

interact to determine attitudes, protective behaviors, and risk (64–66). Moreover, 346 

ideological and social factors that do not correspond directly to disease risk (e.g., 347 

political affiliation) may influence decision-making and cause the level of protective 348 

behavior in certain subgroups to diverge sharply from their relative risk for severe 349 

disease, potentially overcoming the effects of awareness separation (46, 67). This 350 

process could be incorporated into our model by splitting the population into 351 

additional groups with respect to a cultural contagion or (mis)information spread 352 

process and allowing protective measures to be adopted based on awareness or contact 353 

with protective in-group members and rejected through fatigue or aversion to 354 

protective measures displayed by the opposite group (68, 69). 355 

Although we assumed that awareness was directly proportional to recent mortality, 356 

external influences like partisanship (46, 67), media coverage (70), misinformation (71), 357 

and policy (3) may alter the perception of risk or the adoption of protective measures at 358 

both the individual and group level. Group identification and assessment of relative 359 

risk may be unclear or inaccurate based on uncertainty at the beginning of the outbreak, 360 

misinformation about risk factors, a gradient in risk (e.g., gradually increasing risk with 361 

age), lack of data stratification, or unobserved risk factors. Attitudes based on one 362 

disease may carry over to another disease even if risk factors differ. Relative risk across 363 

groups may also vary across time and space, potentially leading to inaccurate 364 

assessment based on prior conditions: for example, a mild initial epidemic wave can 365 

mislead a group into believing they are inherently more protected and thereby relaxing 366 

protective behaviors. Cognitive interventions that increase the accuracy of individual 367 

risk perception, especially in high-risk groups, may help to reduce between-group 368 

differences in disease burden (72, 73). To realistically capture actual behavioral 369 

responses to disease outbreaks and to understand the extent of awareness separation in 370 

real populations, our model could be parameterized using a combination of 371 
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epidemiological, survey, mobility, and social media data (9, 74, 75). Considering 372 

awareness separation as a social process that may interact with mixing, fatigue, waning 373 

immunity, pathogen evolution, and pharmaceutical and non-pharmaceutical 374 

interventions may help to explain how humans are affected by and respond to 375 

infectious diseases in the presence of social divisions. 376 

Methods 377 

Nonpharmaceutical intervention model 378 

We model disease transmission with awareness-based adoption of nonpharmaceutical 379 

interventions that reduce transmission rates. See Supplementary Figure 1 for a 380 

compartmental diagram for this model and Supplementary Table 1 for parameter 381 

definitions. We model disease transmission with a Susceptible-Infectious-Recovered-382 

Deceased (SIRD) model, tracking the proportion of the population in each compartment 383 

through time. New infections arise through contact between susceptible and infected 384 

individuals, with transmission coefficient �. Individuals exit the infectious 385 

compartment at per capita rate �, the inverse of infectious period 
�

�
 and either recover or 386 

die. The infection fatality rate, or fraction of individual exiting the infectious 387 

compartment who die, is � (meaning that recovery after infection occurs with 388 

probability 1- �). 389 

We further categorize the population based on whether they adopt behavior that is 390 

Protective (P) or Unprotective (U). Compartment names contain two letters, the first 391 

indicating disease status and the second indicating behavior (e.g., SU denotes 392 

Susceptible people with Unprotective behaviors). We track the attitudes of Recovered 393 

and Deceased individuals (at the time of death), although they do not contribute 394 

directly to transmission. Protective measure efficacy against infection is indicated by a 395 

scaling factor � (where � � 0 corresponds to complete protection and � � 1 corresponds 396 

to no protection). Protective measures affect the behavior of both susceptible and 397 

infected individuals, so transmission rate is reduced by a factor of �� in encounters 398 

where both parties have adopted protective measures. Living individuals can switch 399 

between protective and unprotective attitudes. Unprotective individuals adopt 400 

protective behaviors based on awareness (����), which is the product of deaths over the 401 

past ℓ days (making ℓ a measure of memory) and a responsiveness constant �. 402 

Protective behaviors are abandoned due to fatigue at per capita rate 	. 403 

The population is split into two groups of equal size, where group membership is fixed, 404 

and each group contains all epidemiological compartments. The groups are labelled as a 405 

and b and indicated as a subscript in compartment names (e.g., ��� corresponds to 406 
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Susceptible-Unprotective individuals in group a). Parameters may vary between 407 

groups, as indicated by subscripts (e.g., �� corresponds to responsiveness in group a). If 408 

parameters are equivalent for both groups, we exclude the subscript (e.g., � � �� � ��). 409 

