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1 

Abstract 20 

Disorders of mood and cognition are prevalent, disabling, and notoriously difficult to treat. Fueling this 21 

challenge in treatment is a significant gap in our understanding of their neurophysiological basis. Here, 22 

we used intracranial neural recordings in three patients with severe depression to investigate the neural 23 

substrates of this disorder. Across prefrontal regions, we found that reduced depression severity is 24 

associated with decreased low-frequency neural activity and increased high-frequency activity. When 25 

constraining our model to decode using a single region, spectral changes in the anterior cingulate cortex 26 

best predicted depression severity in all three subjects. Relaxing this constraint revealed unique, 27 

individual-specific sets of spatio-spectral features predictive of symptom severity, reflecting the 28 

heterogeneous nature of depression. The ability to decode depression severity from neural activity 29 

increases our fundamental understanding of how depression manifests in the human brain and provides a 30 

target neural signature for personalized neuromodulation therapies.  31 
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Main text 32 

Psychiatric and cognitive disorders are among the most challenging ailments we face in terms of social, 33 

economic, and public health toll. This challenge derives in large part from their heterogeneity and 34 

complexity – heterogeneity in terms of the wide variance in manifestation of these disorders across 35 

individuals, complexity in terms of the dearth of objective biomarkers and limited understanding of 36 

underlying neurophysiological mechanisms. Adding to their complexity is the fact that these disorders 37 

arise from dysfunction not of isolated brain locations but rather of distributed, interconnected networks 38 

that span wide-ranging cortical and subcortical regions1,2. Networks implicated in psychiatric and 39 

cognitive disorders often include prefrontal regions3–5, which are the most evolutionarily evolved and 40 

are particularly challenging to model in non-human animals. To successfully engage and therapeutically 41 

modulate these dysfunctional circuits, we must attain a comprehensive understanding of their 42 

pathophysiology. The most precise tools available to accomplish this “circuit dissection” task in humans 43 

are electrophysiological recordings and stimulation with intracranial electrodes, given the relatively 44 

lower resolution and specificity of non-invasive modalities. Here we apply this approach to investigate 45 

the neurophysiological basis of a common and highly burdensome disorder—depression6. 46 

 Major depressive disorder (MDD) has a lifetime incidence of 10% to 15% and has immense 47 

social and economic consequences7,8. It is a major contributor to the overall global burden of disease9 48 

and in the U.S. alone accounts for more than $200 billion in health care costs10. While many 49 

conventional treatments are available for depression, nearly one-third of patients are treatment-50 

resistant11. A significant number of depressed patients do not respond to first-line medications even after 51 

multiple treatment trials12. Electroconvulsive therapy and transcranial magnetic stimulation are 52 

evidence-based treatments with short-term efficacy, but high rates of relapse are typical13–15.  53 
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One critical knowledge gap fueling the challenge of treating treatment-resistant depression 54 

(TRD) is an insufficient understanding of its neurophysiological basis. Most work to date has used non-55 

invasive methods such as electroencephalography (EEG) and functional MRI16–20. These studies have 56 

described various alterations in brain activity patterns and suggested potential biomarkers, but precise 57 

neurophysiological understanding is still lacking21. This understanding, drilled down to the level of the 58 

individual, will be essential for treatment-resistant patients being considered for invasive 59 

neuromodulation such as deep brain stimulation (DBS)6,22,23. 60 

Intracranial recordings such as those performed routinely for seizure monitoring24 provide the 61 

requisite degree of spatial, temporal, and spectral specificity for this purpose. Whereas studying the 62 

neurophysiological basis of mood regulation is possible in the convenience sample of epilepsy 63 

patients25,26, doing so in a cohort of patients with severe depression and without co-morbid epilepsy 64 

would be advantageous. The location of recording electrodes can be targeted to depression-relevant 65 

regions, instead of being determined purely for seizure monitoring purposes. Activities during inpatient 66 

monitoring can prioritize dense sampling of depression severity measures without concern for 67 

interfering with seizure monitoring. The resulting features of interest from the ensuing analyses are more 68 

relevant to patients with TRD without contamination by processes related to epilepsy. 69 

 Here, our goal is to understand how depression is encoded in the brain by employing an 70 

intracranial EEG investigation platform incorporating dense behavioral assessments in TRD patients6. In 71 

doing so, we seek to address two critical questions: 1) what neurophysiological features characterize 72 

depression? 2) can we use these features to reliably predict depression severity? The first question 73 

entails finding neural correlates of symptom severity, while the second question addresses the more 74 

stringent requirement of finding truly predictive features. As our neuromodulatory therapies advance in 75 

sophistication, they will be able to incorporate these biomarkers of health and distress. Doing so will 76 
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hopefully allow therapeutic supply to more faithfully (spatially and temporally) match symptomatic 77 

demand and thereby improve outcomes. 78 

Results 79 

Spectral activity across prefrontal regions correlates with depression severity  80 

In our trial, three patients with severe TRD who met eligibility criteria and provided informed 81 

consent were implanted with two sets of intracranial electrodes during an initial surgery, one set 82 

primarily for stimulating and the other primarily for recording6,27 (Fig. 1). The stimulation set consisted 83 

of two pairs of permanent DBS leads implanted bilaterally in two regions well-studied in DBS for TRD: 84 

the subcallosal cingulate (SCC)28 and the ventral capsule/ventral striatum (VC/VS)29. The recording set 85 

consisted of percutaneously placed temporary “stereo-EEG” 24 electrodes implanted in brain regions 86 

involved in the regulation of mood and cognition: anterior cingulate cortex (ACC)18,30,31, dorsolateral 87 

prefrontal cortex (dlPFC)32,33, orbitofrontal cortex (OFC)34–36, and ventromedial prefrontal cortex 88 

