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Abstract 23 

In many countries, HIV infections among MSM (MSMHIV) are closely monitored, and updated epidemiological 24 

reports are made available annually, yet the true prevalence of MSMHIV can be masked for areas with small 25 

population density or lack of data. Therefore, this study aimed to investigate the feasibility of small area estimation 26 

with a Bayesian approach to improve HIV surveillance. Data from the European MSM Internet Survey 2017 27 

(EMIS-2017, Dutch subsample, n=3,459) and the Dutch survey ’Men & Sexuality-2018’ (SMS-2018, n=5,653) 28 

were utilized in this study. We first applied a frequentist calculation to compare the observed relative risk of 29 

MSMHIV per Public Health Services (GGD) region in the Netherlands. We then applied a Bayesian spatial 30 

analysis and ecological regression to account for variance due to space and determinants associated with HIV 31 

among MSM to obtain more robust estimates. Results of the prevalence and risk estimations from EMIS-2017 and 32 

SMS-2018 converged with minor differences. Both estimations confirmed that the risk of MSMHIV is 33 

heterogenous across the Netherlands with some GGD regions, such as GGD Amsterdam [RR=1.21 (95% credible 34 

interval 1.05-1.38) by EMIS-2017; RR=1.39 (1.14-1.68) by SMS-2018], having a higher-than-average risk. 35 

Results from our ecological regression modelling revealed significant regional determinants which can impact on 36 

the risk for MSMHIV. In sum, our Bayesian approach to assess the risk of HIV among MSM was able to close 37 

data gaps and provide more robust prevalence and risk estimations. It is feasible and directly applicable for future 38 

HIV surveillance as a statistical adjustment tool. 39 

 40 

Word counts (247/250) 41 
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Introduction 45 

Background 46 

For epidemiology in HIV, data are often characterised by a spatial or a spatio-temporal structure [1], however most 47 

studies in the field of HIV often ignore these spatial characteristics during data analysis. Examining the data 48 

provided by spatial analysis allows to identify men who have sex with men (MSM) with HIV (MSMHIV) clusters 49 

and to explore how these clusters originate [1, 2]. Therefore, spatial information and influence are likely to produce 50 

better surveillance models [1, 3, 4] in the context of a declining HIV epidemic in certain Global North regions, 51 

and reaching the 90-90-90 goals set by UNAIDS [5, 6].  52 

For instance, in the Netherlands, despite annual epidemiological reports of MSMHIV having been 53 

provided by Stichting HIV Monitoring (SHM, the Dutch HIV monitoring foundation) [7], more accurate estimates 54 

on the spatial distribution are still desirable to close data gaps and to identify contexts in need of targeted 55 

interventions. Precise spatial distribution models of MSMHIV are crucial to assess areas of increased intervention 56 

need, to better programme services and to eventually end the HIV epidemic [8]. In line with the suggestion from 57 

Khan et al., we agree that HIV monitoring should go beyond urban/rural distinction to better inform policymakers 58 

[8], and spatial analysis on a smaller geographical scale is necessary. However, in the case of incomplete data for 59 

areas with small populations, the true risk of HIV can be hidden. Hence, more advanced techniques and 60 

methodologies are required to obtain robust estimates. 61 

To respond, multiple studies proposed and used different small area estimation (SAE) techniques: From 62 

generalized additive models [9], over basic area-level models [10], to Poisson regression models [8]. In this study, 63 

taking the Netherlands as an example, we propose a Bayesian solution, which has been shown to be particularly 64 

effective and has been applied in several other epidemiological fields [3, 11-13], to estimate the posterior 65 

distribution (the revised or updated probability of an event occurring after considering new information and other 66 

uncertainties in the Bayesian inference [14]) of the prevalence and the risk of MSMHIV. 67 

Bayesian approach to estimate better HIV clusters 68 

Comparing aforementioned approaches which usually fail to pick up the random effects due to fixed geographical 69 

foci, Bayesian modelling allows to account for similarities based on the neighbouring regions or by proximity, and 70 

to present data on a spatial hierarchical structure that borrows strength from the overall geo-spatial entity [3]. This 71 

hierarchical structure can thus be considered as a multi-level component which makes it possible to smoothen 72 

estimates based on the structural relationship during the structured random effects estimation instead of only 73 
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treating the spatial information as a factor. Consequently, the smoothened HIV prevalence per small area by 74 

accounting for the geo-spatial structure can be more robust and closer to the true prevalence [3]. It would thus be 75 

possible to estimate a relative risk (RR) of HIV per area compared to the whole of the Netherlands, and to identify 76 

regions with higher-than-average risk of MSMHIV [3]. 77 

In addition, it is important to understand socio-ecological facilitators and hurdles of MSMHIV jointly 78 

with spatial distribution to unravel co-variations. A previous study has provided insights into the determinants of 79 

HIV transmission in the Netherlands on individual level, such as HIV testing, older age, and other diagnosed 80 

sexually transmitted infections (STIs) [15]. To evaluate these determinants of HIV transmission in the Netherlands 81 

from an ecological perspective to better understand the national and local MSMHIV epidemic, we also included 82 

these risk factors in a Bayesian spatial ecological regression model to explore how these risk factors impact on the 83 

HIV spatial distribution in the Netherlands (for more details see Methodology section and Online supplementary 84 

material).  85 

 This study thus sought to use data more effectively in order to generate opportunities to better understand 86 

the HIV epidemic by identifying the regions with higher-than-average risk of MSMHIV, using data from the 87 

