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Abstract

Gait analysis using foot-worn inertial measurement units has proven to be a reliable
tool to diagnose and monitor many neurological and musculoskeletal indications.
However, only few studies have investigated the robustness of such systems to changes
in the sensor attachment and no consensus for suitable sensor positions exists in the
research community. Specifically for unsupervised real-world measurements,
understanding how the reliability of the monitoring system changes when the sensor is
attached differently is from high importance. In these scenarios, placement variations
are expected because of user error or personal preferences. In this manuscript, we
present the largest study to date comparing different sensor positions and attachments.
We recorded 9000 strides with motion-capture reference from 14 healthy participants
with six synchronized sensors attached at each foot. Spatial gait parameters were
calculated using a double-integration method and compared to the reference system.
The results indicate that relevant differences in the accuracy of the stride length exists
between the sensor positions. While the average error over multiple strides is
comparable, single stride errors and variability parameters differ greatly. We further
present a physics model and an analysis of the raw sensor data to understand the origin
of the observed differences. This analysis indicates that a variety of attachment
parameters can influence the systems’ performance. While this is only the starting point
to understand and mitigate these types of errors, we conclude that sensor systems and
algorithms must be reevaluated when the sensor position or attachment changes.

Introduction 1

Gait analysis using wearable inertial measurement units (IMUs) has shown to be a 2

reliable tool to assess motor impairment and disease progression in a variety of 3

neurological and musculoskeletal indications [1–3]. In particular, shoe-worn IMU sensors 4

can measure spatiotemporal gait parameters with high accuracy [4–8]. Changes in these 5

parameters correlate with disease progression [9, 10], medicine intake [11], fall risk [12], 6

and the well-being of the patients [2]. 7

These sensor units are cheap, small, and relatively easy to use. Hence, they are of 8

high interest for widespread laboratory assessments and unsupervised real world 9

monitoring. 10

Although various systems based on foot-worn IMUs have been published and made 11

commercially available, widespread consent about certain design elements does not exist. 12
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Apart from differences in the hardware of the actual IMU units, sensor setups vary in 13

position and attachment of the sensor units. They are commonly integrated in the shoe 14

at the heel [13], embedded in a removable insole [14, 15], attached with elastic or Velcro 15

band at the instep [5,6,16,17], attached with a clip at the instep [18,19], or bolted to the 16

lateral side of the shoe [4]. While a multitude of these systems produce reliable results, 17

it remains unclear how robust the systems would be to changes in these parameters. 18

Without this knowledge, findings from individual studies and expected error ranges 19

cannot be compared or applied to new sensor systems that use a different sensor setup. 20

Dealing with variety in sensor attachment and placement becomes even more 21

important in the context of home monitoring applications. Multiple studies have shown 22

that monitoring patients gait in an unsupervised manner during their everyday life 23

provides valuable complementary information to at-lab measurements [20,21]. To 24

ensure compliance and usability for long-term recordings, users need to operate the 25

sensor systems independently and ideally, should be allowed to attach the sensors to 26

their own shoes. However, this increases the risk of user error, leading to improper 27

attachment of the sensor units, and naturally increases the placement variability. 28

Further, certain shoes might only support certain attachment modalities, which means 29

that support of multiple sensor position (e.g., lateral over the heel with a clip and at the 30

instep with an elastic band) might be desirable to increase user acceptance. Therefore, a 31

solid understanding on how the performance of gait analysis systems with foot-mounted 32

IMU changes with the position and mode of attachment of the sensor units is required 33

to ensure that reliable gait parameters can be extracted from such unsupervised 34

monitoring scenarios. 35

Existing research by Anwary et al. [22] already indicates that relevant differences 36

between various sensor positions on the foot exist when it comes to spatial parameters 37

like stride length and overall walking distance. They measured a difference of up to 38

6 cm in the mean stride length and up to 5 cm/s in the mean gait speed over 15 39

participants comparing five sensor positions. Their results indicated that placing the 40

sensor on the bony prominence of the first cuboid bone leads to the most reliable gait 41

parameters. However, this conclusion was drawn primarily by comparing the overall 42

calculated walking distance, as this was the only spatial measure with a ground truth 43

reference. Therefore, it is unclear whether an evaluation of stride-level spatial 44

parameters would lead to the same conclusion. Further, all experiments were performed 45

barefoot. Therefore, it remains to be seen if the same results can be obtained with 46

sensors attached to the shoe. 47

In our own recent work, we attempted to answer this question for running 48

movements [23]. We attached eight IMUs to a pair of running shoes at different 49

positions (four sensors per shoe) and collected data from approximately 2400 strides 50

from 24 healthy participants at various running speeds. A motion capture system was 51

used as reference to provide stride-level ground truth for spatiotemporal parameters. 52

These direct comparisons of multiple sensors revealed an average stride length error of 53

0.3 cm for the best and an error of −8.6 cm for the worst sensor position. This difference 54

was even larger for individual participants and increased with increasing running speed. 55

The sensor placed in a cavity in the mid-sole of the shoe lead to the best results overall. 56

While the position is impractical in many cases, the firm attachment of the sensor in the 57

cavity appeared to reduce the amount of movement artifacts and vibrations that might 58

negatively affect a position estimation by double integration. However, this study only 59

investigated running motions. Because of the different biomechanics and the occurrence 60

of higher frequency components in the recorded signal compared to regular gait, it is 61

unclear if these results are transferable to normal walking speeds. 62

To the best of our knowledge, these two are the only studies attempting a 63

comparison of sensor positions on the foot using real sensor data. However, Tan et 64
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al. [24] and Peruzzi et al. [25] made use of motion capture markers to simulate the 65

expected signal of an IMU attached at the position of the marker. 66

Tan et al. investigated the influence of changes in the exact sensor position at the 67

instep on the calculation of ground reaction forces. They concluded that small 68

deviations in the position only have a minimal influence on the derived ground reaction 69

forces, as long as the orientation of the sensor is kept unchanged. Unfortunately, they 70

did not report on any spatiotemporal gait parameters. 71

Peruzzi et al. evaluated the validity of a zero-velocity-assumption (ZUPT) during the 72

mid-stance phase at different sensor positions. During a zero-velocity phase, the sensor 73

is assumed to be stationary. This information is used by many state-of-the-art 74

trajectory estimation algorithms to correct for position and velocity drifts [26]. 75

Therefore, only sensor positions that have reliable regions of no movement during a gait 76

cycle are expected to produce reliable spatial parameters. Peruzzi et al. used motion 77

capture markers to simulate IMUs at various positions around the foot and found that 78

sensors on the lateral aspect of the rear foot or on top of the calcaneus are expected to 79

have time phases with the lowest amount of movement compared to all other sensor 80

positions and hence, should result in the most reliable ZUPT updates and the most 81

reliable spatial parameters. 82

All of these studies show that performance differences depending on the sensor 83

position are expected. This means that the robustness of systems to these changes must 84

be investigated if we cannot ensure that the sensor is always placed at the same exact 85

position. In particular the quantitative results from [22,23] make it clear that these 86

differences are large enough to affect health and sports applications. Despite the 87

apparent relevance of this topic, position and attachment differences between sensor 88

setups are rarely discussed in literature and no consensus regarding sensor placement 89

exists. Further, an understanding of the exact origins of the reported differences is 90

missing and therefore, no general recommendations or approaches to minimize their 91

influence on calculated parameters exists. 92

With this paper we contribute to a better fundamental understanding on how 93

position and attachment of the IMUs affect the raw sensor data and the accuracy of 94

spatial parameters (Fig 1). For this we build upon these previous studies, by continuing 95

the works of Anwary et al. [22] and combining it with our experience from our recent 96

study on running [23], but adapting the methodology to regular walking. We compared 97

the stride length calculated from six sensor positions at the shoe with stride-level 98

motion capture reference in around 9,000 strides from healthy participants. Further, by 99

using synchronized sensors we were able to analyze and quantify differences in the raw 100

IMU data directly. We compared these results with a simple physics model to provide a 101

baseline understanding for the potential origins of the observed differences and provide 102

recommendations for future research directions. 103

Materials and methods 104

Dataset 105

Fourteen healthy participants (Table 1) performed a variety of walking tests within the 106

motion capture volume of the Fraunhofer IIS L.I.N.K. (localization, identification, 107

navigation, and communication) test center in Nürnberg, Germany. In total this 108

resulted in around 8,989 usable strides with motion capture reference. The full dataset 109

is available via Zenodo (https://zenodo.org/record/5747173) and a Python library 110

to load and pre-process the data can be obtained from github 111

(https://github.com/mad-lab-fau/sensor_position_dataset_helper). 112

The participants were each equipped with 13 IMUs (NilsPod v1, Portabiles GmbH, 113
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Fig 1. Visual abstract. All sensors travel the same distance in the ground-plane over
the duration of one stride. Therefore, we expect the calculated stride length to be
identical. However, the frequency response of the attachment modulates the recorded
signal in a way, that for some sensor positions large integration errors become more
likely. We demonstrated this effect with six different sensor positions on a dataset with
9000 strides.