(vmPFC)37,38 (Fig. 1). Our clinical trial adapted the inpatient intracranial EEG investigation platform 89 

commonly used in epilepsy patients, recoined as the neurophysiology monitoring unit (NMU)6. 90 

Following the initial implant surgery, patients were kept in this inpatient monitoring unit for nine days. 91 

We assayed changes in depression severity while simultaneously recording from the implanted 92 

electrodes. Clinical outcomes from the first subject in this trial have recently been reported23. Here we 93 

report neural modeling results and include two additional subjects. 94 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.19.22275231doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.19.22275231
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

We measured symptom severity using the computerized adaptive test depression inventory 95 

(CAT-DI), a rapid assessment that correlates with standard depression severity scales39. Its adaptive 96 

nature allows each administration of this measure to take only 1-2 minutes to complete, and its use of a 97 

Fig. 1: Intracranial recording electrodes sample depression-relevant prefrontal regions. (a-c) 

Frontal views of the reconstructed cortical surface, DBS leads, and stereo-EEG recording contacts for 

Patient 1, Patient 2 and Patient 3, respectively. In each patient, we implanted stereo-EEG electrodes with 

the goal of maximizing coverage of key regions while minimizing the total number of electrodes. Stereo-

EEG contacts are colored according to the gray matter region sampled: green, anterior cingulate cortex 

(ACC); red, dorsolateral prefrontal cortex (dlPFC); blue, orbitofrontal cortex (OFC); yellow, 

ventromedial prefrontal cortex (vmPFC). The contacts of the stimulating DBS leads are shown in purple. 

(d-f) Medial view of the reconstructed cortical surface of the right hemisphere (left hemisphere is hidden 

for visualization purposes). Dorsal (D), ventral (V), left (L), right (R), anterior (A), and posterior (P) 

directions are indicated.  
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variety of prompts prevents habituation and provides greater confidence with frequent sampling. We 98 

observed substantial variation in depression severity in all three participants (Patient 1: mean severity 99 

score= 78.9, std = 6.6; Patient 2: mean severity score = 63.0, std = 4.6; Patient 3: mean severity score = 100 

64.5, std = 14.1) over the 9-day monitoring period, with a trend of declining severity over the NMU stay 101 

(Fig. 2a-c). 102 

To evaluate how neural activity varied throughout the NMU stay, we extracted spectral power 103 

from six frequency bands: delta (1-4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma 104 

(35–50 Hz), and high-gamma (70–150 Hz), yielding six spectral power features per channel for each 105 

depression severity measurement. Spectral power features in prefrontal channels showed strong 106 

correlations with symptom severity scores after correcting for multiple comparisons. Although there was 107 

heterogeneity across patients, power in low frequencies including delta, theta, alpha, and beta were 108 

generally positively correlated with symptom severity (Fig. 2d-f, 92.0% of significant features in Patient 109 

1, 99.2% of significant features in Patient 2, and 88.5% of significant features in Patient 3), while power 110 

in high frequencies including gamma and high-gamma were generally negatively correlated with 111 

symptom severity (92.9% of significant features in Patient 1, 93.2% of significant features in Patient 2, 112 

and 100.0% of significant features in Patient 3). In all participants, a majority of brain regions 113 

demonstrated decreased low-frequency power and increased high-frequency power when symptoms 114 

were less severe.  115 
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Fig. 2: Variation in depression severity captured by neural recordings. (a-c) Depression severity 

(measured by the CAT-DI tool) varied in all three participants. The decreasing trend over time may be 

related to beneficial effects of stimulation (commonly seen over this time scale), non-specific therapeutic 

effects of interactions with the research team, and/or other effects. Regardless of the cause(s) of 

variation, this approach allowed us to frequently sample depression severity over a wide dynamic range 

while acquiring concurrent dense prefrontal recordings. (d-f) Correlation between severity score and 

brain activity in all gray matter recordings sites. Each horizontal axis increment is a single recording site; 

the vertical axis shows the frequency bands. The color indicates the correlation coefficient value 

between severity score and spectral power. A positive correlation (red) indicates that the severity score 

increases (more severe depression symptoms) when power increases. A negative correlation (blue) 

indicates that the severity score decreases (less severe symptoms) when power increases. Features with p 

< 0.05 after FDR multiple-testing correction are marked with an asterisk. Although there was inter-

individual variability across specific spatio-spectral features, this correlation analysis highlights the trend 

between low vs. high frequency power and depression severity. 
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Prefrontal neural activity predicts depression severity 116 

The strength of the observed correlations in prefrontal cortex suggests that depression severity 117 

may reliably be predicted from spectral power features. To test this hypothesis, we fit regularized 118 

regression models to depression severity scores using neural activity recorded across prefrontal sites. 119 

Even with the relatively frequent sampling of depression severity, measurements were sparse (Patient 1: 120 

36 measurements; Patient 2: 27 measurements; Patient 3: 47 measurements) relative to the high 121 

dimensionality of neural features (approximately 400 features in each patient). In order to increase the 122 

generalizability of the model, we reduced the dimensionality of the neural data using automatic region 123 

selection and regularized regression. In particular, the model was constrained to use spectral power from 124 

a single region to predict depression severity. The selected region was chosen based on the analysis of 125 

only training data using a leave-one-out cross-validation strategy. After fitting the model, we used it to 126 

predict the depression severity score from a held-out test set and evaluated the prediction error using 127 

normalized root mean square error (NRMSE)26. 128 

Using this approach, we were able to decode depression severity from neural signals in 129 

prefrontal cortex. Our model selected ACC across most folds of cross-validation (all folds in Patient 1 130 

and Patient 2, and 41 out of 47 folds in Patient 3), indicating that ACC was the most informative region 131 

for predicting depression severity in all three participants (Fig. 3a-c). Next, we explored relative feature 132 

importance within the ACC. Since the predictors were standardized in the model, the regression 133 

coefficients for each feature were indicators of feature importance, with larger coefficient magnitudes 134 

reflecting greater importance. A few features were consistently more important than others across all 135 

folds of the cross-validation and were significantly correlated with symptom severity score 136 