Netherlands. We also aimed to fill the knowledge gap of how areal characteristics may impact MSMHIV by 88 

applying Bayesian spatial modelling methodology to provide a more accurate epidemiologic spatial pattern of 89 

MSMHIV using two independent survey-based datasets on HIV among MSM in the Netherlands. In addition, we 90 

compared the results by two survey-based datasets to explore the stability and robustness of Bayesian spatial 91 

analysis. Moreover, we compared the results with/without Bayesian inference to support future HIV surveillance 92 

and to support local HIV prevention efforts. 93 

Methodology 94 

Study population and data sources 95 

EMIS-2017  96 

All MSM included in this dataset were recruited between 19 October 2017 and 30 January 2018 via the European 97 

MSM Internet Survey (EMIS-2017, www.emis2017.eu) and were drawn from the Dutch subsample. EMIS-2017 98 

was an anonymous, self-administered, and cross-sectional online survey conducted across 50 countries to inform 99 

interventions for MSM which are highly affected by infections with HIV and other STIs [16]. EMIS-2017 recruited 100 

3,851 MSM in the Netherlands. We excluded 392 (10.2%) men that failed to provide information on their place 101 
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of residence (final dataset n=3,459). Ethical approval for this survey was obtained from the Observational Research 102 

Ethics Committee at the London School of Hygiene & Tropical Medicine (review reference 14421 /RR/8805). 103 

SMS-2018  104 

The cross-sectional Survey Men & Sexuality (SMS-2018), led by Soa Aids Netherlands and Utrecht University, 105 

aimed to investigate the health, well-being, and sexuality of MSM in the Netherlands. It enrolled MSM between 106 

February and June 2018 through social media, gay media and dating apps. The survey was distributed in six 107 

languages to include a culturally diverse sample of MSM. All participants had provided informed consent prior to 108 

accessing the survey [17]. SMS-2018 recruited 6,206 MSM in the Netherlands. We excluded 552 (8.9%) men 109 

failed to provide their postal code (final dataset n=5,654). Ethical approval for this survey was obtained from the 110 

Ethics Committee of the Faculty of Social and Behavioural Sciences, Utrecht University (FETC17-131). 111 

Study area 112 

There are 25 Public Health Services (GGD) regions in the Netherlands. The GGDs are organized regionally and 113 

independently responsible to provide healthcare services and prevention, and to monitor the general health of the 114 

population. Therefore, by summarizing results on the GGD level, we can better support both local and national 115 

HIV monitoring and prevention. The geographical structure of the Netherlands with boundary geoinformation of 116 

GGD regions were retrieved from Statistics Netherlands (CBS) [18] and linked with postal code datasets [19].  117 

All MSM data retrieved were deidentified and were aggregated on GGD regional level to represent HIV 118 

cases among MSM in the Netherlands separately from both datasets. Out of both samples, we included all MSM 119 

who provided information on 2-digit postal code (4-digit postal code for SMS-2018), which were then linked to 120 

the GGD regions. All data-aggregation processes were done separately for the two datasets without combination, 121 

hence there are no overlapping observations concerns in this study, given that participants could participate in both 122 

surveys. 123 

 124 

Small area estimation analysis 125 

Frequentist analysis 126 

We first calculated the observed HIV prevalence per GGD region with its 95% confidence interval (95%CI) by 127 

dividing the HIV counts by the numbers of MSM inhabitants participated in the surveys per region. We then 128 

calculated the observed standardized prevalence ratio (SPR) per GGD region, which is defined as the ratio of the 129 

observed counts to the expected counts using an indirect standardization approach, based on the overall risk of 130 

HIV in the Netherlands and the total MSM population in each GGD region [20]. As a spatial epidemiological 131 
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measure, SPR could be applied to present the risk of HIV per GGD region compared to the overall risk of HIV in 132 

the Netherlands on the regional/populational level. In GGD regions where SPR>1, this denotes a higher risk of 133 

occurrence of HIV compared to the overall risk across the country, and GGD regions where SPR<1, this denotes 134 

a lower risk. However, in turn of regions with smaller populations sizes, SPR can be insufficiently reliable and 135 

stable due to pure chance calculation [21].  136 

Bayesian modelling (null model) 137 

To estimate a more accurate prevalence by Bayesian approach, we first conducted model accounting only 138 

the hierarchical spatial structure of GGD regions. Fig 1 presented the spatial structure on region connectivity of 139 

the Netherlands on GGD regional level based on the common sharing boarders or on proximity. To conduct the 140 

modelling analysis, we used the Integrated Nested Laplace Approximation (INLA), which is designed for latent 141 

Gaussian models, for the Bayesian computation. For the model parameters, we employed the Besag-York-Mollie 142 

(BYM) model, which specifies the spatially structured residual using an intrinsic conditional autoregressive (iCAR) 143 

distribution [22]. In addition, to specify the prior distribution for the Bayesian modelling, due to lack of information 144 

on GGD regions in the Netherlands, we assigned a weak, understandable, conservative and useful Penalized 145 

Complexity (PC) prior for the precision of the exchangeable random effects. For more detailed model assumptions 146 

and prior distribution, please see the online resource file S1. 147 

 148 
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 149 

Fig 1. Region connectivity matrix of the Netherlands at the Public Health Services level 150 

Note: for names and more details on the Public Health Services regions in the Netherlands, please see: https://www.ggd.nl/. 151 