Erlangen, Germany). The IMUs recorded with a sampling rate of 204.8Hz. The range 114

of the accelerometer was set to ±16 g (≈ ±157m/s2) and the gyroscope to ±2000 deg/s. 115

Six IMUs were attached to each shoe (Fig. 2), one at each ankle, and one at the lower 116

back via a hip belt. For this publication only the sensors attached to the shoes are 117

considered. Two of these sensors required special modifications. One was embedded in 118

the midsole of the purpose-built shoe (Portabiles Healthcare Technology GmBh, 119

Erlangen, Germany), which has a cavity that can fit one of the sensor units. The other 120

was part of a purpose-built insole. It was using the same electronic design as the other 121

sensors, but the housing was modified to fit the size constraints inside the insole (Fig. 2, 122

center). The actual IMU in this configuration was placed to be roughly under the center 123

of the foot, depending on the exact size of the foot relative to the size of the insole. 124

Table 1. Participant demographic

Demographics

Gender [f/m] 4/10
Age [years] 25.4 ± 3.0
Height [cm] 178.0 ± 11.0
Mass [kg] 73.3 ± 15.6

All numerical values are provided as mean ± std.

To ensure that differences between the sensor positions are not caused by differences 125

in the sensor units themselves, the positions of the units on the shoe were changed after 126

the fifth and then again after the tenth participant. Only the insole sensors could not 127

be swapped, as only two pairs of the special-build insoles were available for the 128

measurement. For each participant the pair fitting their shoe size best was used. 129

Additionally, all sensor units were manually calibrated according to Ferraris et al. [27] 130

(see [28] for the implementation) to further reduce the sensor to sensor variations. 131

For the motion capture system (Opus 700+ Qualisys, 28 cameras, 20×30 m capture 132

volume), a set of eleven reflective markers were attached to the shoes and the hip of 133

each participant [29,30]. Four markers were attached to each shoe at the calcaneus 134

May 19, 2022 4/31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.22275197doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.20.22275197
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 2. Sensor placement of the six shoe sensors. The insole sensor (center) was
embedded in a purpose-built insole. The cavity sensor was placed in a cavity in the sole
of the custom shoe (right). All other sensors were attached with 3D-printed clips.

(CAL), at the tip of the shoe (TOE), and on top of the first and the fifth metatarsal 135

(MET1 and MET5). The remaining three markers were attached at the hip to the 136

lumbar vertebrae (L5) and on the left and right anterior-superior-iliac-spine (L/R-IAS). 137

All 28 cameras were set to record at 100 Hz. The motion capture system was calibrated 138

at the beginning of the measurement day. The calibration resulted in an expected 139

average marker position error of 2− 4mm as calculated by the Qualisys calibration 140

software. The recorded motion capture data was manually inspected and misidentified 141

markers were fixed. Gaps in the marker trajectories smaller 80ms were interpolated 142

automatically. If larger parts of a trajectory could not be reliably tracked, the sections 143

were removed from the analysis. All motion capture analysis was performed using QTM 144

version 2019.1 and final trajectories were exported into the c3d format to be further 145

analyzed using Python. Specifically, the trajectories of the heel and the toe markers 146

were used in this manuscript. 147

Each participant performed seven gait tests: First, the participants performed three 148

iterations of a 4×10m walk test at preferred, self-selected slow, and self-selected fast 149

speeds. Then three iterations of a 2×20m walk tests were performed with the same 150

speed levels as the 4×10m tests. Participants were instructed to always turn in the 151

same global direction at the end of each 10/20 m segment. This resulted in an equal 152

number of left and right turns in the dataset. These two tests were included to provide 153

comparability with other datasets, which typically include at least one of these two tests. 154

To collect a larger number of strides, the participants performed a continuous 5min-walk 155

along a path shaped like an eight within a 20×5 m area. Participants started in the 156

center of the eight and walked the first curvilinear section in a counterclockwise (left 157

turn) direction. This path shape provides the two long diagonals for steady state 158

walking and areas of curvilinear walking in both directions. However, only the straight 159

walking portions are analyzed in this manuscript. At the beginning of the 5min-walk, 160

participants were asked to start in their preferred speed. After two minutes, they were 161

instructed to walk in their self-selected slow speed for another two minutes. In the final 162

minute, the participants walked in their self-selected fast speed. Due to the large 163

capture volume, the complete gait tests could be covered with the reference system. 164

For one participant one of the sensors malfunctioned, and a second recording was 165

made. Only the second recording is used in this analysis. Further, for three participants 166

the cavity sensor was placed in the cavity the oriented the wrong way. This was fixed by 167

rotating the data after loading. More information about this process can be found in 168

the documentation provided with the dataset. 169
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To reduce the amount of data generated by the motion capture system, the 170

recording was started and stopped before and after each gait test. This means that 171

seven recordings exist for each participant (one for each gait test). In contrast, the 172

IMUs recorded continuously to their internal storage over all gait tests, resulting in only 173

a single recording per sensor per participant. 174

All IMUs were synchronized with each other using the method introduced in [14]. 175

The IMU network was in turn synchronized with the camera system by attaching a 176

modified sensor unit to the analog synchronization output of the Qualisys camera 177

system. Every time a recording was started with the Qualisys system the analog signal 178

passed to the output switched from low to high and from high to low once the recording 179

ended. This rectangular signal was recorded by the modified sensor and the rising and 180

falling edges were then used to cut and align the recordings of the IMUs with the 181

camera recording. This results in a synchronization between the two systems with an 182

error smaller than 10ms. 183

The study was conducted according to the guidelines of the Declaration of Helsinki, 184

and approved by the local ethics committee of the Friedrich-Alexander University of 185

Erlangen-Nürnberg, Germany (Re-No. 106 13B, 19/03/2020). All participants provided 186

written consent to participate in the study and to have the recorded data published. 187

Sensor alignment 188

In order to compare the raw signal of the sensors, a method was developed to optimally 189

aligned their orientations. This method can extract the alignment information from the 190

recording itself and removes the need for dedicated calibration motions, like the ones 191

used in [23]. 192

First, the signal around each gait test was extracted for all sensors on one foot as 193

follows: At the beginning of each gait test, when the subject was instructed to stand 194

still for a couple of seconds, a static region of 500 samples (2.4 s) was extracted with a 195

sliding window approach. A window was considered static for a sensor if the variance of 196

all accelerometer axes individually within the window were below 0.01m/s2. The first 197

window where this was true for all sensors of one foot simultaneously was used to define 198

the direction of gravity within each sensor using the median acceleration within the 199

window. With that information, the coordinate systems of all sensor units were rotated 200

so that the z-axis of the local coordinate system aligns with the direction of gravity 201

during this resting period. As this step unifies the global z-direction in all sensors, the 202

only remaining degree of freedom is the rotation around this z-axis. This alignment is 203

performed in the second step using the measured angular velocity. 204

For the mathematical description, we approximate the shoe to be a solid object 205

during most of the gait cycle. Therefore, we expect the recorded angular velocity of all 206

sensor units to be approximately identical in the global coordinate system. This 207

constraint can be used to derive the relative orientation of the local coordinate systems 208

of two sensors. To provide an alignment of all sensors, we will use the approach 209

described in the following to align all sensors individually with the cavity sensor. 210