(Supplementary Fig. 1). Additionally, there was a strong and significant correlation between predicted 137 

and measured symptom score in each participant (Fig. 3d-f; Patient 1: r = 0.66, p < 10-4, Patient 2: r = 138 
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0.93, p < 10-4, Patient 3: r = 0.68, p < 10-4), indicating high predictive performance. The decoder was 139 

also highly predictive when scores were standardized and pooled across all participants (Fig. 3g; r = 140 

0.73, p < 10-4).  141 

We assessed the significance of the NRMSE with a permutation test to evaluate decoder 142 

performance relative to chance. In each patient, we randomly permuted the time indices of severity 143 

scores and repeated the same leave-one-out cross-validation process. With the scores permuted and thus 144 

mismatched with the neural data, depression severity could no longer be accurately predicted 145 

(Supplementary Fig. 2). The prediction accuracies of the decoders were significantly greater than chance 146 

performance in all participants (Fig. 3h-j; Patient 1: NRMSE = 0.75, p < 0.01, Patient 2: NRMSE = 0.37, 147 

p < 10-4, Patient 3: NRMSE = 0.72, p < 10-3), and when the scores were pooled across participants (Fig 148 

3k; NRMSE = 0.68, p < 10-6).  149 

Given our observation of decreasing depression severity over time (Fig. 2a-c), we tested whether 150 

our model was trivially identifying a temporal correlation. To do so, we fit a linear regression model to 151 

depression severity over time and computed the residuals (Supplementary Fig. 3a-c). This process 152 

effectively decorrelated depression severity with time. We then used the neural data to predict the 153 

residuals. The decoders accurately predicted the residuals in all patients (Supplementary Fig. 3d-k; p < 154 

0.05 for all patients, p < 10-6 for the scores across patients), indicating that the neural features, not the 155 

progress of time, drove the accurate predictions of depression severity.  156 

To add further confidence to our model, we performed 5-fold cross-validation in addition to our 157 

original leave-one-out cross-validation approach. The model was trained and selected on four folds of 158 

symptom severity scores, and the scores in the other fold were predicted. The decoder accurately 159 

predicted depression severity in 5-fold cross-validation as well (Supplementary Fig. 4; p < 0.01 for all 160 

patients, p < 10-6 for the scores across patients), providing further confidence in the results. 161 
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Fig. 3: Decoding depression severity from neural activity in prefrontal cortex. (a-c) Prediction error 

of the training set in each fold of the leave-one-out cross-validation. The horizontal axis shows the brain 

regions, and the vertical axis shows the fold indices of leave-one-out cross-validation. The color 

indicates the prediction error. Each row includes the prediction error for all regions tested in the training 

set. Brighter red indicates a smaller error and therefore more accurate prediction. The ACC 

demonstrated greatest prediction accuracy across most folds of cross-validation, although its degree of 

supremacy varied across the three subjects. (d-g) The predicted score from leave-one-out cross-

validation is plotted against the measured score for each depression severity measurement. Points closer 

to the diagonal indicate more accurate predictions. r values denote Pearson correlation coefficients. 

Scores from Patient 1 are shown in blue, scores from Patient 2 are shown in orange, and scores from  
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To evaluate the performance of the region selection technique employed for dimensionality 162 

reduction, we fit the decoder without automatic region selection. These decoders can still predict 163 

depression severity at levels significantly better than chance (Supplementary Fig. 5a-h; p < 0.05 for all 164 

patients, p < 10-6 for the scores across patients), but have larger prediction errors than decoders with 165 

region selection (Supplementary Fig. 5i-l). Thus inclusion of region selection improves the decoding 166 

accuracy of our model. 167 

Next, we explored the predictability of spectral power from single brain regions and frequency 168 

bands (as opposed to all frequency bands) by using these individual features as inputs to the model. 169 

While many spectral power features showed significant correlations with depression severity (Fig. 2d-f), 170 

not all of these features may necessarily be predictive. We trained separate models for each region and 171 

frequency band combination and then performed multiple comparison corrections. For Patient 1, we 172 

found that theta, alpha, and beta power in ACC had significant predictability (Fig. 4a). For Patient 2 and 173 

Patient 3, we observed more widespread predictability across several regions and frequency bands (Fig. 174 

4b-c). ACC beta power was the overall most predictive feature in Patient 1, whereas ACC high-gamma 175 

was most predictive in Patient 2 and Patient 3.   176 

To further focus on the neural features that are important for predicting depression severity, we 177 

fit the model using all spatial and spectral features without automatic region selection. This time, 178 

Patient 3 are shown in green. (h-k) Distribution of the chance level NRMSE computed from leave-one-

out cross-validation for sets of permuted scores (gray, n = 104 permuted tests for each patient and n = 106 

for standardized severity scores pooled across patients). NRMSE for the model trained with true 

measured severity scores is shown as a red vertical dashed line. Permutation testing shows that the true 

prediction error is significantly lower than chance. 
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however, we fit the model using a range of values of the regularization parameter alpha to explore the 179 

relative importance of individual features. This parameter determines the penalty imposed on the model 180 

for including more features. As alpha becomes larger, penalization for adding features increases, and 181 

thus fewer features are used. Using ACC beta power, ACC gamma power and ACC high-gamma power 182 

as examples, the fraction of recording channels selected in specific feature groups decreases as the 183 

regularization parameter alpha increases (Fig. 4d-f). When fitting the model using all individual features, 184 

we found that the greatest fraction of channels selected is in ACC, especially when penalization is 185 

higher (Fig. 4g-i). As penalization decreases and more features are permitted, spectral features in dlPFC, 186 