 152 

Bayesian spatial ecological regression modelling (final model) 153 

Additional to the null model, we hypothesised that MSMHIV across the Netherlands can be influenced by the 154 

established determinants of MSMHIV reported by den Daas et al. [15] using EMIS-2010 datasets. These 155 

determinants included: prevalence of HIV testing (% ever tested); age (% >=35 years old); median number of sex 156 

partners; proportion of injecting drug users [(IDU), % IDU in EMIS-2017]/proportion of injecting drug use during 157 

sex [(SLAM), % SLAM in SMS-2018]; proportion of never using condom with last partner (% never); prevalence 158 

of syphilis (% yes), prevalence of chlamydia (% yes) and prevalence of gonorrhoea (% yes) in EMIS-2017 and 159 
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prevalence of syphilis, chlamydia and gonorrhoea in the past 6 months in SMS-2018. Detailed definition of 160 

variables can be found in the published methodology paper for EMIS-2017 [16], and SMS-2018 [17].  161 

Therefore, we applied a spatial ecological regression modelling technique [3] which takes into account 162 

these selected determinants of MSMHIV summarized by aggregating the selected datasets. We first conducted 163 

univariable models which only include one of the selected regional determinants and the spatial connectivity. We 164 

then conducted multivariable models with the significant determinants indicated by the univariable models to 165 

evaluate the impact on HIV prevalence in the Netherlands. We selected the final model using the backward 166 

approach by comparing models’ Deviance Information Criterion (DIC). The smaller DIC indicates the better 167 

goodness of fit in model. In other words, estimates by model with a smaller DIC are more robust, and can be 168 

consider closer to the true prevalence. For more detailed model assumptions and parameters, please see the online 169 

resource file S2. Finally, we quantified an Intra-class correlation (ICC) to evaluate the proportion of variance 170 

explained by the structured spatial component [3], and quantified the spatial random effects per GGD region based 171 

on the spatial structure of the Netherlands to estimate the influence from the spatial structure of the Netherlands 172 

on the GGD regional level on HIV prevalence for both the null spatial model and the final spatial ecological 173 

regression model. 174 

Computational analysis 175 

All analyses were conducted in R (version 4.0.4). For all Bayesian modelling analyses with INLA, we used R-176 

INLA package (version 21.05.02) to empower our computational process [3]. 177 

 178 

Results 179 

In this section, we first present the GGD regional characteristics and the results of the frequentist analysis to show 180 

the spatial distribution of HIV in the Netherlands by GGD regions, using a classical frequentist approach for both 181 

datasets. We then present the posterior prevalence and RR of HIV per GGD region estimated by Bayesian 182 

modelling with only taking the spatial structure into account (null model). By comparing the results from the null 183 

model and the naïve analysis, we can identify how the spatial structure itself impacts on the distribution of HIV in 184 

the Netherlands beyond the chance levels. Next, we include the procedure of model selection by presenting the 185 

univariable and multivariable regression modelling results to unravel which known individual-level determinants 186 

of HIV are significantly related to HIV status on the areal level. Finally, the posterior prevalence and RR of HIV 187 

per GGD region, estimated by the multivariable regression modelling (final model), are presented to be compared 188 
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with the results from the null model. The comparison can, therefore, inform how the HIV spatial distribution could 189 

change after conditioning other determinants of HIV. 190 

 191 

Study population characteristics  192 

Regional characteristics relevant to MSMHIV across the Netherlands were heterogenous for both datasets (see 193 

Online resource S1 table). For these established individual level determinants, HIV testing proportions ranged 194 

from 64.1% in GGD Drenthe to 92.3% in GGD Amsterdam in EMIS-2017 (and ranged from 62.7% in GGD 195 

Limburg-Noord to 92.7% in GGD Amsterdam in SMS-2018). Major differences between ever-/recent-diagnosed 196 

STIs proportion among Dutch MSM were observed from the two datasets. For ever diagnosed STIs proportion in 197 

EMIS-2017, ever diagnosed syphilis ranged from 10.3% in GGD Drenthe to 34.4% in GGD Zaanstreek/Waterland; 198 

and ever diagnosed chlamydia ranged from 19.7% in GGD Gelderland-Zuid to 45.2% in GGD 199 

Zaanstreek/Waterland. For recent diagnosed STIs (within six months) in SMS-2018, recently diagnosed syphilis 200 

ranged from 18.0% in GGD Drenthe to 44.4% in GGD Amsterdam. More detailed information for other regional 201 

characteristics (older than 35 years proportion, IDU proportion, and other STIs) per GGD region from both datasets 202 

can be found in Online resource S1 table. 203 

 204 

Frequentist observed HIV prevalence and risk among MSM  205 

In terms of the prevalence of MSMHIV in the Netherlands, the observed overall prevalence of HIV among  MSM 206 

in 2017 was 14.2% in EMIS-2017 and 9.5% in SMS-2018. In EMIS-2017, the observed prevalence of HIV varied 207 

by GGD regions in the Netherlands, with a range of 6.8% (95%CI 3.16-14.09) in GGD Limburg Noord to 25.0% 208 

(95%CI 13.25-42.11) in GGD Zaanstreek/Waterland. In SMS-2018, the observed prevalence varied from 3.7% 209 

(95%CI 1.59-8.38) in Veiligheids- en Gezondheidsregio Gelderland-Midden (VGGM) to 14.15% (95%CI 11.67-210 