Preferential within-group mixing is represented by homophily parameter 
, 410 

corresponding to the proportion of contacts that are within-group. When 
 is 0.5, 411 

mixing is uniform, meaning that individuals are equally likely to contact members of 412 

their own group as members of the opposite group. As 
 approaches 1, mixing becomes 413 

increasingly separated, meaning that contacts are increasingly concentrated within 414 

groups. Similarly, we consider separation in awareness, �, or the relative weight of in-415 

group versus out-group awareness of deaths for protective behavior. 416 

The system of equations for group a is as follows (equations for group b can be derived 417 

symmetrically): 418 

���
� � �������
����� � �� �� � �1 � 
����� � �� ��! � ��������� � 	� � 

� �
� � ���� ���
����� � �� �� � �1 � 
����� � �� ��! � ��������� � 	� � 

���
� � ������
����� � �� �� � �1 � 
����� � �� ��! � ��������� � �	 � ��� � 

� �
� � ��� ���
����� � �� �� � �1 � 
����� � �� ��! � ��������� � �	 � ��� � 

"��
� � �1 � ������ # � #�"�� #����� � 	" � 

" �
� � �1 � ���� � � �"������� � 	" � 

$��
� � ����� 

$ �
� � ��� �  

(Equation 1) 419 

where ����� is the awareness equation for group a: 420 

����� � % &�����$��
� � $ �

� ! � �1 � ����$��
� � $ �

� !'
�

�	ℓ

()� 

(Equation 2) 421 

Vaccination model 422 

We develop an alternative model of awareness-based vaccine uptake. See 423 

Supplementary Figure 2 for a compartmental diagram for this model and 424 

Supplementary Table 1 for parameter definitions. Here, the second letter of 425 

compartment names indicates immune status: Unprotective (U), Transmission and 426 

Mortality-Reducing Immunity (T), or Mortality-Reducing Immunity (M). 427 

As in the nonpharmaceutical intervention model, susceptible people without prior 428 

immunity (SU) may become infected and then recover or die according to baseline 429 

infection parameter values. Susceptible individuals may become vaccinated and 430 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.20.22275407doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.20.22275407
http://creativecommons.org/licenses/by/4.0/


transition directly to the recovered compartment, bypassing infection, at a rate 431 

dependent on the awareness equation (Equation 2). There may be a lag between the 432 

beginning of the epidemic and vaccine introduction at time point ��. To evaluate long-433 

term immune effects of vaccination and infection on epidemic dynamics, we 434 

incorporate waning immunity. 435 

After vaccination or infection, individuals temporarily have complete protection from 436 

infection (RT). At per capita rate �, they regain susceptibility to infection, this time with 437 

transmission and mortality-reducing immunity (i.e., �*). As in the nonpharmaceutical 438 

intervention model, transmission-reducing protection scales transmission rates for 439 

susceptible and infected individuals by a constant. Additionally, immunity from 440 

infection reduces disease-linked mortality by scaling factor �. Transmission-reducing 441 

immunity is lost at per capita rate 	, while the ortality-reducing immunity is retained 442 

over the course of the simulation, reflecting how neutralizing antibody production may 443 

decay over time while cellular immune responses are more durable (76). Susceptible 444 

individuals with mortality-reducing immunity alone (�+) may regain transmission-445 

reducing immunity via vaccination, which occurs based on the same awareness 446 

function as vaccination of people without immune protection. 447 

The system of equations for this model in a population without groups is: 448 

��� � �β����� � κ�* � �+� � θ�� % �$�� � $*� � $+� !
�

�	ℓ

)� 

�*� � ω"* � βκ�*��� � κ�* � �+� � 0�* 

�+� � �β�+��� � κ�* � �+� � θ�+ % �$�� � $*� � $+� !
�

�	ℓ

)� � 0�* 

��� � β����� � κ�* � �+� � ρ�� 

�*� � βκ�*��� � κ�* � �+� � ρ�* 

�+� � β�+��� � κ�* � �+� � ρ�+ 

"*� � ρ��1 � µ��� � �1 � ζµ���* � �+�! � ω"* � θ��� � �+� % �$�� � $*� � $+� !
�

�	ℓ

)� 

$�� � �µρ��� 

$*� � �ζµρ��  

$+� � �ζµρ��+ 

(Equation 3) 449 

The equations for a split population with separated mixing and awareness can be 450 

derived following Equation 1. 451 
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Simulations 452 