OFC and vmPFC are increasingly included, indicating that informative features for predicting 187 

depression severity are not exclusive to the ACC, but instead are distributed across prefrontal cortical 188 

regions in various frequency bands and in an individual-specific manner.  189 
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Discussion      190 

Finding neurophysiological features that characterize and even predict symptom severity is 191 

critical for improving our understanding of and developing precise treatments for depression. Here we 192 

accurately decoded fluctuations in depression severity over time from intracranially recorded neural 193 

activity in three TRD patients. We found that decreased low-frequency power and increased high-194 

frequency power in prefrontal cortex correlate with lower depression severity (i.e., healthier states). 195 

Fig. 4: Spatio-spectral features for predicting depression severity are individual-specific. (a-c) 

Predictability of depression severity when using features from a single frequency band in a single brain 

region. The color indicates the correlation coefficient value between predicted and measured scores. 

Correlation coefficients with p < 0.05 (after FDR correction) are marked with an asterisk. Significantly 

predictive features are restricted to low-frequency bands in ACC in Patient 1 but are more distributed 

across spatio-spectral features in Patients 2 and 3. (d-i) Fraction of recording channels selected in a 

specific brain region and frequency band as the regularization parameter alpha varies. (d-f) As 

illustrative examples, we show ACC beta power in Patient 1, ACC gamma power in Patient 2, and ACC 

high-gamma power in Patient 3. At low values of alpha (more permissive of additional features), many 

features are selected for inclusion in some fraction of recording channels, but a greater fraction is 

included for features with most predictive power. As alpha increases, features with most predictive 

power survive longer and in a greater fraction of channels. (g-i) The same information as in d-f is 

shown, but as a heatmap and for all features. The three examples in d-f are shown with color-

corresponding dotted boxes around their respective column. Again, the fraction of recording channels for 

particular features decreases with increasing alpha. ACC features are selected the most in these patients, 

but feature distribution is highly individual-specific. 
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Using these spatio-spectral features, we trained a model to predict depression severity and explored the 196 

features that were most important for prediction, rather than features that simply showed significant 197 

correlations. The transparency and explainability of our model allowed us to identify the ACC as the 198 

most influential subregion for decoding depression severity in all three patients. Beyond the ACC, we 199 

found various individual-specific neurophysiological features distributed across prefrontal cortex with 200 

predictive power. We consider these feature sets to be personalized neural biomarkers for depression 201 

severity. 202 

The spectral pattern of correlation we observed, increased high-frequency activity and reduced 203 

low-frequency activity, has also been found to be important for decoding positive and negative affect in 204 

epilepsy patients40. While affective state is not identical to our depression-specific measures, it is likely 205 

related. The explainable model we employed was trained on intracranial neural data collected from a 206 

cohort of patients with depression, thus eliminating the confounds of epilepsy comorbidities and 207 

possible attendant neurophysiological abnormalities. The correlation we observed between neural 208 

features and improved depression symptoms is reminiscent of similar associations between this spectral 209 

pattern (in particular, increased high-frequency activity) and improved performance in several domains. 210 

In visual cortex, for example, increased gamma power predicts faster reaction times in a perception task, 211 

perhaps related to increased neural synchrony and resultant facilitated information transfer41. Intracranial 212 

investigations of human memory have shown that increased high frequency activity and decreased low 213 

frequency activity in left temporal cortex predict verbal memory encoding42–44, again perhaps reflecting 214 

the facilitatory effect of synchronized neuronal spiking45. In prefrontal cortex, we have previously 215 

shown that increased gamma power predicts improved performance on a cognitive interference task on a 216 

trial-by-trial basis46, potentially reflecting optimal allocation of cognitive control resources relative to 217 

demand47. These observations across brain regions mediating perception-to-action behaviors highlight 218 
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the importance of gamma power as an indicator of neural coherence and a candidate biomarker of 219 

performance. 220 

In areas subserving cognitive processes, however, the relationship appears more complicated. 221 

Though insufficient application of cognitive resources leads to eroded performance in controlled 222 

decision-making tasks46,47, unconstrained attentive resources can also be maladaptive. For example, 223 

constitutively high activity in PFC regions including the ACC may be the physiological driver of the 224 

inappropriately sustained attention to the external environment (e.g., the ordering of objects in a desk 225 

drawer) or to internal feelings (e.g., certainty that the stove is off) characteristic of obsessive-compulsive 226 

disorder48,49. The same requirement for balance is true in affective domains. For example, consider 227 

reward sensitivity, one of the cardinal features of positive affect50. Whereas a hallmark feature of 228 

depression is insufficient reward sensitivity51, inappropriately elevated reward-seeking behavior is 229 

pathognomonic of addiction disorders51,52. Thus in disorders such as depression, which include 230 

dysfunction in cognitive and affective domains53, these competing forces must achieve balance in order 231 

to produce adaptive, productive, euthymic behavior. Consequently, neurophysiological biomarkers of 232 

such states will likely be more complex. 233 

We therefore extended our investigation beyond the observed correlations and built a decoder to 234 

predict depression severity from spectral power features. Due to the sparse sampling of symptom state 235 

relative to that of the electrophysiological data, we began with a model formulation forced to use only 236 

the smallest subset of regions, thus producing a model that is more generalizable and less prone to 237 

overfitting. The consistent selection of ACC in all patients speaks to the importance of this region in 238 

mood and cognitive regulation40,54. Even as the region selectivity requirement was relaxed, the 239 

prominence of ACC remained (Fig. 4d-i). Although this brain region was commonly selected across 240 

patients, the predictive spectral features in ACC differed across participants. The features that were 241 
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highly predictive were a subset of those that showed significant correlations with depression severity. In 242 