17.06) in GGD Amsterdam (Fig 2a&2d, Online resource S2 table). The crude SPR in Fig 3-a and 3-d shows that 211 

regions with higher-than-average risk of HIV exist in the Netherlands, with a range of 0.43 (GGD Limburg Noord) 212 

to 1.59 (GGD Zaanstreek/Waterland) in EMIS-2017; and 0.39 (VGGM) to 1.49 (GGD Amsterdam) in SMS-2018. 213 

The SPR trends corresponded with the patterns of the observed HIV prevalence. More detailed information for the 214 

frequentist observed prevalence and SPR of MSMHIV can be found in Online resource S2 table. 215 

 216 
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 217 

Fig 2. Choropleth map of the estimates of HIV prevalence by GGD regions in the Netherlands. 218 

A: Observed HIV prevalence by EMIS-2017. B: Posterior mean of HIV prevalence estimated by Bayesian spatial modelling (null model) by 219 

EMIS-2017. C: Posterior mean of HIV prevalence estimated by Bayesian spatial ecological regression modelling (final model) by EMIS-2017. 220 

D: Observed HIV prevalence by SMS-2018. E: Posterior mean of HIV prevalence estimated by Bayesian spatial modelling (null model) by 221 

SMS-2018. F: Posterior mean of HIV prevalence estimated by Bayesian spatial ecological regression modelling (final model) by SMS-2018. 222 

See Online resource table S2 for the 95%CI or 95%CrI and other details. 223 

Notes: the darker a GGD region, the higher the prevalence estimation of HIV among MSM.  224 

 225 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.20.22275273doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.20.22275273


 11 

 226 

Fig 3. Choropleth map of the estimates of HIV risks by GGD regions in the Netherlands. 227 

A: Observed HIV standardised prevalence ratio by EMIS-2017. B: Posterior mean of HIV relative risk estimated by the Bayesian spatial 228 

modelling (null model) by EMIS-2017. C: Posterior mean of HIV relative risk estimated by the Bayesian spatial ecological regression 229 

modelling (final model) by EMIS-2017. D: Observed HIV standardised prevalence ratio by SMS-2018. E: Posterior mean of HIV relative risk 230 

estimated by the Bayesian spatial modelling (null model) by SMS-2018. F: Posterior mean of HIV relative risk estimated by the Bayesian 231 

spatial ecological regression modelling (final model) by SMS-2018. See Online resource table S2 for the 95%CI or 95%CrI and other details. 232 

Notes: RR (or SPR) higher than 1 indicates a higher-than-average (average risk in the Netherlands) risk of HIV among MSM in that region 233 

(red); RR (or SPR) lower than 1 indicates a lower-than-average risk of HIV among MSM in that region (blue). 234 

 235 

HIV prevalence and risk among MSM after Bayesian spatial adjustment  236 

After accounting for the spatial effects based on the spatial structure of the Netherlands on the GGD region level 237 

presented in Fig 1 without other regional determinants of HIV transmission, the EMIS-2017 ICC of the spatial 238 

structure was estimated at 0.24, which indicates that around 24% of the observed variance of HIV among MSM in 239 

the Netherlands can be explained by the spatial structure of the Netherlands on the GGD regional level, and the 240 

SMS-2018 ICC was 0.27 (Table 1).  241 

 As indicated by the observed HIV prevalence, we observed heterogeneity of the posterior HIV prevalence 242 

in the Netherlands estimated by the spatial null models in both datasets. In EMIS-2017, the highest posterior HIV 243 
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prevalence was found in the GGD Amsterdam of 18.6% (95%CrI 15.87-21.58) and the lowest in GGD Limburg-244 

Noord of 11.7% (95%CrI 7.2-16.4). GGD Amsterdam was estimated as the only region with statistically significant 245 

higher-than-average risk of HIV among MSM in the Netherlands with a RR of 1.18 (95%CrI 1.01-1.37). Full 246 

details of all GGD regions according to the spatial null model can be found in Online resource table S2 and Fig 3-247 

b. In SMS-2018, the posterior prevalence and RR was the similar as the observed prevalence, the highest posterior 248 

HIV prevalence was found in Amsterdam, too, of 12.16% (95%CrI 9.58-15.14) with the only significant higher-249 

than-average risk of HIV of 1.28 (95%CrI 1.01-1.59), and the lowest in VGGM of 8% (95%CrI 5.09-10.69) with 250 

RR of 0.84 (95%CrI 0.54-1.13), see Fig 3-e and Online resource S2 table. 251 

 Posterior spatial random effects on the HIV prevalence estimated by the null model can be found in Fig 252 

4-a and 4-c, which confirms the spatial heterogeneity and indicates how the spatial structure impacts on the 253 

estimated posterior RR per GGD region, with a range of [EMIS-2017: -0.21 (GGD Limburg-Noord) to 0.27 (GGD 254 

Amsterdam)] and [SMS-2018: -0.15 (VGGM) to 0.28 (GGD Amsterdam)]. In other words, regions with a positive 255 

(or negative) value of the spatial random effects indicate having an elevated (or lower) relative risk of HIV than 256 

the overall risk in the Netherlands. 257 

 258 
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 259 

Fig 4. Posterior spatial random effects on the GGD regional level in the Netherlands. 260 

A: posterior spatial random effects estimated by Bayesian spatial modelling (null model) by EMIS-2017. B: Posterior spatial random effects 261 

estimated by the Bayesian spatial ecological regression modelling (final model) by EMIS-2017. C: posterior spatial random effects estimated 262 

by Bayesian spatial modelling (null model) by SMS-2018. D: Posterior spatial random effects estimated by the Bayesian spatial ecological 263 

regression modelling (final model) by SMS-2018. See Online resource table S2 for the 95%CrI and other details. 264 