However, the procedure is identical for any arbitrary pair of two sensor units i and j 211

attached to the same foot. 212

In general, to find the relative orientation for two sensors attached to a solid object, 213

one would need to solve the following equation for the rotation matrix Rij : 214

ωj = Rijωi, (1)

where ωi,j denotes the measured angular velocity of the sensors i and j, respectively, 215

and Rij is the rotation matrix rotating the local coordinate system of sensor i into the 216

local coordinate system of sensor j. This equation has an infinite of solutions. In the 217
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following, we will ignore this fact, because every solution would solve the alignment 218

problem, and always assume, we are looking for the shortest rotation between the two 219

vectors. Even then, we would not expect the equation to provide the same rotation 220

matrix at every point in time in the real world. Because of the expected noise of the 221

sensor signal and the fact that the shoe will bend and deform during parts of the gait 222

cycle, our initial assumption will be violated. In result, the matrix Rij is actually time 223

dependent. Because we want to use Rij to perform an initial global alignment, what we 224

are interested in, is an optimal solution for eq. 1 over the entire recording. This optimal 225

rotation matrix could be found by means of a numerical optimization over multiple time 226

points. 227

However, because we can already assume that the local z-axis of all sensors are 228

aligned because of the gravity alignment, the problem can be reduced to one dimension. 229

Instead of trying to find the entire rotation matrix, we only need to derive the angle 230

∆φij that aligns the two sensor coordinate systems by rotation around the already 231

aligned z-axis. We consider ωxy,i and ωxy,j to be the 2D vectors describing the angular 232

velocity of the sensors i and j in the xy-plane. Adapting eq. 1 to this simplified 2D case, 233

the following must hold: 234

ωxy,j = R{∆φij}ωxy,i, (2)

where R{∆φij} is the rotation matrix rotating a vector around the z-axis by ∆φij . In 235

the xy-plane ∆φij describes the angle between ωxy,i and ωxy,j . This angle can be 236

derived using basic trigonometry: 237

∆φij = atan2(|ωxy,i × ωxy,j |, ωxy,i · ωxy,j) . (3)

As we do not assume this value to be the same for every point in time, we calculated 238

the angle for every sample in the signal and used the median to find the best 239

approximation for the alignment angle. To make this step more robust, we excluded all 240

samples where |ωxy| of one or both sensors were below a threshold of 150 deg/s. For 241

values smaller than the threshold, we assumed that the result was considerably 242

impacted by measurement noise and therefore unreliable. The final calculated angle was 243

then used to fully align the local coordinate systems of the sensors i and j. The whole 244

procedure is visualized in Fig 3. 245

For all further data analysis, this method was used to align all sensors of a shoe with 246

the respective cavity sensor. This results in the alignment of all sensors, which allows to 247

apply the same analysis pipeline for all sensors going forward. The cavity sensor was 248

chosen as reference, because its orientation is clearly defined by the cavity manufactured 249

into the mid-sole of the shoe. The alignment was performed per gait test to minimize 250

the influence of potential shifts of the sensor attachments over the duration of the entire 251

measurement. The quality of all alignments was checked manually and all parameters 252

and thresholds were chosen empirically. 253

Stride segmentation and event detection 254

Stride segmentation is a critical first step of any gait analysis pipeline. Because this 255

paper focuses on the physical differences of the sensor signals recorded at different 256

positions, we wanted to reduce potential errors caused by the stride segmentation. 257

Therefore, all strides in the dataset were labeled manually by gait experts independently 258

based on the medial-lateral gyroscope signal of the instep sensor. The start and the end 259

of each stride were marked based on the clearly visible minimum before the terminal 260

contact (for more information about the labeling process see [31]). To ensure 261

consistency, the manual labels were moved to the exact sample of the minima in a 50 262
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Fig 3. Visual representation of the two-step alignment procedure. The image
shows the alignment of the instep sensor, but the same procedure is applied to all
sensors. First, the local coordinate system is rotated, so that the z-axis aligns with the
global direction of gravity during the foot-flat posture. In the second step, the rotation
around the new z-axis is aligned with the cavity sensor by calculating the difference in
phase between the angular velocity vectors ωxy in the x-y-plane. From the regions
where the angular velocity is larger than 150 deg/s (gray areas in the plot) the median
angle between the two sensors ∆φ is extracted to fully align the signals of the sensors.

ms window around the labeled point. This ensured that the end label of one stride 263

coincided with the start label of the next stride. This was further used to define 264

adjacent strides and breaks in the gait sequence. A unique stride-id was assigned to 265

each stride to reference the same stride in all sensor systems. In the following, we call 266

these types of strides labeled -strides. 267

This approach was chosen over calculating the stride events and stride borders from 268

the motion-capture reference, as it was considered more reliable in our testing and 269
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allowed to label the strides in a way that was directly compatible with the used 270

IMU-based event detection method in the next step. 271

The labeled -strides were then used as regions of interest to perform an event 272

detection based on Rampp et al. [32]. This event detection was performed for each 273

sensor separately. We detected the initial contact (IC), the terminal contact (TC), and 274

the point of the least movement (tvmin
) during the stance phase (Fig 4). These events 275

correspond to the events heel-strike, toe-off, and mid-stance in the original publication, 276

respectively. As this manuscript focuses on the comparison of spatial parameters, the 277

events were not used as part of the comparison later, but to further filter out strides 278

that might contain signal artifacts (see section Stride selection for more information). 279

From the remaining strides we created a new stride list, with redefined start and end 280

points. The new strides start at the tvmin
of one stride and end at the tvmin

of the 281

adjacent stride. This ensures that the signal of each stride started with a resting 282

period/stance phase, which allows to apply a stride-wise integration (see section Gait 283

parameters). These new types of strides are referred to as vmin-strides. If there are 284

breaks in the gait sequence, either due to actual breaks or removed strides, no direct 285

adjacent stride exists based on the provided definition for adjacent strides. This leads to 286

a loss of one stride per gait sequence compared to the labeled stride definition. A 287

stride-id is assigned based on the stride-id of the labeled -stride the start tvmin
belongs 288

to. As the exact position of tvmin
depends on the actual sensor signal, the start and end 289

of each vmin-stride vary slightly per sensor. The stride-id is used to still allow a proper 290

comparison of the same stride over multiple sensors. 291

Gait parameters 292

This manuscript focuses solely on the estimated stride length for comparison. As it 293

requires the estimation of the entire trajectory, the stride length is considered a quality 294

marker for the entire calculation pipeline. 295

For calculation, we used a double integration approach similar to [23]. The initial 296

orientation was estimated using a small window of 8 samples (40ms) centered around 297

tvmin
at the start of each vmin-stride. We assume that the only measured acceleration 298

in this window is gravity. Therefore, we assume that the median acceleration in the 299

window aligns with the global z-axis. The x- and the y-axis are chosen orthogonally to 300

this z-axis in a way that the x-axis aligns with the forward direction ((1, 0, 0)) as much 301

as possible. Starting from this initial orientation the global orientation of the sensor is 302

derived by integrating the gyroscope measurements. With this global orientation, the 303

measured acceleration is transformed into the global frame and the influence of gravity 304

is removed. The remaining acceleration is then integrated twice, yielding the sensor 305

position in the global frame. For the first integration a forward-backwards integration 306

approach with sigmoidal weighting is used to remove potential drift. This method is 307

chosen over the linear dedrifting in [23], as it has shown to provide the best results for 308

normal walking [8]. This corrected velocity is then integrated again to yield the position. 309

To derive the stride length, the traveled distance is derived as the Euclidean distance of 310

the start and the end point of the integration in the ground plane (x-y-plane). 311

To obtain the stride length references from the motion capture recording, the 312

position of the heel and the toe markers at the start and the end of each vmin-stride is 313

detected. The reference stride length is then obtained by calculating the distance in the 314

ground plane the markers traveled during the stride. While only the stride length based 315

on the heel marker is used as actual reference going forward, the stride length from the 316

toe marker is calculated as quality criteria (see section Stride selection). Because the 317

event detection is performed for each sensor position separately, separate stride length 318

references exist for each sensor. Their values vary slightly depending on the exact 319
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Fig 4. Example stride. The average signal over all strides of the left foot from the
2×20m walk test at normal speed of the participant 4d91. All strides were interpolated
to 200 samples before averaging. The individual signals are rotated to match the
primary anatomical axis during mid-stance. The start and the end of the stride conform
with the labeled -stride definition. The vertical lines indicate the approximate position of
the detected gait events.