Patient 1, beta power was most predictive of depression severity, whereas in Patients 2 and 3, high-243 

gamma power was most predictive. Continued efforts can test the hypothesis that certain features are 244 

common predictors across individuals, whereas other features are individual-specific. 245 

As seen in Figure 4, even though the ACC was the most predictive region for a reliable 246 

depression decoder in all patients, it was not the only one. Indeed, we found that features with 247 

significant predictive power were distributed across various prefrontal regions and frequency bands and 248 

were individual specific. This heterogeneity may reflect underlying differences in the involvement of 249 

depression-relevant regions across individuals. A growing body of work is attempting to associate 250 

differentially involved brain networks with the observed phenotypic diversity of depressive 251 

manifestations2,17. Within this context, our results further underscore the complex nature of this disorder 252 

and the need to account for inter-individual variability in order to optimally engage and treat 253 

symptomatic networks2,17,55,56. 254 

 Future efforts for decoding mood and affect will benefit from the development of continuous, 255 

objective behavioral markers. Currently, measuring these domains relies on administering behavioral 256 

assessments, a process that suffers from subjectivity and places a high burden on patients to frequently 257 

and accurately report their mental state. Contrast this situation with that of motor decoders, which enjoy 258 

the advantage of objective and highly temporally resolved measures of position, velocity, acceleration, 259 

and related variables57–60. Promising methods for affective measures with comparable characteristics 260 

include utilizing video and audio recordings61. Incorporating facial expression and speech analysis may 261 

provide more extensive affective/emotional measures and thereby create the opportunity to develop 262 

better mood decoders. 263 
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 In conclusion, this study demonstrates the feasibility of accurately decoding depression severity 264 

based on intracranial prefrontal recordings in TRD patients. With this unique dataset of human 265 

intracranial recordings captured alongside measures of symptom severity, we also gain a deeper 266 

understanding of the pathophysiology of depression. Ultimately, our findings help to elucidate the 267 

neurophysiological underpinnings of depression and may lead to the design of more effective, 268 

personalized neuromodulatory interventions.  269 
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Methods 424 

Study design 425 

An early feasibility trial (NCT03437928) of individualized deep brain stimulation (DBS) guided 426 

by intracranial recordings was conducted in adults (n=3) with treatment-resistant depression (TRD). 427 

Inclusion criteria include failure of pharmacological, cognitive/behavioral, and electroconvulsive 428 

therapies, severity of symptoms, and informed consent. Exclusion criteria include a history of psychosis, 429 

personality disorder, recent suicide attempt, or neurodegenerative disorder. All patients (Patient 1, 430 

Hispanic male in his 30s; Patient 2, White female in her 50s; Patient 3, White female in her 40s) met 431 

inclusion criteria and provided written and verbal consent to participate in the study. This trial is funded 432 

by the NIH BRAIN Initiative (UH3 NS103549) and approved by the FDA (IDE number G180300) and 433 

our single IRB (Baylor College of Medicine IRB number H-43036). 434 

Implant surgery 435 

Four DBS leads (Cartesia, Boston Scientific) were placed bilaterally in the ventral 436 

capsule/ventral striatum (VC/VS) and subcallosal cingulate (SCC) as previously described27. Ten 437 

stereoelectroencephalography (sEEG) electrodes were placed bilaterally in depression-relevant brain 438 

regions including anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (dlPFC), orbitofrontal 439 

cortex (OFC), and ventromedial prefrontal cortex (vmPFC). A stereotactic robotic (ROSA, Zimmer 440 

Biomet) was used for the placement of both the DBS leads and sEEG electrodes6. Trajectories were 441 

carefully planned preoperatively to avoid sulci and blood vessels, and to maximize gray matter 442 

coverage. Accurate electrode location was verified intraoperatively using a fluoroscopic computerized 443 

tomography (CT) scanner and postoperatively with a true stereotactic CT. Following this implant 444 

surgery, patients were kept in the inpatient epilepsy monitoring unit (EMU) while we conducted a series 445 

of recording and stimulation studies. 446 
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Depression severity measurements 447 

We acquired measurements of depression severity throughout the nine-day inpatient monitoring 448 

period using the computerized adaptive test for depression inventory (CAT-DI)39. Our choice of CAT-449 

DI was motivated by our desire to capture symptom states that evolve over relatively short periods of 450 

time. Disease states related to mental illness are not static and symptom severity can fluctuate over 451 

minutes to days62. Depression assessment using standard scales such as the Hamilton Rating Scale for 452 

Depression (HAM-D)63 and Montgomery-Åsberg Depression Rating Scale (MADRS)64 are unwieldy 453 

and inappropriate for frequently repeated measurements because they take tens of minutes to administer 454 

and are designed for infrequent sampling (days to weeks). The CAT-DI satisfied our need for a dense 455 

sampling of depression severity. 456 

Each CAT-DI administration typically includes approximately 12 question items selected from a 457 

bank of 389 possible items based on real-time feedback from previous items answered by the 458 

participant. Through CAT-DI, we collected rapid and relatively frequent measurements of depression 459 

severity. The CAT-DI score has been shown to exhibit a strong correlation with other established 460 

depression rating scales such as the Patient Health Questionnaire 9 (PHQ-9) and Hamilton Rating Scale 461 

for Depression (HAM-D)39. A higher CAT-DI score indicates more severe depression symptoms. A total 462 

of 37 CAT-DI tests were completed in Patient 1, 30 CAT-DI tests were completed in Patient 2, and 47 463 

