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Abstract 22 

Background: Mathematical modelling can play a vital role in guiding public health action. In this paper, 23 

we provide an overview of the revised and updated PRIMEtime model, a tool for evaluating health 24 

and economic impacts of policies impacting on diet and obesity. We provide guidance on populating 25 

PRIMEtime with country-specific data; and illustrate its validation and implementation in evaluating a 26 

combination of interventions in the UK: a sugar-sweetened beverage (SSB) tax; a ban on television 27 

advertising of unhealthy foods; and a weight loss program. 28 

Methods: PRIMEtime uses routinely available epidemiological data to simulate the effects of changes 29 

in diet and obesity on 19 non-communicable diseases, in open- or closed-population cohorts, over 30 

time horizons from 1 year to a lifetime. From these simulations, the model can estimate impact of a 31 

policy on population health (obesity prevalence, cases of disease averted, quality-adjusted life years), 32 

health and social care costs, and economic measures (net monetary benefit, cost-effectiveness ratios). 33 

We populated PRIMEtime with UK data and validated epidemiological predictions against two 34 

published data collections. We then evaluated three current obesity intervention policies based on 35 

estimates of effectiveness from published evaluation studies. 36 

Results: There was considerable variation in the modelled impact of interventions on prevalence of 37 

obesity and subsequent changes in health and the need for health care: restrictions on TV advertising 38 

of unhealthy foods to children led to the largest reductions in obesity prevalence; but the SSB tax, 39 

which also targeted adults, had the biggest benefits in reducing obesity-related disease; and the 40 

weight loss program, while having very small impact on obesity prevalence at the population scale, 41 

had large and immediate benefits in improving health and reducing health sector spending. From a 42 

health sector perspective, the combination of interventions produced a favourable net monetary 43 

benefit of £31,400 (12,200 to 50,700) million. But the combined effect in reducing prevalence of 44 

overweight and obesity, was not estimated to reach more than 0.81 percentage points (95% 45 
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uncertainty interval: 0.21 to 1.4) for males and 0.95 percentage points (0.24 to 1.7) for females by 46 

2050.  47 

Conclusions: 48 

Diet and obesity interventions have the potential to improve population health and reduce health 49 

sector spending both immediately and in the long-term. Models such as PRIMEtime can be used to 50 

evaluate the economic merits of intervention strategies and determine how best to combine 51 

interventions to achieve maximum population benefit. But with almost a third of children and two-52 

thirds of adults currently overweight or obese, we need to broaden the application of public health 53 

models to evaluating the structural and systemic changes that are needed in our society to address 54 

the underlying drivers of the obesity epidemic. 55 
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Introduction 57 

Overweight and obesity have been recognised as a cause of poor health for over 2000 years.[1] But in 58 

the early times, it is likely the overall prevalence of obesity in the population was low; with 59 

malnutrition and underweight a greater cause of ill-health and premature loss of life. It is only in the 60 

last two decades that the number of overweight and obese adults worldwide have outnumbered 61 

those who are underweight.[2] Globally, 39% of adults and 18% of children and adolescents are now 62 

estimated to be overweight or obese.[3] This is associated with an excess 4.7 million deaths and 147.7 63 

million disability-adjusted life years, with around 90% of this burden due to cardiovascular diseases, 64 

diabetes, related kidney diseases, and cancers.[4] 65 

Like many high-income countries, the United Kingdom has been at the leading edge of the transition 66 

to obesity. By the time the World Health Organization recognised the growing prevalence of 67 

overweight and obesity as a ‘global epidemic’ in 1998, around 3 in 5 adults in England were already 68 

either overweight or obese.[5] While successive governments have attempted to address the problem 69 

over the last 30 years, including 14 strategy documents and 689 proposed policies and programs, 70 

efforts have so far failed to turn the tide.[6, 7] Although rapid upwards trends in obesity prevalence 71 

of the 1990s had flattened by the early 2000s, projection models suggest that prevalence of 72 

overweight and obesity will remain high until at least 2035, without more effective action.[8] 73 