Notes: regions with a positive (negative) value of the spatial random effects indicate having an elevated (lower) relative risk of HIV among 265 

MSM than the overall risk in the Netherlands. 266 

 267 

HIV prevalence and risk among MSM after Bayesian spatial ecological adjustment  268 

Univariable models 269 

In EMIS-2017, after adjusting on the observed HIV testing prevalence as the regional determinant, a coefficient 270 

of 2.72 (95%CrI 0.61-4.73, DIC=144.42, ICC=0.27) was modelled. This means that each increase of one percent 271 

in HIV testing prevalence in a region is associated with an increase of around 2.8% (=exp(2.724*0.01)) in HIV 272 

risk in that region. The coefficient for the observed syphilis prevalence was estimated at 3.55 (95%CrI 1.26-5.70, 273 

DIC=142.41, ICC=0.28), which indicated that for every one percent increase of the regional prevalence of syphilis, 274 
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the regional risk of HIV increases by 3.5%. Similar for gonorrhoea, the increased risk was 2.3%. The other areal 275 

determinants of HIV (age, number of partners, condom use, IDU prevalence and chlamydia prevalence were not 276 

significantly associated with the posterior mean of RR of HIV in the Netherlands (Table 1).  277 

In SMS-2018, we observed a significant positive association between HIV test and HIV with a coefficient 278 

of 2.67 (95%CrI 0.74-4.50, ICC=0.31, DIC=118.97) in the univariable model. In addition, instead of STIs’ spatial 279 

prevalence, we found that proportion of higher age, coefficient=2.45 (95%CrI 0.55-4.23, ICC=0.28, DIC=119.84) 280 

and proportion of never using a condom with non-steady partners, coefficient=3.12 (95%CrI 0.36-5.62, ICC=0.29, 281 

DIC=121.04) were positively associated with the HIV prevalence on the GGD regional level. Other areal 282 

characteristics of GGD regions were not estimated significant within this dataset (Table 1). 283 

 284 

Multivariable models (final model) 285 

After conditioning significant areal determinants of HIV, and selecting by the smallest DIC, in EMIS-2017, the 286 

final model included HIV testing prevalence with a coefficient of 1.60 (95%CrI -0.60-3.74) and syphilis prevalence 287 

with a coefficient of 2.67 (95%CrI 0.19-5.10), a DIC of 141.74, and an ICC of 0.28. The coefficients’ estimations 288 

indicate that both univariable models of HIV testing, and ever-diagnosed syphilis prevalence overestimated the 289 

effects from these two regional determinants of HIV. Even though HIV testing was not statistically significant in 290 

the final model, the DIC of the final model was smaller than the DIC of the model with only syphilis prevalence 291 

(DIC=142.41). Therefore, we kept HIV testing in the final model (Table 1). In other words, with a smaller DIC, 292 

the posterior prevalence and RR of MSMHIV estimated should be closer to the true prevalence and RR. In the 293 

multivariable model based on SMS-2018, we included HIV test prevalence with coefficient=1.80 (95%CrI -0.29-294 

3.94) and proportion of higher age with coefficient=1.515 (95%CrI -0.55-3.57) with the smallest DIC of 118.58 295 

and an ICC of 0.30 in the final model (Table 1). 296 

 The posterior prevalence of HIV was again heterogenous with both datasets in the Netherlands. In EMIS-297 

2017, the highest posterior prevalence of HIV was observed from GGD Zaanstreek/Waterland of 22.9% (95%CrI 298 

16.25-30.8), and the lowest posterior prevalence of HIV was observed from GGD Drenthe of 7.89% (95%CrI 299 

4.94-12.02). In addition, the final model succeeded to pick up the regions with higher-than-average risk of 300 

MSMHIV in the Netherlands other than GGD Amsterdam (RR=1.21, 95%CrI 1.05-1.38): GGD Rotterdam-301 

Rijnmond (RR=1.19, 95%CrI 1.00-1.41) and GGD Zaanstreek/Waterland (RR=1.46, 95%CrI 1.04-1.96). Also, 302 

the risk of HIV of GGD Noord- en Oost-Gelderland (RR=0.72, 95%CrI 0.54-0.94), GGD Fryslân (RR=0.76, 303 

95%CrI 0.57-0.98), GGD Drenthe (RR=0.5, 95%CrI 0.31-0.77) and GGD Hollands-Midden (RR=0.79, 95%CrI 304 
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0.58-0.99) were found significantly lower than the risk on the average level in the Netherlands. In SMS-2018, the 305 

lowest posterior prevalence was estimated in Dienst Gezondheid & Jeugd ZHZ of 6.71% (95%CrI 4.69-9.47) with 306 

a RR of 0.71 (95%CrI 0.49-1.00) and GGD Limburg-Noord of 6.71% (95%CrI 3.46-11.42) with a RR of 0.71 307 

(95%CrI 0.36-1.20). The highest posterior prevalence was again observed in GGD Amsterdam:  13.25% (95%CrI 308 

10.84-15.93), and it was the only one GGD region with a significant higher-than-average risk of HIV in the 309 

Netherlands (RR=1.39, 95%CrI 1.14-1.68). For full details of posterior HIV prevalence and RR per GGD region, 310 

see Online resource table S2 and Fig 3-c and 3-f. 311 

 The spatial random effects indicated again the heterogeneity on the RR of MSMHIV across the 312 