timing of tvmin . This ensures that expected shifts in the event detection between the 320

sensors do not influence the comparison. 321

Stride selection 322

To ensure that all sensors were compared based on the same strides, all strides that had 323

issues with the event detection in one or more sensors of the same foot were removed 324

from the comparison based on the assigned stride-id. The event detection was 325

considered failed, if the events were not detected in the expected order, or no IC was 326

detected in the first 60% of the gait cycle. 327
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Further, a fair comparison of different sensor positions is only possible for straight 328

strides. If the orientation of the foot in the beginning of the stride is different from the 329

orientation of the foot at the end of the stride, the actual traveled distance varies for 330

different parts of the foot. This is a systematic error that also affects the comparison of 331

different sensor positions and the comparison of markers and sensors that are attached 332

at different positions on the foot. 333

To limit the influence of this error source, all strides that had a difference between 334

the calculated reference stride length based on the heel and the toe marker of larger 335

than 1 cm were removed from the comparison. This check was performed for the 336

vmin-stride start and end values of all sensors individually and if the requirement was 337

violated for one or more sensors of the same foot, the stride was removed. Because the 338

stride length from the heel marker was used as actual reference, the largest remaining 339

error because of this error source is expected for the instep and the insole sensors. 340

Based on the selected threshold for straight strides, this remaining error is bound to be 341

well below 1 cm. This approach has the side effect of removing strides that are affected 342

by tracking issues of either the toe and the heel marker, too. Therefore, the remaining 343

strides allow for a “best case” comparison of the different sensor position. 344

The final set of strides was further divided into six groups depending on the walking 345

speed for the final analysis (Table 2). 346

Table 2. Overview over the stride categories and the respective number of
strides.

description # strides

slow All strides from the 4×10m and 2×20m walk
performed at the self selected slow speed.

1479

normal All strides from the 4×10m and 2×20m walk
performed at the self selected normal speed.

1247

fast All strides from the 4×10m and 2×20m walk
performed at the self selected fast speed.

1043

straight The combination of all three speed cate-
gories.

3769

5min-walk All strides from the 5min-walk. 5220

all All strides from all test 7 tests (including
the 5min-walk) combined independent of the
gait speed.

8989

A physics model for the shoe-sensor system 347

To understand why we expect differences in the measured signal at different sensor 348

positions, and hence, in the calculated spatiotemporal parameters, we need to establish 349

a simplified mechanical description of the measurement chain. In the following section 350

we attempt to derive such a model based on fundamental physics principals. This model 351

is then used to hypothesize potential sources of error, which we attempt to investigate 352

based on the available experimental data. 353

Fundamentally, we propose to differentiate between three types of signals that are 354

measured independent of the sensor position: First, translations and rotations of the 355

center of mass of the foot without microscopic or macroscopic deformations of the shoe 356

or foot. Second, macroscopic deformations of the shoe, for example caused by the 357

rollover of the foot before the terminal contact during a gait cycle. Third, microscopic 358
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deformations and the resulting pressure waves traveling through the material of the 359

shoe and the foot. These are primarily caused by fast accelerations or deceleration, that 360

can for example occur during the initial ground contact. 361

Depending on the type of signal, we expect different underlying sources of variation 362

between individual sensor positions. For movements of the entire foot, we expect all 363

sensors to measure the exact same angular velocity (ω). The component of acceleration 364

as caused by the translation of the center of mass of the foot is also expected to be 365

identically. Only the component of acceleration ar caused by rotations (i.e., by the 366

centripetal force) is expected to differ based on the sensor position, as it depends on the 367

distance between the accelerometer and rotation axis: 368

ar = ω × (r× ω) , (4)

where r is a position vector connecting the center of rotation and the sensor. Note 369

that during gait, we have multiple additive rotational components caused by the 370

simultaneous rotation around multiple joints (e.g., ankle and knee). This makes it hard 371

to provide an actual estimate of magnitude of the rotational acceleration. To 372

approximate the expected error range, we can make some rough assumptions: Assuming 373

a maximal distance of 10 cm between two sensors in this experiment and a peak angular 374

velocity of around 500 deg/s (approx. 8.5 rad/s), we can expect a maximum difference in 375

rotational acceleration of around 0.75m/s2. 376

During gait, macroscopic deformations of the shoe primarily happen during the 377

rollover of the foot between the foot-flat phase and the terminal contact. In this phase, 378

the toe-box of the shoe still remains on the ground, while the heel is lifted. Naturally, 379

sensors attached to the toe-box would measure a different signal compared to sensors 380

attached to heel. In this experiment, no sensors were directly attached to the toe-box. 381

However, the sensor placed in the insole and on the instep are placed close enough to 382

the toes that they might be affected by the deformation. The primary expected 383

influence on the sensor signal is a delay in the onset of the movement after the foot-flat 384

phase. To a lesser extent, we expect macroscopic deformation after the initial contact 385

(heel strike). Here we assume that sensors attached closer to the heel of the foot will 386

stop their movement slightly before the sensors placed closer to the toe. 387

The influence of microscopic deformations and high velocity impacts (e.g., the heel 388

strike) is the most complicated to predict, because it depends on the physical 389

components involved in propagation of the forces from the point of impact to the actual 390

sensor. This means the mechanical properties of the shoe, the foot, the sensor 391

attachment, and the sensor itself will influence the measured signal. Simplified, each 392

component will behave like a damped oscillator when it comes to the propagation of 393

pressure waves caused by high accelerations and decelerations of the foot. The resulting 394

system of such chained oscillators will result in a frequency dependent and — in the real 395

world — likely non-linear (i.e., the frequency response will depend on the magnitude of 396

the force) propagation of the pressure wave. The properties of this system will vary for 397

each sensor position, because they have different means of attachment and the pressure 398

wave needs to travel through different layers of material depending on the sensor 399

position. For example, the sensor attached on the instep is expected to measure a lower 400

peak acceleration after the initial ground contact compared to a sensor in the cavity, 401

because the pressure wave is already damped and modulated by the shoe and the foot 402

before reaching the sensor. Even at the same sensor position, the firmness of 403

attachment might influence the amplitude of the measured signal. This is a well-known 404

issue when estimating ground contact forces using accelerometers [33, p. 347-354]. 405

Together all these effects are expected to result in clearly observable differences in 406

the measured raw signal. However, based on presented theory, none of them would 407

directly result in differences in spatial parameters like the stride length (other spatial 408
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parameters like contact angles might be affected). In this study spatial parameters are 409

calculated by integrating the measured signal to obtain the overall spatial displacement 410

of each sensor. Because the described differences in the raw signal are not measurement 411

errors, but can be explained by actual differences in the movement paths (microscopic 412

and macroscopic) of the sensors, we expect the same stride length when integrating 413

these signals over one gait cycle of a straight stride, because all sensors need to travel 414

the same distance in the ground plane between two foot-flat phases independent of their 415

actual path during the remainder of the gait cycle. 416

However, we postulate two pathways how the described signal differences can lead to 417

actual integration errors. The first one is based on the ZUPT. As described in [25], a 418

period of no movement during a gait cycle is required for most integration methods to 419

correct drifts. Further, this time period is used to estimate the initial orientation of the 420

sensor at the beginning of each stride using the direction of gravity. The lower the 421

amount of movement during this period, the more reliable both of these operations will 422

be. This means, if the amount of residual movement is high, larger errors in spatial 423

parameters are expected. Zrenner et al. [23] could show that the amount of residual 424

movement varied for each sensor position and attributed this primarily to the 425

macroscopic deformations of the shoe during running and the firmness of the 426

attachment of each sensor. The latter aspect is one part to the frequency response of 427

the entire measurement chain, as explained above. During regular gait we expect the 428

frequency response to be the dominant factor, as we expect a lower amount of 429

macroscopic deformation of the shoe compared to running. 430

The second potential source of error is caused by the limited sampling rate of the 431

sensor system. In this study the sensors recorded with 204.8 Hz. This means that the 432

highest theoretical signal frequency that can be recorded is around 100Hz. This has 433

shown to be sufficient to calculate the stride length with an acceptable error [5, 7]. 434