Mathematical modelling can play a vital role in guiding public health action,[9] as we have witnessed 74 

in the COVD-19 pandemic. While an epidemic of obesity may be slower-moving than an epidemic of 75 

an infectious disease, the informative value of modelling is no less important. Models can help us 76 

understand what the likely consequences of an intervention are, how confident we can be in the 77 

predicted outcomes, and what are the risks associated with the decision to act (or not act).[10] In the 78 

absence of modelling, decision-making is little more than blind guesswork; but modelling will only be 79 

of value if the model’s design, its inputs and outputs are clearly communicated, and there is 80 
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transparency in the assumptions that have been made, whether explicit in model parameters or 81 

implicit in the structural design.[9, 10] 82 

PRIMEtime is an epidemiological modelling tool that was developed in the UK for simulating diet and 83 

obesity interventions and scenarios. The model was initially developed in 2014 for examining impacts 84 

of changes in diet and obesity on population health, including non-communicable disease rates and 85 

life expectancy,[11] and this was later expanded to include impacts on quality of life and costs of 86 

health and social care.[12] The model has been used to examine potential impacts of a range of 87 

interventions and scenarios, including a targeted weight loss program, regulation of television 88 

advertising of unhealthy foods to children, salt reduction, evaluating changes to dietary guidelines and 89 

identifying most environmentally sustainable dietary patterns.[11-16] 90 

In recent years, we have made a number of updates to the PRIMEtime model. These include new 91 

features to capture background trends in obesity and disease rates, as well as updates of model 92 

parameters to incorporate the latest evidence on risks of disease associated with diet and obesity, 93 

and to capture the latest data on risk factor and disease rates in the UK. In addition, we have modified 94 

the cohort simulation to include options for both open- and closed-cohort simulation. While 95 

previously a closed-cohort simulation model, allowing users to examine changing health and cost 96 

consequences for an adult population cohort ageing through time, PRIMEtime now additionally 97 

incorporates open-cohort simulation of outcomes for children and future birth cohorts out to 2050. 98 

This feature enables users to examine impacts of interventions on population prevalence of 99 

overweight and obesity and population rates of disease into the future, and potentially facilitates 100 

linkage of PRIMEtime with economic and environmental simulation models.  101 

In this paper we describe the updated PRIMEtime model and illustrate its use in evaluating a 102 

combination of interventions: a sugar-sweetened beverage tax; a ban on television advertising of 103 

unhealthy foods; and a weight loss program. These are all interventions that have been implemented 104 

or recommended in the government’s latest obesity strategy.[17] This work is not intended to be a 105 
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comprehensive evaluation of all potential obesity intervention strategies, rather the aim is to provide 106 

transparency on the model’s design and input parameters, to illustrate how the model can be used, 107 

and discuss how this and other modelling may be developed and better integrated into policy in the 108 

future. 109 

Methods 110 

The PRIMEtime model 111 

Model Design 112 

The PRIMEtime modelling approach (Figure 1) consists of three interlinked components: (1) a risk 113 

factor exposure module, which quantifies the effect of change in prevalence of one or more risk 114 

factors on incidence of related diseases; (2) a series of disease models, which simulate changing 115 

incidence, prevalence and mortality of diseases related to the modelled risk factors; (3) a lifetable, 116 

which simulates overall impacts on the population, health and social care system, due to the changing 117 

disease epidemiology. 118 

Risk factor exposure 119 

When an intervention is simulated in PRIMEtime, the magnitude of impact on disease associated with 120 

a risk factor (e.g. high body mass index) depends on a combination of variables: (1) the baseline 121 

population exposure to the risk factor; (2) the measured effect of the intervention on exposure, and 122 

the proportion of the population who stand to benefit; and (3) the magnitude of the relative risk of 123 

disease associated with the risk factor. This impact is quantified by the population impact fraction 124 