Netherlands with a range of [EMIS-2017: -0.08 (GGD Limburg Noord) to 0.08 (GGD Ijsselland); SMS-2018: -313 

0.04 (VGGM) to 0.04 (GGD Amsterdam)]. The posterior spatial random effect per GGD region were summarised 314 

in Online resource table S2 and Fig 4-b and 4-d. 315 

  316 
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Table 1. Model comparison and selection for EMIS-2017 and SMS-2018 317 

Models 

HIV diagnosis 

EMIS-2017 SMS-2018 

Covariates Coefficient 95%CrI DIC ICC Covariates Coefficient 95%CrI DIC ICC 

Spatial Null model Intercept -0.108 (-0.257 – 0.025) 145.71 0.24 Intercept -0.041 （-0.196 – 0.098） 123.99 0.27 

Spatial Univariable models 

Intercept -2.359 (-4.052 - -0.597) 
144.42 0.27 

Intercept -2.206 （-3.729 - -2.217） 
118.97 0.31 

HIV test (%yes)* 2.724 (0.611 – 4.725) HIV test (%yes)* 2.674 （0.738 – 4.501） 

Intercept -0.591 (-1.376 – 0.172) 
145.89 0.24 

Intercept -1.166 （-2.027 - -0.271） 
119.84 0.28 

Age (%>= 35 y.o.) 1.089 (-0.613 – 2.786) Age (%>= 35 y.o.)* 2.454 (0.551 – 4.229) 

Intercept -0.063 (-0.232 – 0.083) 
147.26 0.26 

Intercept 0.073 （-0.498 – 0.645） 
125.66 0.27 

Partner -0.037 (-0.104 – 0.032) Partner -0.049 （-0.297 – 0.186） 

Intercept -5.305 (-10.373 – 0.715) 
144.51 0.25 

Intercept -0.971 （-1.763 - -0.130） 
121.04 0.29 

Condom (%never) 41.315 (-6.485 – 81.421) Condom (%never)* 3.121 （0.359 – 5.622） 

Intercept -0.398 (-0.752 - -0.056) 
145.51 0.32 

Intercept 0.005 （-0.235 – 0.227） 
125.47 0.27 

IDU (%yes) 4.41 (-0.369 – 9.051) SLAM (%yes) -0.561 （-2.812 – 1.601） 

Intercept -0.87 (-1.384 - -0.352) 
142.41 0.28 

Intercept -0.049 （-0.327 – 0.220） 
125.62 0.27 

Syphilis (%yes)* 3.546 (1.263 – 5.703) Syphilis (%yes)# 0.251 （-8.189 – 8.139） 

Intercept -0.662 (-1.281 - -0.029) 
146.6 0.24 

Intercept -0.197 （-0.651 – 0.248） 
125.42 0.29 

Chlamydia (%yes) 1.724 (-0.200 – 3.514) Chlamydia (%yes)# 1.992 （-3.513 – 7.301） 

Intercept -0.856 (-1.552 - -0.132) 
145.8 0.26 

Intercept -0.125 （-0.533 – 0.277） 
125.64 0.27 

Gonorrhoea (%yes)* 2.255 (0.116 – 4.221) Gonorrhoea (%yes)# 1.195 （-4.376 – 6.498） 

Spatial Multivariable final model  

Intercept -2.021 (-3.624 - -0.358) 

141.74 0.28 

Intercept -2.225 (-3.701 - -0.739) 

118.58 0.30 HIV test (%yes) 1.607 (-0.6 – 3.737) HIV test (%yes) 1.801 (-0.286 – 3.941) 

Syphilis (%yes) 2.674 (0.192 – 5.099) Age (%>= 35 y.o.) 1.515 (-0.549 – 3.571) 
Note: * = significant areal determinants of the univariable models. Partner = median number of partners. Condom = % never used condom with non-steady partners. # Indicates six-month prevalence instead of life-time prevalence. CrI = credible interval. DIC=Deviance 318 
Information Criterion, ICC= Intra-class correlation 319 
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Discussion 320 

To illustrate the usefulness of SAE modelling with a Bayesian approach, we investigated the spatial distribution 321 

of MSMHIV in conjunction with determinants of MSMHIV using data from the Netherlands at the level of the 322 

Public Health Services regions (GGD). We applied this methodology on two independent survey-based datasets 323 

to explore the applicability and the estimates of accuracy for the HIV surveillance at the same time.  324 

 Based on both datasets, we observed a heterogenous spatial distribution of MSMHIV: There are GGD 325 

regions which showed higher-than-average risk. In particular, the GGD Amsterdam region as expected, and GGD 326 

Zeeland, had a significantly higher-than-average risk of MSMHIV in the Netherlands. Jointly with the spatial 327 

patterns, we identified regional determinants to be significantly associated with MSMHIV prevalence in the 328 

Netherlands. Methodologically, we found that the observed prevalence estimated by the frequentist analysis was 329 

less stable than the posterior prevalence estimated by the Bayesian spatial modelling in terms of the estimations 330 

range and their uncertainty range (the 95% confidence interval and 95% credible interval), especially for regions 331 

with smaller sample sizes. Despite a largely overlapping spatial distribution and heterogeneity of HIV in the 332 