However, acceleration measured during gait can contain components in frequency bands 435

larger 150Hz [34]. If this leads to relevant errors during the integration depends on the 436

amount of signal energy in these higher frequency bands. Depending on the exact 437

oscillation and dampening behavior of the measurement chain for each individual sensor, 438

it is possible that some sensors will experience more movements in these high frequency 439

ranges than others. As these movements cannot be correctly sampled with the sampling 440

rate used in this study, there is missing signal information during the integration 441

process, which can lead to errors in the orientation and position estimate that can 442

compound over the integration process. Because such high frequency movements usually 443

also result in high accelerations and angular velocities, this can lead to relevant 444

integration errors, even though the actual magnitude of the movements might be small. 445

Raw data analysis 446

While the comparison of the stride length is the primary analysis of the manuscript, it is 447

of further interest how the raw signal itself is influenced by the change in sensor 448

position. The aim of this analysis is contributing to a better understanding of the 449

measurement response of a shoe attached IMU system and helping to pinpoint the exact 450

origin of potential differences in spatial parameters that arise from differences in the 451

frequency response. Further, the calculated parameters will be used to experimentally 452

verify the error model outlined in the previous section. To achieve these aims we 453

performed multiple comparisons of the raw sensor data between the sensor positions. 454

This analysis was split into two parts: First, we directly compared the raw sensor 455

data sample-by-sample across all sensors and second, we calculated a set of parameters 456

for each stride based on the raw data. These parameters were then compared between 457

the sensors and correlated with the calculated stride length error. 458
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Direct raw data comparison 459

In addition to visually comparing individual strides and average signals over multiple 460

strides, we attempted to capture the similarity of the raw sensor signals in quantifiable 461

metrics. This was done using the labeled stride definition. This means each stride had 462

the same start and end values across all sensors on the same foot, and hence, we can 463

easily perform a sample-wise comparison. For this we derived two different summary 464

metrics: 465

3D Difference: We calculated the sample-wise vector difference between two
sensors of the angular velocity and the acceleration, respectively. We then calculated
the norm of these difference vectors and averaged the result per stride. Hence, for each
stride and sensor pair i, j the following calculations were performed:

∆3D,acc =
1

N

∑
k

|ai,k − aj,k|, (5)

∆3D,gyr =
1

N

∑
k

|ωi,k − ωj,k|, (6)

where N are the overall number of samples and k the indices of the samples contained 466

in a respective stride. The resulting 3D Difference is per definition always positive and 467

hence, cannot differentiate between noisy differences and actual data offsets. 468

Norm Difference. Instead of deriving the difference of the raw signal per axis, we
first obtained the vector norm of the angular velocity and the acceleration per signal
and then calculated the sample-wise difference between sensors. The resulting value is
then averaged over one stride:

∆norm,acc =
1

N

∑
k

|ai,k| − |aj,k|, (7)

∆norm,gyr =
1

N

∑
k

|ωi,k| − |ωj,k|. (8)

This difference metric can have negative values and is expected to be zero if the 469

time-depended difference between two sensors has zero mean. Therefore, it can be used 470

to differentiate between constant offsets of the signals and oscillations. 471

For both metrics we calculated the mean and interquartile range (IQR) over all 472

available strides. Based on this we then identified sensor positions that result in similar 473

signal (small differences) and tried to characterize the nature of the potential differences 474

by comparing the 3D Difference with the Norm Difference for individual sensor pairs. 475

Further, we analyzed when in the gait cycle differences between sensor positions 476

occur. For this, we calculated the sample-wise standard deviation over all sensor 477

positions per axis. We then interpolated the resulting values to 200 samples per stride 478

and averaged over multiple strides for a qualitative comparison. A high standard 479

deviation in a certain region of the stride indicates high disagreement between the 480

sensor positions. 481

Feature based data comparison 482

To verify the postulated error model based on the collected experimental data, we 483

calculated a set of features from each stride to see if they follow the expected patterns. 484

To allow for comparison with the stride length result, we used the vmin-strides to 485

calculate all parameters. 486

Residual energy (Evmin
): To estimate the residual movement during the stance 487

phase, we calculated the energy of the gyroscope signal in a 40ms window centered 488
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around the tvmin
point that marks the start of each stride. Any value larger than zero 489

indicates that the sensor was still moving during a time period we assumed to be a 490

zero-velocity region. As the data in the same window is also used to estimate the initial 491

orientation for the double integration and is further used to dedrift the calculated 492

velocity, any residual energy is expected to negatively influence the stride length 493

estimation in multiple ways. Evmin
was calculated as the sum over the squared norm 494

values within the window: 495

Evmin
=

∑
i

∥ωi∥2 for i ∈ {i ∈ N|ti with tvmin
− 20 ms < ti < tvmin

+ 20 ms}, (9)

where ti represent all the discrete sample-points within the described window, and ωi 496

the gyroscope sample at sample i. 497

Peak acceleration (amax): As an indicator of the dampening of the shoe system 498

we calculated the maximum of the acceleration norm in each stride. In most strides this 499

maximum occurs right after the initial contact. The higher the damping effect of the 500

specific measurement chain, the lower the expected signal. 501

Power Spectral Density (PSD(0,20]/PSD(80,102.4)): To better understand the 502

different frequency responses of the measurement chain of each sensor, we calculated the 503

power spectral density (PSD) of the accelerometer and gyroscope norm. Like in [34], we 504

used Welch’s method with a Hanning window of 64 samples and 50% overlap. We zero 505

padded the windows of 64 samples to 128 samples to increase the spectral resolution of 506

the resulting PSD. The calculation was performed using the welch function from the 507

Python package scipy [35]. For quantitative comparisons we divided the spectrum into 508

multiple sections and calculated the average spectral power in each region. In the 509

context of this manuscript, we present the results for the lowest frequency bin (0-20Hz) 510

and the highest frequency bin (80-102.4Hz). The former represents the frequency range 511

of the actual human movement, while the latter represents high frequency components 512

potentially linked to sampling related errors explained above. However, high spectral 513

power in the high frequency bin does not directly mean that sampling issues will occur. 514

By definition, these signals are still represented correctly in the sampled signal. 515

However, high spectral density up until the Nyquist frequency might indicate that 516

relevant signal components with even higher frequencies exist. 517

For each of the features, we further investigated if any direct correlation between the 518

features and the stride length result could be observed by plotting the feature against 519

the stride length error. We performed this analysis on multiple granularity scales: 520

median values per sensor, median values per gait test, and the raw values per stride. 521

Results and discussion 522

Stride length error 523

The absolute stride length error is dependent on the sensor position 524

The final average stride length error per sensor position is the primary outcome of this 525

study. When comparing the mean error over all strides between the different sensor 526

positions, no relevant difference can be observed (Fig 5, right). All sensor positions 527

result in mean errors of below 2 cm. This is comparable or even better than results 528

presented in other studies (e.g., [6, 7, 32]). 529

Looking at the IQR (Fig 5) and the mean absolute error (MAE) (Fig 6, left), 530

differences between the sensor positions become apparent. For these metrics the error 531

increases in the following order: insole, cavity, instep, medial, lateral, heel. While the 532

performance within the first three and within the last three sensors appears to be 533
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Fig 5. The stride length error of each sensor position over all strides. The
image on the left shows all straight strides. The image on the right has all outliers
(> Q3 + 1.5IQR and < Q1− 1.5IQR) removed for visual clarity. Values larger than 0
indicate an overestimation by the IMU. The black triangles mark the means of the
distributions. They are omitted in the left image for visual clarity.