We ran simulations in R version 4.0.2, using the dede function in the deSolve package, 453 

which solves systems of differential equations (77). The population begins as almost 454 

fully susceptible (��0� 4 1), with a small initial infection prevalence (��0�) to seed the 455 

outbreak and no protective behaviors. 456 

 457 

 458 

 459 

 460 

 461 

 462 
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Supplementary files 479 

Supplementary Table 1. Parameter dictionary providing parameter symbols, 480 

descriptions, and values for different scenarios. The parenthetical numbers in the values 481 

column indicate the scenario where the parameter takes the given values (1: separated mixing 482 

and awareness; 2: fatigue and awareness separation; 3: immunity and awareness separation). 483 

Parameter Description Value 

� Transmission coefficient 0.2 (1, 2, 3) 

1/� Infectious period 10 (1, 2 ,3) 

� Infection fatality rate 0.01 (1,2);  

�� � 0.01 and �� � 0.02 (3) 

� Transmission and infection 

reduction with protective 

behavior 

0.3 (1, 2); 0.05 (3) 

� Responsiveness 100 (1, 2); 20 (3) 

ℓ Memory 0 (1); 30 (2, 3) 

	 Fatigue (NPI model)/waning 

transmission-reducing 

immunity (vaccine model) 

0 (1); 0.02 (2); 0.01 (3) 

h Homophily 0.5 (uniform) or 0.99 (separated) (1); 

0.99 (separated) (2, 3) 

� Assortative awareness level 0.5 (uniform) or 0.99 (separated) (1, 2, 3) 

� Return to susceptibility 

(waning immunity) 

0.01 (3) 

� Mortality reduction 0.05 (3) 

��  Vaccination Start Time 200 (3) 
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 484 

 485 

Supplementary Figure 1. Compartmental diagram for non-pharmaceutical intervention 486 

model that tracks status with respect to infection and attitude toward protective 487 

behaviors. The first letter of each compartment name gives the state with respect to the disease 488 

transmission process (S=Susceptible, I=Infectious, R=Recovered, D=Deceased) and the second 489 

letter of each compartment name gives state with respect to awareness-driven protective behavior490 

(U=Unprotective, P=Protective). Squares are colored based on state with respect to disease. 491 

Potential transitions are indicated with arrows. Brown arrows indicate awareness-based 492 

adoption of protective measures. This diagram corresponds to the model described in Equation 1. 493 
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494 

Supplementary Figure 2. Compartmental diagram for vaccination model that tracks 495 

status with respect to infection and immune status. The first letter of each compartment 496 

name gives the state with respect to the disease transmission process (S=Susceptible, 497 

I=Infectious, R=Recovered, D=Deceased) and the second letter of each compartment name gives 498 

immune status (U=Unprotective, T=Transmission and Mortality-Blocking, M=Mortality-499 

Blocking alone). Squares are colored based on state with respect to disease. Potential transitions 500 

are indicated with arrows. Brown arrows indicate awareness-based vaccination. This diagram 501 

corresponds to the model described in Equation 3. 502 

  503 
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Effects of awareness separation on protective behavior and infections  504 

To understand the mechanism by which awareness separation reduces between-group 505 

differences in Figure 1, we consider early disease and awareness dynamics for both 506 

groups given separated mixing (� � 0.99) and uniform or separated awareness (� � 0.5 507 

and � � 0.99 respectively). 508 

 509 

Supplementary Figure 3. Separated awareness reduces between-group differences by 510 

removing group b’s awareness of the emerging epidemic and augmenting group a’s 511 

response to the introduction of the pathogen. We initialize our model using the same 512 

parameters as Figure 1 with separated mixing (
 � 0.99). We compare uniform 513 
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awareness (� � 0.5; dashed lines) and separated awareness (� � 0.99; solid lines). At the 514 

top, we compare early time series (through � � 80) of (A) protective attitude prevalence 515 

in group a; (B) protective attitude prevalence in group b; (C) infection prevalence in 516 

group a; (D) infection prevalence in group b. Panel E is a phase portrait of protective 517 

attitude prevalence against total infections in group a (maroon) and group b (blue). 518 

Points indicate values at � � 80, corresponding to the end of the time series in panels A-519 