CAT-DI tests were completed in Patient 3 with concomitant neural recordings (see below). For Patient 464 

1, we did not obtain CAT-DI surveys with neural recordings until day 3 of the 9-day period. Therefore, 465 

we refer to day 3 after surgery as day 1 in our visualization of CAT-DI scores over time (Fig. 2a).  466 

MRI and CT imaging protocols 467 

Prior to surgical implant, we conducted a preoperative MRI on a Siemens Prisma 3T scanner 468 

with a 64-channel head-neck coil. High-resolution (0.8 mm isotropic) T1-weighted anatomical images 469 
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(Magnetization-Prepared Rapid Acquisition with Gradient Echo, MPRAGE; repetition time (TR) of 470 

2,400 ms, time echo (TE) of 2.24 ms, an inversion time (TI) of 1,160 ms, a flip angle of 8°, and an 471 

acquisition time (TA) of ~7 min) were acquired. T2-weighted images (SPACE; 0.8 mm isotropic; TR of 472 

3,200 ms, TE of 563 ms, and a TA of ~6 min) were acquired in the same session. In addition, 473 

participants underwent postoperative, high-resolution clinical CT scans to capture electrode placement. 474 

Cortical reconstructions 475 

FreeSurfer v6.0.0 (https://surfer.nmr.mgh.harvard.edu/)65 was used to perform an automatic 476 

cortical reconstruction on the preoperative T1-weighted MRI.  The T2-weighted MRI was used to 477 

improve reconstruction of the pial surfaces. Functional Magnetic Resonance Imaging for the Brain 478 

Software Library’s Linear Image Registration Tool (FLIRT) (v6.0)66,67 was used to align the 479 

postoperative CT data to the preoperative T1-weighted MRI. The postoperative CT data were used to 480 

determine the contact positions relative to local neuroanatomy.  481 

Electrode localization 482 

Electrode coordinates were determined manually from the co-registered CT data in BioImage 483 

Suite v3.5b168 and placed into the native MRI space. An expert rater (BS) examined the images and 484 

determined whether the contact was in white or gray matter based on where it was plotted on the brain 485 

slice. Contacts that were determined to be in white matter were excluded from further analysis. 486 

Electrodes were also manually labeled to brain regions according to their anatomical location by the 487 

same rater. The cortical surface (pial surface) and electrode locations were reconstructed using the 488 

Multi-Modal Visualization Tool69. 489 

Intracranial recordings 490 

Neural signals were recorded during the administration of CAT-DI test. Herein we will refer to 491 

each CAT-DI timepoint and its associated neural data as a ‘block’. Signals were recorded with sEEG 492 
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electrodes at 2 kHz using a Cerebus data acquisition system (BlackRock Microsystems, UT, USA). All 493 

signals were amplified and bandpass filtered from 0.3-500 Hz (4th order Butterworth filter). DBS was 494 

off during all recordings.  495 

Neural data preprocessing and signal conditioning 496 

Raw signals were visually inspected for the presence of recording artifacts. Channels that were 497 

found to have excessive noise were excluded to prevent noise from spreading to other channels through 498 

re-reference. Blocks with poor quality of the neural recording in more than half of the channels were 499 

excluded from further analysis. One block out of 37 was removed from Patient 1, three blocks out of 30 500 

were removed from Patient 2, and no block was removed from Patient 3. Each channel was notch 501 

filtered (60 Hz and its harmonics) to reduce line-noise artifacts. To reduce the effects of volume 502 

conduction, signals were then re-referenced through bipolar reference by subtracting the voltage of the 503 

neighboring contact on each sEEG electrode70. A total of 75 sEEG gray matter channels in Patient 1, 66 504 

channels in Patient 2, and 59 channels in Patient 3 remained after bipolar referencing were used for 505 

further analysis.  506 

Feature extraction 507 

After signals were down-sampled to 1000 Hz, we performed a Hilbert transform to estimate 508 

spectral power features in six different frequency bands: 1-4 Hz (delta), 4–8 Hz (theta), 8–12 Hz (alpha), 509 

12–30 Hz (beta), 35–50 Hz (gamma) and 70–150 Hz (high-gamma). Then for each channel, we log-510 

transformed the average power during the CAT-DI test for each frequency band. 511 

Spectral activity analysis 512 

Pearson correlation coefficient and corresponding p-value were calculated between depression 513 

severity score and spectral power features from six frequency bands in all gray matter channels. FDR 514 
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multiple-testing correction was performed across the frequency bands and channels to correct p-values. 515 

A Pearson correlation coefficient with corrected p-value smaller than 0.05 was defined as significant. 516 

Automatic region selection 517 

The recording channels per patient were distributed across four main prefrontal regions: ACC, 518 

dlPFC, OFC, and vmPFC. To increase the generalizability of the model and avoid overfitting, we greatly 519 

reduced the number of model parameters by using a region selection technique26. Automatic region 520 

selection was employed to minimize the number of regions used in the decoder. Using training data 521 

only, we implemented model selection through inner cross-validation. The optimal brain region for 522 

decoding was determined by comparing independent models, each fit with the channels in one specific 523 

region. In the first stage of candidate model selection, independent decoders were fit with a single 524 

region, and one was selected. If the selected decoder achieved significance, automatic region selection 525 

stopped. Otherwise, the next stage consisted of fitting models using channels from two regions. The 526 

process continued until a decoder was found that achieved significance. In all three patients, significance 527 

was achieved after only the first stage, using features from a single region. Thus, this process largely 528 

decreased the number of model parameters. 529 

Model fitting 530 

We used LASSO regression to fit neural data to the CAT-DI scores as described in (1). LASSO 531 

regularization was used to minimize the objective function: 532 

𝑚𝑖𝑛
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||2

2 + 𝛼||𝑤||1  (1) 533 

where y is the measured CAT-DI score and X includes all features in the optimal brain region, which is 534 

selected by automatic region selection with inner-level cross-validation. 𝑤 is the weight vector. ||𝑋𝑤 −535 