Fig 6. The absolute stride length error of each sensor position. On the left the
error is calculated over all strides and right for the individual speed categories. All
outliers (> Q3 + 1.5IQR) are removed from the visualization. The black triangles mark
the means of the distributions.

comparable, the performance differs between these two groups. However, for all sensor 534

positions the performance values remain within the ranges reported in other studies. 535

To get further insight into the stride length error, the speed dependency of the error 536
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is investigated. For this the slow, normal, and fast stride groups are compared (Table 2). 537

For all sensor positions, all error metrics increase with increasing speed (Fig 6, right). 538

The aforementioned differences between the sensor positions can be observed at all 539

speed levels, but become more pronounced at higher speeds. 540

The heel and the medial sensor have outliers with large errors 541

Besides the MAE and the IQR, the number and spread of outliers vary between sensor 542

positions and increase following the same order as the other metrics. This is notable, 543

because these outliers can reach 60 cm for the heel sensor and even more for some 544

strides of the medial sensor (Fig 5). This is well beyond an acceptable error range for 545

any application and larger than the maximal errors reported in other studies. 546

Unfortunately, no comparable study used the sensors at the affected positions. 547

Therefore, no direct comparison is possible. For the remainder of this section, we will 548

use the term extreme outlier for all strides with an absolute error larger than 30 cm. 549

For the medial sensor, only a handful of strides exceed this threshold. Otherwise, the 550

error distribution is comparable to the lateral sensor. We assume that these extreme 551

outliers are caused by participants occasionally bumping into the medial sensor with the 552

opposite foot, which we observed during data recording. However, we could not find any 553

clear indicator in the raw data to proof that this happened for the effected strides. For 554

the heel sensor, the error distribution continuously spreads until an error of around 60 555

cm. This indicates that these outliers appear statistically because of the sensor position 556

and not due to special events. With regard to the speed dependency of the outliers, 557

basically all extreme outliers occur during fast walking (Appendix S1). 558

Observed differences are unlikely to be caused by methodological errors 559

To sanity check these results, we reran the stride length estimation using a Kalman 560

Filter similar to the one used in [6] applied to the entire gait tests, instead of the 561

per-stride double integration. We obtain comparable results with this alternative 562

method and hence, concluded that the observed errors (including the outlier) were not 563

caused by any issues with our integration method itself. 564

As explained in the methods section, the start and end time of the integration 565

regions varied slightly per sensor. Because the same start and end values were used to 566

obtain the reference stride length for the respective sensor, the reference values are also 567

expected to vary slightly. However, tracking issues of the Motion Capture system might 568

lead to larger differences than expected. To check for that, we subtracted the reference 569

stride length for the insole sensor from all other references per stride. The maximum 570

difference for an individual stride was found to be 1.05 cm. Therefore, differences in the 571

stride length reference or tracking issues of the motion capture system can be ruled out 572

as a source of the large errors observed for certain sensors. 573

To better understand the consistency of the observed error values, we compared the 574

results from the left and the right foot (Appendix S2) and the results of all participants 575

individually (Appendix S3). No relevant difference between the results from the two feet 576

could be observed. Between participants, the absolute values of the mean errors varied. 577

However, the relative ranking of the sensor positions remained consistent for most 578

participants. This rules out individual sensor units, calibration issues, or accidental 579

operational errors as hidden confounders. We explain the remaining differences between 580

participants by variations in walking style, small variations in sensor mounting, and 581

differences in how well the shoes fit. 582

To summarize, while the average error over all strides is comparable between sensor 583

positions, on a single stride level clear performance differences can be observed. This 584

also means that measures for gait variability like the stride length standard deviation 585
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vary between sensors. Because the general error ranges of all sensors are comparable 586

with other studies, and we controlled or tested for all obvious confounding factors, we 587

are confident that the observed errors are representative for the specific sensor positions 588

in our setup and not caused by systematic issues of the sensors or algorithms. Hence, 589

the differences in stride length must be caused by actual differences in the raw IMU 590

signal between the sensors. 591

Raw data analysis 592

The raw data of the sensors show clear differences 593

In addition to the spatial parameters, we analyzed differences of the raw signal between 594

the sensors. In the following we will discuss these differences qualitatively. All 595

comparisons were performed over all strides (Table 2). 596

Looking at the 3D Difference of the raw data (Fig 7), it is apparent that the insole 597

and the cavity sensor are most similar. In contrast, the acceleration signal of the instep 598

sensor appears to have the largest differences from all other sensors. For the sensors 599

attached to the collars of the shoe (medial, lateral, heel) the angular velocity signal 600

seem to vary considerably between the sensor positions. The first two observations can 601

be explained based on the proposed physics model: The insole and the cavity sensor are 602

rigidly connected and hence, are expected to measure the same angular velocity. The 603

acceleration only differs by the difference in centrifugal acceleration between the sensor 604

positions. This value should be relatively small, as the distance of both sensors to the 605

involved joints is comparable. In contrast, due to the way the instep sensor is attached, 606

it is likely that the sensor is affected by the macroscopic deformation of the shoe during 607

rollover. Hence, it is expected that the movement of the instep sensor differs from the 608

other sensors. This can be seen most clearly in the superior-inferior acceleration in the 609

example stride (Fig 4). The instep sensor reaches a static phase slightly after all other 610

sensors and starts moving slightly later. The observed difference between the sensors on 611

the collar of the shoe challenge the assumption that the back portion of the shoe can be 612

considered quasi-rigid. It appears that either through the interaction with the foot or 613

because of the flexibility of the collar, independent movement components exist in each 614

of the three sensors. 615

Looking at the Norm Difference of the acceleration (Fig. 7) the sensors on the collar 616

appear to be much less different. This indicates that the high values for the 3D 617

Difference are caused by random signal variations that average out over multiple strides, 618

rather than by a consistent offset between the signals. It can further be observed that 619

the Norm Difference of the acceleration for the medial sensor with the instep, cavity, 620

and insole sensors is considerably larger than for the other sensors on the collar. This 621

points to a high-frequency “noise-like” signal component that is different between the 622

sensors. For the remaining sensors, the Norm Difference only confirms observations that 623

were already made based on the 3D Difference. 624

When investigated further, it seems that the observed differences between the 625

sensors are located in the regions around the IC and TC (Fig. 8). For the acceleration 626

the largest differences appear to be in the superior-inferior axis. The sensor signals 627

during the mid-stance and the swing phase are highly comparable. This is in line with 628

the proposed physics model, as differences between the sensors should only occur, if 629

there is macroscopic deformation of the shoe, strong impacts, or fast movements. All of 630

these only occur in the transition phases between stance and swing phase. 631

In summary, this raw data analysis shows that the measured raw signal between the 632

sensors is qualitatively different. Further, the accelerometer and the gyroscope need to 633

be considered independently. Just because two sensor positions result in a comparable 634

signal in one of the sensor modalities, does not mean that they are similar in the other. 635
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Fig 7. The raw data differences for all sensor axes. The 3D Difference (top) and
the Norm Difference (bottom) over all strides for the accelerometer signal (left) and the
gyroscope signal (right). The annotations provide the mean and the IQR over all strides.
Note that the color for the Norm Difference is independent of the sign of the value.

The signal differences can be quantified using the calculated features 636

To even better understand the nature of these differences, we analyzed specific features 637

on the raw data. These features are calculated on the straight walking tests to directly 638

visualize the speed dependency of the features. However, comparing the features on all 639

strides leads to comparable conclusions with regard to the sensor position. 640

Looking at the residual energy Evmin
during the stance phase, a clear position 641

dependency can be seen (Fig 9, left). Sensors placed under the foot in the mid- and 642

insole of the shoe have a relatively low mean residual energy independent of the gait 643

speed. Sensors attached to the upper part of the foot have a higher amount of residual 644

energy, indicating more movement during the mid-stance phase. Independent of the 645

sensor position, the overall spread of values is large and for all sensor positions the 646

residual movement reached zero for some strides. As expected, the average residual 647

energy increases with an increase in gait speed. This increase is larger for the sensors 648

attached on top of the shoe. The instep sensor seems to be most sensitive to this. Its 649

mean residual energy has the largest relative increase going from the low to the fast 650
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Fig 8. The STD over the different sensors per sample of a stride. The curves
are the averages over all strides from the 2×20m walk test at normal speed. The STD of
each stride was interpolated to 200 samples before averaging. The individual signals are
rotated to match the primary anatomical axis during mid-stance. The approximate
regions around the IC and TC are marked in gray.

speed category. Comparing the medial to the lateral sensor, which were expected to 651

behave similarly, it can be observed that the residual energy of the medial sensor is 652

higher at all gait speeds. 653

The maximum acceleration peak amax also varied considerably between sensor 654

positions (Fig 9, right). Similar to the residual energy, the overall variation is large and 655

the mean peak acceleration increases with gait speed. However, compared to the other 656

metrics, the differences between the sensor positions are smaller for higher gait speeds. 657

The smallest overall peak acceleration is experienced by the instep sensor followed by the 658

sensor in the insole. The cavity and the medial sensor show comparable values for this 659

parameter. The highest peak accelerations are measured in the lateral and heel sensor. 660