Netherlands (both Frequentist observed, and Bayesian smoothed) between the two datasets, minor differences in 333 

the prevalence and spatial random effects were obtained. 334 

 335 

Spatial distribution of HIV among MSM in the Netherlands 336 

Overall, based on the overlapping results from both datasets, we observed a higher prevalence of HIV in the West 337 

of the Netherlands where also the main urban areas (in Dutch: Randstad) are located, and in the GGD region of 338 

Zeeland, which belongs to the area that has the highest concentration of conservative orthodox Calvinist 339 

Protestants in the country [23].  340 

It was within our expectation that the prevalence of MSMHIV was higher in the GGD regions in the 341 

Randstad, such as GGD Amsterdam. This prevalence is also in line with findings from previous studies using 342 

surveillance data by geographic information system and survey-based data [15, 24]. In addition, our analysis based 343 

on both datasets suggested a significant higher-than-average risk of HIV among MSM in this GGD region 344 

compared to other regions in the Netherlands. Few reasons may explain our findings. Firstly, Amsterdam which 345 

is known as the ‘Gay Capital of Europe’ is the target of “gay tourism”, with more sexual encounters occurring 346 

subsequently. [25]. Likewise, more Dutch MSM choose to relocate to these main urban areas [17], and the HIV 347 

cases would, therefore, be concentrated there as well. Another reason that contributed to a higher HIV prevalence 348 
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is the high HIV testing rate among MSM in GGD Amsterdam region (Online resource S1 table). Our ecological 349 

modelling analysis also confirmed this argument that with a higher HIV testing prevalence, the risk of HIV in that 350 

region would be higher as well (Table 1).  351 

It was, however, not expected that the GGD Zeeland also had a higher spatial risk (random effect, Fig 4) 352 

of HIV among MSM compared to other regions. One reason for this higher risk found for this region may be due 353 

to the religion/local culture. As one of the most conservative regions in the country with associated negative views 354 

on same-sex sexual activities and relations, an overall negative attitude towards homosexuality may be greater 355 

than in other regions [26]. In turn, some sexual behaviours may be stigmatized and MSM may experience more 356 

barriers to HIV testing, which may influence the risk of MSMHIV at that region: according to both datasets GGD 357 

Zeeland has one of the lowest HIV test prevalence among MSM (Online resource S1 table). Second, a longer 358 

distance to the STI clinics could play a role as a barrier to HIV testing in GGD Zeeland [27], which could also 359 

leave an influence on the spatial distribution of MSMHIV in the Netherlands. Therefore, future studies should 360 

also investigate the distance to the STI clinics as a regional determinant for a more comprehensive model. 361 

Differences between estimations by EMIS-2017 and SMS-2018 362 

Despite the large overlap of the spatial pattern of MSMHIV by our analysis based on EMIS-2017 and SMS-2018 363 

datasets, we observed some minor differences in terms of both the observed and estimated posterior prevalence, 364 

which is generally lower in SMS-2018 data compared to EMIS-2017 data. One reason that may explain this 365 

finding is that data collection variations existed between EMIS-2017 and SMS-2018. The collection methods and 366 

process were different between the SMS-2018 and EMIS-2017. It would thus lead to collection variations and 367 

resulted in different estimates. However, in terms of the posterior relative risk of HIV on the GGD regional level, 368 

the results between these two datasets converged and can reflect how the regional risks differed between different 369 

GGD regions on the national scale. This converged posterior RR estimations by both datasets indicate the strong 370 

stability of the Bayesian spatial analysis to identify regions with higher risk for prevention efforts allocation 371 

strategies.  372 

 We also observed a different impact of the areal determinants on our HIV prevalence and risk modelling 373 

between these two datasets. Despite the discussed sampling variations, different definitions of the determinants 374 

when collecting data through the surveys could also explain why our univariable models and final models are 375 

different. For example, in EMIS-2017, men were asked if they were ever diagnosed with any type of STI instead 376 

of STI diagnosis within the past six months, as in SMS-2018. The HIV-risk profile and sexual behaviour profile 377 

of a MSM would thus be different and result in different impact on the ecological modelling analysis. Therefore, 378 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.20.22275273doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.20.22275273


 19 

based on our findings in the univariable models, we could also conclude that the impact of the lifetime STI 379 

diagnoses should be greater than the recent STI diagnoses.  380 

 381 

Application of Bayesian spatial modelling analysis 382 

The application of Bayesian spatial modelling analysis in two survey-based datasets from the Netherlands proved 383 

that modelling the HIV distribution with a Bayesian approach is feasible, and robust when comparing results 384 

between two datasets. Compared to calculating the observed prevalence and SPR, results of the posterior 385 

prevalence and risks estimations were smoother and more stable due to the narrower credible intervals estimated 386 

by INLA, which has been proven helpful to estimate the more accurate prevalence and risk as an approximation 387 

approach [3]. It thus delivers more certainty when interpreting the results and tailoring prevention programming 388 

for HIV.  389 

In addition, our spatial ecological modelling allowed us to investigate the variations of HIV based on the 390 

spatial connectivity together with other regional determinants of HIV. We found several regional determinants 391 

(Table 1) based on our survey data useful to estimate the posterior prevalence and risk of HIV in the Netherlands. 392 

Consequently, both two final models for EMIS-2017 and SMS-2018 data improved the goodness of fit after 393 

adding the regional determinants related to MSMHIV, and we believe the estimations from the final model should 394 

be closer to the true prevalence compared to the observed frequentist calculation and models without covariates. 395 