𝑦||2
2 is the residual sum of squares, which measures the discrepancy between the predicted scores and 536 

the measured scores. ||𝑤||1 is the ℓ1 term, which is the sum of the magnitudes of weights in the weight 537 
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vector. 𝛼 is a constant that multiplies the ℓ1 term and is selected using inner cross-validation. By adding 538 

ℓ1 penalty, this regularization encourages sparsity since coefficients for many features are likely to 539 

become zero, hence eliminating these features from the model. Coordinate descent was used to fit the 540 

weights71. This regression method further reduces the dimensionality of the model. 541 

Measurement of prediction error 542 

We quantified the prediction error using normalized root mean square error (NRMSE)26 as 543 

described in equation (2). NRMSE is defined by 544 

𝑁𝑅𝑀𝑆𝐸 =  
√∑ (𝑦̂𝑗 − 𝑦𝑗)2𝑛

𝑗=1

√∑ (𝑦𝑗
∗ − 𝑦𝑗)2𝑛

𝑗=1

   (2) 545 

where n is the total number of CAT-DI scores, 𝑦̂𝑗is the jth predicted score, 𝑦𝑗 is the jth measured score, 546 

and 𝑦𝑗
∗ is the mean of other measured scores except for the jth measured score. The NRMSE quantifies 547 

how much more accurately the model predicts a test score relative to a model that predicts a test score 548 

simply as the average of the other scores. A lower NRMSE indicates that the prediction is more 549 

accurate. NRMSE was used as the prediction error criterion for selecting candidate models and for the 550 

final evaluation of the selected model when testing model significance. 551 

Cross-validation 552 

To assess the performance of our decoder, we used both leave-one-out (Fig. 3) and 5-fold cross-553 

validation (Supplementary Fig. 4).  554 

For leave-one-out cross-validation, we left out one CAT-DI score as test data and used the rest of 555 

the scores as training data to select the region and build the model. Through inner cross-validation using 556 

only the training data, we obtained the prediction error for all candidate models. To make the model 557 

more robust to noise, we defined a feature value as an outlier when it was more than four standard 558 
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deviations away from the mean value of that feature in the training set. We then automatically 559 

substituted all outlier values with the mean values of the corresponding feature in the training data. Less 560 

than 2% of feature values were identified as outliers for all participants.  561 

The model with the lowest prediction error was then selected as the best model. This model 562 

fitting and selection process had no knowledge of the test CAT-DI score. We then used the best 563 

candidate model from each fold to predict the corresponding test score in the outer cross-validation. We 564 

repeated this leave-one-out procedure for all CAT-DI scores and then computed the NRMSE of the 565 

decoder using equation (2). 566 

For 5-fold cross-validation, we split the data into five folds, trained the model on four folds of 567 

CAT-DI scores, and predicted the scores in the other fold. We repeated this procedure five times to 568 

obtain predicted scores for all CAT-DI points and then computed NRMSE to evaluate the performance 569 

of the decoder. In both leave-one-out and 5-fold cross-validation, model training and selection were 570 

conducted using only CAT-DI scores and neural activity within the training set.  571 

Model assessment 572 

We first calculated the true prediction error using the measured scores and predicted scores from 573 

each patient. In order to estimate decoding performance due to chance, we randomly permuted each 574 

symptom severity score on the neural data and then repeated the cross-validation process in the same 575 

manner as before. We did 104 random permutations to build a distribution of prediction errors expected 576 

due to chance. Next, we counted the number of samples in the distribution for which the prediction error 577 

due to chance was lower than the true prediction error. In this way, the p-value was defined as the 578 

probability that a model fit to a permuted set of symptom severity scores had a higher prediction 579 

accuracy than a model fit to the true scores.  580 
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Next, we evaluated the model across all patients by pooling their data. CAT-DI scores were z-581 

scored based on the measured scores within each patient. These standardized scores were then pooled 582 

across patients. We repeated the permutation process 106 times to estimate the chance distribution of 583 

pooled prediction errors and calculated the corresponding p-value in the same way as described above. 584 

Here, the significance of the prediction error was the probability that decoding using the permuted set of 585 

CAT-DI scores (z-scored) has a lower NRMSE than using the true set of CAT-DI scores (z-scored). 586 

Evaluation of time as a potential confound of model performance 587 

CAT-DI scores for all three participants decreased over days in the EMU (Fig. 2a-c). In order to 588 

ensure that neural features were truly capturing fluctuations in depression severity rather than the 589 

passage of time, we fit a linear regression model to depression severity over time using the least-squares 590 

approach. For each data point, we calculated the residual by subtracting the predicted depression 591 

severity score using the line of best fit from the actual severity score. In this way, the resulting residuals 592 

were decorrelated with time (Supplementary Fig. 3). We then used the neural activity to predict the 593 

residuals using the same leave-one-out cross-validation technique as we have previously described.  594 