The differences between the sensors are located in the high frequency bands 661

Looking at the frequency based features (Fig 10), the comparison shows that the 662

majority of signal energy is located in the low frequency bands (PSD(0,20]). Based on 663

the qualitative comparison, all sensors appear to behave very similar in the low 664

frequency bands. However, a quantitative analysis shows slightly higher energy values 665

for the lateral and heel sensor in the acceleration energy and the medial sensor in the 666

gyroscope energy. As expected, the overall PSD scales with the gait speed. 667

In the higher frequency bands (PSD(80,102.4)), clear differences between the sensors 668

can be observed. In particular for the angular velocity, the measured average PSD for 669

the lateral and heel sensors are considerably higher. This is most pronounced at the 670

highest gait speed. The instep, the cavity, and the insole sensor all have similarly low 671

values. For the acceleration the lateral and heel sensors again show the highest values. 672

However, in contrast to the angular velocity, the cavity sensor results in next highest 673

mean PSD with values comparable to the medial sensor. The insole and the instep 674

sensor both have low spectral energy. Qualitative comparisons of these values between 675
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Fig 9. The raw data features over all speeds. The residual energy Evmin during
the mid-stance is shown on the left and the peak acceleration amax during the gait cycle
is shown on the right. Both boxplots contain all strides of each of the self-selected speed
categories. Note the different y-scales for the individual plots. The black triangles mark
the means of the distributions. All outliers (> Q3 + 1.5IQR) are removed from the
visualization.

participants (not shown here) show that the exact order in this ranking depends on the 676

participant, but stays consistent over all speed levels. For all participants either the 677

lateral, the medial, or the heel sensor resulted in the highest measured mean PSD. 678

These differences in the calculated features underline that the sensor position 679

influences the signal in multiple hard to predict ways. Therefore, it is likely that the 680

calculation of most kinetic and kinematic gait parameters is influenced by the sensor 681

position, in particular when their calculation is based directly on raw data features. 682

The proposed physics model can partially explain the measured differences 683

With a good understanding of the position dependent differences in the raw data, we 684

compared the results to the proposed physics model. 685

Starting with the frequency based features, the PSD results fit the proposed model 686

for the physical properties of the shoe system and the sensor attachment for the most 687

part. The sensors in the mid- and insole are tightly integrated in the shoe and are 688

further held in place by the weight of the participant during the stance phase. Hence, 689

we assume that the sensors and the surrounding part of the shoe will not be able to 690

move a lot compared to the other sensor positions (i.e., the attachment is expected to 691

have a high damping coefficient). In the measured parameters we can see that these 692

sensors have low overall measured gyroscope energy as represented by the PSD and the 693

lowest amount of residual movement during the mid-stance. The sensors on the upper 694

part of the shoe can move more easily, because they are attached less rigidly and the 695

parts of the shoe they are attached to are able to move and vibrate as well (i.e., the 696

attachment is expected to have a low damping coefficient). Hence, we expect more 697

movement in these sensors in particular right after the impact caused by the initial 698

contact. This is reflected in the data by the overall higher mean PSD and higher 699
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Fig 10. The average power spectral density for the high and low frequency
bins. The average spectral power of the accelerometer (bottom row) and the gyroscope
norm (top row) in the frequency ranges 0-20Hz (left column) and 80-102.4Hz (right
column). Each datapoint used in the boxplots corresponds to a single stride. The black
triangles mark the means of the distributions. All outliers (> Q3 + 1.5IQR) are
removed from the visualization.

residual movement during the mid-stance for the heel, the lateral, and the medial sensor. 700

Only the instep sensor appears to follow a more complicated pattern, which might be 701

explained by a combination of two effects. With regard to attachment, we would assume 702

a similar potential for movement as for the other sensors mounted on the upper part of 703

the shoe. However, because the sensor is placed far away from the heel, less initial 704

movement might be introduced by the initial contact. At higher speed the force of 705

impact is sufficient to introduce larger movements at this sensor position. This would 706

then explain why the residual movement of the sensor is low at low speeds, but 707

comparable with the other sensors mounted at the top of the shoe for higher speeds. 708

This is supported by the results of the peak acceleration. The measured value of the 709

instep sensor is by far the lowest, supporting the assumption that the magnitude of the 710
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pressure wave reaching this sensor is reduced considerably due to the damping of the 711

shoe and foot system. The insole sensor, which is placed similarly far away from the 712

point of impact at the heel, has the second-lowest peak acceleration. However, 713

comparing the cavity with the other remaining sensors, it becomes clear that the 714

distance to the point of impact cannot be the only influencing factor. Otherwise, we 715

would expect the cavity sensor to produce the highest signal. Hence, other parameters 716

of the measurement chain must have an influence as well. 717

What cannot be explained by the model are the observed differences between the 718

medial and the lateral sensor. Based on their comparable position relative to the heel 719

and identical attachment method, the simplified physics model would suggest similar 720

behavior. However, the results show differences between the two sensors for almost all 721

metrics. This is even more surprising because the calculated stride length errors are 722

highly comparable between the two sensors. Because the results of the lateral sensor are 723

mostly comparable to the heel sensor, it seems to be the medial sensor that does not 724

behave as expected. A possible explanation for this could be that healthy walkers are 725

expected to roll off over the lateral side of the foot. This would cause more pressure of 726

the foot against the lateral side of the shoe, which could change the frequency response 727

of the sensor attachment. However, detailed investigations would need to be conducted 728

to confirm this. 729

In summary, the proposed model is a good approximation to guide general intuition. 730

However, the model is unfeasible to reason about the microscopic movements of the 731

sensors as they depend on the actual frequency response of each component in the 732

measurement chain. To actually model this behavior correctly a much better 733

understanding of the material layers and their interaction would be required. 734

No simple correlation exists between the raw data and the stride length 735

error 736

Given the differences observed in the raw data between the sensors we investigated if 737

any of the calculated features correlate with the stride length error. As explained in the 738

methods section, we postulate two potential pathways for the observed differences in the 739

stride length error: unreliable ZUPT measurements and signal components outside the 740

measurable frequency spectrum. The first pathway can be directly assessed using the 741

Evmin
feature. However, we can not quantify the second pathway directly, as by 742

definition, we can not measure the high frequency components that we assume to be 743

correlated with the errors. Still, some features might be linked to the existence of these 744

components. In both scenarios, the existence of any correlation between one of the raw 745

signal features and the stride length error would not only help to better understand the 746

origins of the errors, but could also be used a method to detect strides that might have 747

high error values in real world applications. 748

A first comparison is performed based on the overall median values per sensor, 749

comparing the stride length error (Fig. 6) with the raw data features (Fig. 9 and 10). 750

The residual energy Evmin shows similar relative differences between the embedded 751

sensors (cavity and insole) and the sensors attached to the collar of the shoe (heel, 752

lateral, medial) as the stride length error. However, the stride length error of the instep 753

sensor does not seem to follow its residual energy. This rules out ZUPT errors as the 754

primary mechanism for stride length errors. Compared to [23], who postulated 755

insufficient ZUPT updates as a primary source of position dependent differences in 756

running, it appears that because of the absence of high movement speeds and large 757

macroscopic deformations of the shoe in our study, residual movement during ZUPT 758

only has a small (if any at all) influence on the stride length error. For the peak 759

acceleration amax, the sensors at the collar of the shoe have higher values than the 760

embedded sensors. However, on closer inspection the scaling with the walking speed and 761
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Fig 11. The correlation between PSD(80,102.4)gyr
and the absolute stride

length error. On the left the correlation on a gait test level is shown. For that the
median PSD and stride length error for each of the six straight walk tests are calculated
per participant and sensor. On the right the correlation on a stride level is shown for
the same tests. The histograms in the margins show the relative distribution of values
across all sensors along the respective axis.

the behavior of the instep sensor do not fit the stride length error. Hence, amax does 762

not appear to be a reliable predictor of stride length error, too. 763

For the frequency based features, we hypothesized that large high frequency 764

components close to the Nyquist rate (PSD(80,102.4)) indicate that there are further 765

signal components beyond the effective sampling rate of the sensor. If this is true a 766

correlation between the signal energy in these frequency ranges and the stride length 767

error is expected based on our error model. The PSD(80,102.4)acc
seems to follow a 768

similar trend as amax and hence, does not correlate well with the stride length error. 769