Therefore, the established spatial determinants from this study should be considered valuable for policymakers 396 

and HIV surveillance authorities. Attention should be also given to these regional HIV determinants instead of 397 

focussing only the numerical prevalence only. 398 

We thus recommend promoting this novel methodology as a statistical adjustment for future HIV 399 

national/local surveillance, especially when there are gaps due to missing data, or regional prevalence estimates 400 

are needed. Even though we acknowledge that the complex statistical computation, unfamiliarity and limited 401 

knowledge on Bayes’ Theorem may limit the application of this methodology for non-Bayesian stakeholders, the 402 

already available techniques and the various forms of open source statistical software [3, 28, 29] should help to 403 

ease the computation process and help interpreting results. We believe applying SAE with a Bayesian approach 404 

can help to robustly tailor HIV prevention programmes, especially local HIV prevention resources and services 405 

navigation. 406 

 407 
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Strength and limitations 408 

We acknowledge the following strengths and limitations of our study. One major strength of this study is the 409 

introduction and the application of Bayesian spatial modelling analysis as a SAE method. We considered our 410 

results, especially the posterior risks of MSMHIV, as robust and valuable for HIV related public health policies 411 

and prevention strategies. The methodology in our study can be directly applied in other countries in the future 412 

for small area estimations using surveillance data on HIV. Another strength is the convergence of the models 413 

based on data from two survey-based datasets. Data from these two surveys made MSM individual level covariates 414 

directly available for the posterior modelling analysis instead of using secondary area-level covariate data based 415 

on the Dutch general population. Moreover, presenting data on the GGD regional level also helped to prevent 416 

information bias due to the municipal location of HIV testing. Since the regional public health service runs the 417 

majority of HIV tests in the Netherlands and since the sexual health clinics are located in the larger municipalities 418 

in a GGD region, data may thus concentrate in these bigger cities if HIV among MSM would be assessed on the 419 

municipality level. 420 

 In addition to the aforementioned limitations, one limitation can be the lack of data from the neighbouring 421 

regions from other countries. Our Bayesian spatial analysis with a hierarchical structure revealed how regions 422 

may influence each other to smoothen the risk estimates based on neighbouring information or on proximity. 423 

However, given the smoothing by neighbouring regions, our analysis may be influenced by other regions outside 424 

the Netherlands. It should be stressed that for some GGD regions which are located in the border regions of the 425 

Netherlands, the estimated prevalence and risks of HIV of these regions would thus be less stable compared to 426 

the rest due to the lower predictability as only one other node is available and thus part of spatial information is 427 

missing. Regions that share a boarder with Germany and Belgium, especially for GGD Zuid-Limburg which is 428 

only geographically connected with GGD Limburg-Noord and without other neighbouring regions in the 429 

Netherlands (Fig 1), require additional cross-border data input. Therefore, a study including those neighbouring 430 

regions in Belgium and Germany may be warranted in the future to compensate for the problem of lack of national 431 

spatial connectivity for those boarder regions. To achieve this aim, comparable cross-border data needs to be 432 

accessible, too. Moreover, our spatial analysis of MSMHIV across the Netherlands was based on survey data from 433 

2017-2018 when the pre-exposure prophylaxis (PrEP) has yet to be formally introduced in the Netherlands (2019). 434 

Our spatial model, therefore, did not include PrEP use among MSM per GGD region as a regional characteristic. 435 

Consequently, the influence from PrEP use was not measured in our models. Given the established impacted on 436 

the HIV prevention among MSM from using PrEP [30-34], future studies should therefore include PrEP use into 437 
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the spatial models for a more robust estimation. Another limitation can be the lack of an informative prior 438 

distribution when conducting Bayesian spatial analysis. Previous studies which applied Bayesian statistic in other 439 

epidemiologic field has suggested that to acquire the true prevalence and RR, an informative prior is preferred 440 

and required in practice [35, 36]. Our application of the PC prior, as a weakly informative prior, may thus limit 441 

the robustness of our posterior estimation and make them conservative [36]. However, we believe our estimations 442 

were still robust and close to the true risk of HIV among MSM based on the previous sensitivity analysis of PC 443 

in a prior experiment [37]. In addition, even though our Bayesian approach made our estimations more robust, 444 

more comprehensive datasets, such as routine surveillance data are still warranted. Another major limitation in 445 

our study may be the lack of temporal dimension in our models. The scope of our study to offer a time-dynamic 446 

epidemiologic picture on how MSMHIV spatially distribute over the time is limited. Future studies thus should 447 

include a wide temporal period to support a more comprehensive spatio-temporal analysis. Finally, ecological 448 

fallacy is possible due to our ecological study design. We lose information on the individual-level due to 449 

aggregating information spatially. Our results on the roles of the regional characteristics thus cannot be directly 450 

applied to investigate/predict the MSM’s HIV risk profile on the individual level.  451 

 452 

Conclusion 453 

In conclusion, our study proposed a Bayesian approach to more accurately assess the risk of HIV among MSM 454 

using data from the Netherlands on the public health service regional level with more robust prevalence and risk 455 

estimations over the use of crude proportions. Our findings based on two independent surveys can be considered 456 

valuable for policymakers and HIV surveillance authorities for resources allocation decision by prioritizing 457 

resources to the regions which require more efforts to reduce the burden of HIV among MSM accordingly. Based 458 

on the Dutch data, our method has shown to be feasible and can be directly applied to achieve a more 459 

comprehensive and robust surveillance of HIV in any geographic context. 460 
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