Evaluation of feature importance 595 

In order to evaluate the relative importance of features corresponding to individual frequency 596 

bands and subregions, we fit the model using features from single subregions and single frequency 597 

bands. We then calculated the Pearson correlation coefficient between predicted and true severity scores, 598 

and computed the corresponding p-values with FDR multiple-testing correction. 599 

Lastly, to investigate feature importance without automatic region selection, we fit all features 600 

with LASSO regression at a range of different regularization parameter values. The regularization 601 

parameter alpha determines the penalty for using more features. As alpha decreases, the number of 602 

features used in the model increases. We fit the model using 50 different alpha values ranging from 0.1 603 
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to 5.0 in steps of 0.1. At each step, we calculated the fraction of channels in each feature group (defined 604 

by the region and frequency band) selected by the model. We completed these analyses using all data, as 605 

our goal was to better understand the effects of variation in regularization parameter alpha on the 606 

features that were selected by the model.  607 

 

References 608 

62. Provenza, N. R. et al. The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental 609 

Disorders. Front. Neurosci. 13, 152 (2019). 610 

63. Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56 LP – 62 (1960). 611 

64. Montgomery, S. A. & Åsberg, M. A New Depression Scale Designed to be Sensitive to Change. Br. J. 612 

Psychiatry 134, 382–389 (1979). 613 

65. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012). 614 

66. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. 615 

Med. Image Anal. 5, 143–156 (2001). 616 

67. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved Optimization for the Robust and Accurate 617 

Linear Registration and Motion Correction of Brain Images. Neuroimage 17, 825–841 (2002). 618 

68. Joshi, A. et al. Unified framework for development, deployment and robust testing of neuroimaging 619 

algorithms. Neuroinformatics 9, 69–84 (2011). 620 

69. Felsenstein, O. et al. Multi-Modal Neuroimaging Analysis and Visualization Tool (MMVT). arXiv Prepr. 621 

1, 1–29 (2019). 622 

70. Bastos, A. M. & Schoffelen, J.-M. A Tutorial Review of Functional Connectivity Analysis Methods and 623 

Their Interpretational Pitfalls   . Frontiers in Systems Neuroscience   vol. 9 (2016). 624 

71. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via 625 

Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010).  626 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.19.22275231doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.19.22275231
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

Supplementary Figures 627 

 628 

Supplementary Fig. 1: Training data is used to select features that are predictive of depression 629 

severity. (a, d, g) LASSO regression coefficients for input features in each fold of the leave-one-out 630 

cross-validation selecting ACC. Horizontal axis shows the feature names. Vertical axis shows the fold 631 

indices of leave-one-out cross-validation. The color indicates the coefficient value. Each row includes 632 

the coefficients for all features in the selected region from that fold. Most coefficients become zero in 633 

the LASSO regression, thus the color in most areas is black. Red indicates that the coefficient in the 634 

LASSO regression is positive, and blue indicates that the coefficient is negative. (b-c, e-f, h-i) The 635 

correlation coefficient and corresponding p-value (after FDR multiple-testing correction) between the 636 

CAT-DI score and the value of example features. Red indicates that the correlation coefficient is 637 

positive, and blue indicates that the correlation coefficient is negative. 638 
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639 

Supplementary Fig. 2: Permuted CAT-DI scores yield low predictive performance. Predictions for 640 

an example set of permuted CAT-DI scores in Patient 1 (a), Patient 2 (b), Patient 3 (c), and pooled 641 

across patients (d).   642 
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 643 

Supplementary Fig. 3: Depression severity can be predicted after removing the effect of time.  644 

(a-c) We fit a linear regression model between depression severity and time using the least-squares 645 

approach. For each data point, we calculated the residual by taking the difference between the actual 646 

depression severity and the predicted severity from the line of best fit. The residuals were then predicted 647 

by the neural activity. (d-g) The predicted residual from leave-one-out cross-validation is plotted against 648 

the true residual. (h-k) Distribution of the NRMSE for sets of permuted residuals (gray, n = 104 649 

permuted tests for each patient and n = 106 for z-scores pooled across patients). NRMSE for the model 650 

trained with true residuals is shown as a red vertical dotted line.   651 
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 652 

Supplementary Fig. 4: Depression severity can be decoded using 5-fold cross-validation. (a-d) The 653 

predicted score from each fold of 5-fold cross-validation against the measured test score corresponding 654 

to that fold. Points with the same color come from the same fold. Scores from Patient 1 are shown in 655 

blue, scores from Patient 2 are shown in orange, scores from Patient 3 are shown in green in d. The 656 

Pearson correlation coefficients are shown on the plots. The corresponding p-value is less than 10-4 for 657 

each patient and pooled across patients. (e-h) Distribution of the NRMSE for sets of permuted scores 658 

(gray, n = 104 permuted tests for each patient in 5-fold cross-validation and n = 106 for z-scores pooled 659 

across patients). NRMSE of the model trained using true measured CAT-DI scores is shown as a red 660 

vertical dotted line. Permutation testing shows a prediction error significantly lower than chance in 5-661 

fold cross-validation in Patient 1, Patient 2, Patient 3, and when the scores were pooled across patients. 662 
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 663 

Supplementary Fig. 5: Predictability when decoding without automatic region selection. (a-d) The 664 

predicted score from leave-one-out cross-validation against the measured score when using LASSO 665 

regression without automatic region selection. (e-h) NRMSE of the LASSO regression model trained 666 

using true measured CAT-DI scores (red vertical dotted line) and distribution of the NRMSE for sets of 667 

permuted scores (gray bars, n = 104 permuted tests for each patient, n = 106 permuted tests for z-scores 668 

pooled across patients). (i-l) Comparison between prediction error in models with and without region 669 

selection technique. A lower prediction error indicates a more accurate prediction.  670 
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