D. Arrows indicate differences in protective attitude prevalence (gray) and total 520 

infections (black) at � � 80 for separated versus uniform awareness, with letters 521 

corresponding to time series panel labels. 522 

 523 

Awareness separation reduces effects on mortality of different between-524 

group differences 525 

We demonstrate that the finding in Figure 1 applies across alternative scenarios where 526 

the pathogen is introduced in both groups at the same prevalence, but the groups differ 527 

in their transmission coefficients (�), infection fatality rates (�), or infectious period (
�

�
) 528 

(Supplementary Figures 4, 5, 6). Note that, when transmission coefficient (�) varies 529 

between groups, contacts between group a and group b will have transmission 530 

coefficient 7����, the geometric mean of the transmission coefficient of both groups. 531 

Differences between groups that directly influence force of infection such as variation in 532 

transmission coefficient and infectious period, lead to differences in epidemic shape 533 

between the groups when mixing is separated (Supplementary Figures 4, 5). Given 534 

uniform awareness, epidemic shape is unaffected by mixing separation when group 535 

differences do not directly affect the transmission process (e.g., heterogeneity in 536 

infection fatality rates (Supplementary Figure 6). In all scenarios, separated awareness 537 

decreases differences in deaths between the two groups, although it may not eliminate 538 

differences in epidemic burden. In scenarios where groups have different forces of 539 

infections, differences in infections are also reduced with separated awareness 540 

(Supplementary Figures 4, 5). However, separated awareness increases the difference in 541 

infections when groups have different infection fatality rates, as observed in the 542 

vaccination scenario in the main text (Figures 3, 4). 543 
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 544 

Supplementary Figure 4. Separated awareness reduces differences in epidemic size 545 

between groups in epidemic size that arise from differences in transmission rates 546 

coupled with separated mixing. Plots of (A) infections and (B) deaths over time in group a 547 

(maroon) and group b (blue). We consider different levels of awareness separation [left column: 548 

uniform awareness (� � 0.5); right column: separated awareness (� � 0.99)] and mixing 549 

separation [top row: uniform mixing (
 � 0.5); bottom row: separated mixing (
 � 0.99)]. The 550 

groups are initialized so that group a has a greater transmission coefficient than group b 551 

(�� � 0.21 and �� � 0.19). We assume the pathogen is introduced in both groups at prevalence 552 

0.0005. All other parameter values are the same as those used in Figure 1: infectious period 553 

(
�

�
� 10), infection fatality rate (� � 0.01), protective measure efficacy (� � 0.3), responsiveness 554 

(� � 100), memory (ℓ � 1), and fatigue (	 � 0). 555 
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 556 

Supplementary Figure 5. Separated awareness reduces differences in epidemic size 557 

between groups in epidemic size that arise from differences in infectious period coupled 558 

with separated mixing. Plots of (A) infections and (B) deaths over time in group a (maroon) 559 

and group b (blue). We consider different levels of awareness separation [left column: uniform 560 

awareness (� � 0.5); right column: separated awareness (� � 0.99)] and mixing separation [top 561 

row: uniform mixing (
 � 0.5); bottom row: separated mixing (
 � 0.99)]. The groups are 562 

initialized so that group a has a longer infectious period than group b (
�

��
� 11.11 and 

�

��
�563 

9.09). We assume the pathogen is introduced in both groups at prevalence 0.0005. All other 564 

parameter values are the same as those used in Figure 1: transmission coefficient (�), infection 565 

fatality rate (� � 0.01), protective measure efficacy (� � 0.3), responsiveness (� � 100), 566 

memory (ℓ � 1), and fatigue (	 � 0). 567 
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 568 

Supplementary Figure 6. Separated awareness reduces differences in mortality between 569 

groups arising from differences in their infection fatality rates and causes differences in 570 

infections between the groups. Plots of (A) infections and (B) deaths over time in group a 571 

(maroon) and group b (blue). We consider different levels of awareness separation [left column: 572 

uniform awareness (� � 0.5); right column: separated awareness (� � 0.99)] and mixing 573 

separation [top row: uniform mixing (
 � 0.5); bottom row: separated mixing (
 � 0.99)]. The 574 

groups are initialized so that group a has a higher infection fatality rate than group b (�� �575 

0.015 and �� � 0.0067). We assume the pathogen is introduced in both groups at prevalence 576 

0.0005. All other parameter values are the same as those used in Figure 1: transmission 577 

coefficient (�), infectious period (
�

�
� 10), protective measure efficacy (� � 0.3), responsiveness 578 

(� � 100), memory (ℓ � 1), and fatigue (	 � 0). 579 
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