The median PSD(80,102.4)gyr
per sensor appears to capture the relative stride length 770

error quite well. However, when directly comparing the values on a gait test or stride 771

level (see Fig. 11), the correlation is poor and has minimal predictive power. If this is 772

because there is no correlation between the PSD(80,102.4)gyr
and frequency components 773

beyond the Nyquist rate, or signal components beyond the Nyquist rate are not the 774

origin of the observed differences in the stride length error, can not be assessed based on 775

this dataset. 776

In summary, none of the calculated raw data features seems to strongly correlate 777

with the stride length error. However, we could rule out ZUPT related issues as one of 778

the mature sources of the observed differences. Beyond that, it is not possible to draw 779

any definite conclusions. It is unclear, if simply no observable correlation exists between 780

the raw data and the stride length error, or if multiple sources of error overlap and more 781

complex models would be required to correlate the raw data with the stride length error. 782

Multimodal prediction of the stride length error based on multiple raw data features 783

might yield better results. Future work could explore this further with the goal of 784

developing a continuous quality control for the calculated spatial parameters. 785
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General Discussion 786

Compared to literature, we can replicate the result of [23], showing that the sensor 787

placed below the foot results in the most reliable mid-stance. However, our observation 788

differs for the instep sensor. The presented values for the residual energy of the instep 789

sensor showed relatively low values. Zrenner et al. showed that the instep sensor has the 790

highest amount of movement during the mid-stance. Even though the used metrics to 791

quantify the residual movement were not identical, we would still assume comparable 792

relative values between sensors. The differences for the instep sensor might be explained 793

by the different biomechanics between regular walking and running. Further, in our 794

data the residual energy of the instep sensor seemed to be highly sensitive to gait speed. 795

Hence, the higher movement speeds during running might induce disproportionately 796

more vibrations and movements in the instep sensor compared to other sensor positions. 797

While our results appear to compare well with the work of Zrenner et al., they seem 798

to contradict the main conclusions from Peruzzi et al. [25]. Their data showed that 799

virtual sensors (represented by motion capture markers) placed at the lateral side or the 800

heel, experience the least amount of motion during the mid-stance and further have the 801

smallest expected stride length error. In our experiments, it was exactly these sensors 802

that showed the highest residual movement and resulted in the highest stride length 803

errors. It is difficult to say, why we could not confirm the results from [25]. One 804

explanation could be that motion capture markers cannot accurately simulate the 805

behavior of a real IMU regarding these measurements. Further, Peruzzi et al. measured 806

the lowest velocity of the marker during the stance phase, while we quantified the 807

movement during the mid-stance via the gyroscope energy window. We could further 808

show that the residual movement during the mid-stance is unlikely to be the source of 809

error at regular walking speeds. 810

Compared to [22], we could confirm that the sensor position has a relevant influence 811

on the calculated spatial parameter. However, we did not observe a large difference in 812

the mean stride length error, where Anwary et al. reported difference up to 6 cm in the 813

calculated mean stride length. If this is due to the different algorithms used in our and 814

their studies or caused by the differences in sensors and sensor attachments is unclear. 815

Regarding the recommended sensor positions our results again seem to contradict the 816

findings in [22]. Their results indicate that the heel is the second-best sensor position to 817

calculate the overall walking distance. In our study, the heel position performed the 818

worst. The most likely explanation is again the differences in attachment. Anwary et 819

al. performed all of their experiments barefoot and used rubber straps to attach the 820

sensors directly to the foot. Based on the presented simplified physics model this is 821

expected to result in a very different frequency response of the measurement system 822

compared to our study. 823

Our results add further proof that the sensor position matters when it comes to the 824

quality of spatial parameters calculated from foot-worn sensors. While average values 825

over multiple strides are expected to provide excellent results independent of the 826

position, single stride parameters and therefore, parameters quantifying the variation of 827

gait (e.g., stride length standard deviation) can yield unreliable values dependent on the 828

sensor setup. The lack of agreement between all studies when it comes to the best 829

performing sensor positions indicates that the sensor position alone cannot explain the 830

observed differences. Based on our attempt to explain the physics behind the observed 831

results it appears plausible that the entire frequency response of the measurement chain 832

influences the quality of the final parameters. Hence, different shoes, different modes of 833

sensor attachment, or how well a shoe fits might all be relevant factors that need to be 834

considered. This makes comparing results from different studies difficult and adds 835

multiple new parameters that need to be considered when developing new IMU based 836

systems. While the presented simple physics model appears to explain some of the 837
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observed differences, it cannot capture the full range of parameters influencing the 838

performance of the system in the real world. Therefore, further investigations into the 839

topic are necessary. 840

For future work we see two general directions: On the one hand, a better 841

understanding of the exact origins of the observed differences would be beneficial. To 842

achieve this, a more systematic evaluation of the measurement chain might be necessary. 843

This could include building measurement models at different levels of abstraction to 844

understand what aspects of the measurement chain have relevant influence in a highly 845

controlled environment. A different approach could be measurements with higher 846

sampling rates than 204.8Hz. If the observed errors are indeed caused by 847

high-frequency components that cannot be correctly sampled at typically used sampling 848

rates, high frequency recordings should be able to confirm this. 849

On the other hand, these findings open a range of application-oriented challenges 850

that have to be addressed. Even without full understanding of the exact cause of the 851

performance differences, it might be possible to develop algorithms that are less 852

sensitive to changes in attachment. In particular, it would be interesting to see if 853

data-driven methods based on machine learning, for example the algorithms presented 854

in [36–38], are similarly sensitive to a change in sensor position as double-integration 855

methods. Going beyond pure physics based calculation methods for spatial parameters 856

might be a way to circumvent the described issues altogether, given sufficient training 857

data for the individual attachment conditions. If it is not possible to improve the 858

robustness of algorithms, it might be worthwhile to investigate methods for continuous 859

quality control. In particular with home monitoring in mind, systems that are able to 860

check, if a sensor is attached properly, at the correct position, and using a type of shoe 861

that is expected to produce sufficient results could improve the quality of parameters 862

extracted from such unsupervised scenarios. Combined with a better fundamental 863

understanding of the sources of error, it might be possible to find indicators in the raw 864

signal that are linked to large integration errors. Such features could serve as a 865

continuous quality control during long-term monitoring and could provide additional 866

information when interpreting results. 867

Conclusion 868

In this manuscript we present the most comprehensive study to date investigating the 869

influence of the sensor position on the foot on spatial parameters calculated by double 870

integration. We could show that the sensor position has a relevant influence on the 871

accuracy of the stride length and could provide first evidence that the frequency 872

response of the entire measurement chain can influence the final results in a relevant 873

manner. Because our study could not control for the multitude of parameters that effect 874

the frequency response, recommendations regarding sensor positions or attachments 875

from this study (and other studies) might not carry over to other shoe or attachment 876

systems. Therefore, we do not want to use this manuscript to provide a final 877

recommendation, but rather urge researchers not to underestimate the influence of 878

sensor position on the foot and in more general terms, the influence of the frequency 879

response of the measurement system on the validity of spatial parameters calculated via 880

double-integration methods. When the position of the sensor, its mode of attachment, 881

or the type of shoe is changed, a proper reevaluation of the system must be performed 882

to confirm expected error ranges. For home monitoring our findings further amplify the 883

need for systems that are able to continuously check the quality of sensor recordings to 884

avoid negative influences from user error or simply the variations introduced by regular 885

behavior, like the use of different shoes. The implementation of such systems and the 886

development of algorithms that are more robust to changes in the sensor position and 887
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sensor attachment parameters might be the key to robust and unsupervised long-term 888

recordings. 889

Supporting information 890

S1 Absolut stride length error with outliers. 891

Fig 12. The absolute stride length error over all sensors including all outliers (compare
Fig 6).

S2 Consistency of the stride length results between the feet. To check if the 892

obtained results are consistent, we calculated the average stride length errors for each 893

foot independently. 894

May 19, 2022 27/31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.22275197doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.20.22275197
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 13. The absolute stride length error over all strides compared between the left and
the right foot. The black triangles mark the means of the distributions. All outliers
(> Q3 + 1.5IQR) are removed from the visualization.

S3 Consistency of the stride length results over participants. To check if the 895

obtained results are consistent, we calculated the average stride length errors for each 896

participant independently. 897

Fig 14. The absolute stride length error over all strides compared over all participants.
All outliers (> Q3 + 1.5IQR) are removed from the visualization. The participant id
6dbe actually refers to the recording 6dbe 2 in the published dataset.
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