(PIF):[18] 125 

𝑃𝐼𝐹 = 	
∫ 𝑝	𝑅𝑅(𝑥)	𝑑𝑥 −	∫𝑝′(𝑥)	𝑅𝑅(𝑥)	𝑑𝑥

∫𝑝(𝑥)	𝑅𝑅(𝑥)	𝑑𝑥
 126 

where: 𝑥 is the units of a risk factor (e.g. body mass index); 𝑝(𝑥) is the prevalence of that risk factor; 127 

𝑝′(𝑥) is the prevalence of the risk factor after a scenario or intervention; and 𝑅𝑅(𝑥) is the relative risk 128 
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of disease associated with the risk factor. The PIF is age- and sex-dependent. Where there are 129 

background trends in the risk factor (e.g. obesity), the PIF is also time-dependent. Where diseases are 130 

influenced by multiple independent risk factors, PRIMEtime combines the PIFs multiplicatively: 131 

𝑃𝐼𝐹!"#$%&'( = 	1 −	0(1 − 𝑃𝐼𝐹%)
&

%)*

 132 

for 𝑖 = 1…𝑛 diseases. 133 

The relative risks of disease associated with each risk factor in PRIMEtime, have been drawn from 134 

systematic reviews and meta-analyses. For modelling purposes, it is necessary to establish dose-135 

response relationships across the entire distribution of risk factor exposure in the population of 136 

interest. Large, long-term randomised controlled trials are rare, and where they do exist, they provide 137 

only limited variance between control and intervention arms in the risk factor of interest. Therefore, 138 

establishing causality in the relationship between a risk factor and condition relies heavily on 139 

prospective cohort studies, and evaluation of the entirety of evidence against criteria, such as those 140 

of Bradford-Hill – strength and consistency of evidence, specificity, temporality, biological gradient, 141 

plausibility, coherence, analogy and supporting experimental evidence.[19] In developing and 142 

updating PRIMEtime we have preferentially drawn on systematic reviews and meta-analyses that take 143 

these factors into account.  144 

Disease models 145 

Diet- and obesity-related diseases currently included in PRIMEtime include ischaemic heart disease, 146 

ischaemic stroke, intracerebral haemorrhage, hypertensive heart disease, diabetes mellitus type 2, 147 

colorectal cancer, breast cancer, uterine cancer, oesophageal cancer, kidney cancer, pancreatic 148 

cancer, liver cancer, multiple myeloma, asthma, low back pain, osteoarthritis of the hip and knee, 149 

depression, atrial fibrillation/flutter, and gallbladder/biliary diseases.  150 
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Cardiovascular diseases, diabetes and cancers are modelled in a three-state Markov model, in which 151 

the population is either in a healthy state, a diseased state or dead (from the disease or from other 152 

un-related causes).[20] The initial distribution of the population between the healthy and diseased 153 

states is determined by the prevalence of the disease in the baseline year. Further transition between 154 

states over time is based on annual rates of incidence, remission and case fatality. However, for the 155 

remaining PRIMEtime diseases that are chiefly characterised by morbidity rather than mortality (low 156 

back pain, osteoarthritis, depression, and gallbladder and biliary diseases) we do not model 157 

progression to mortality. 158 

PRIMEtime is designed to evaluate the effects of interventions, scenarios or system shocks in 159 

preventing disease and the consequent effects on population health and society. Therefore, we model 160 

the effects of a change in risk factor exposure, which is quantified by the PIF, as a change in disease 161 

incidence rate (𝐼): 162 

𝐼′+,- = 𝐼	 × (1 − 	𝑃𝐼𝐹!"#$%&'() 163 

The calculation of 𝐼′+,- allows for a time lag in the reversal of disease risk. While there is an absence 164 

of direct evidence examining the time course for changes in disease rates following population 165 

changes in dietary intake or obesity, the World Health Organization has estimated it takes three to 166 

five years to achieve full reversal of stroke risk and around two-thirds of heart disease risk, from trials 167 

of blood pressure treatments.[21] Risk reversibility of cancers is likely to be longer, based on follow-168 

up of patients around ten years after bariatric surgery or intentional weight loss.[22] 169 

Population lifetable 170 

In the population lifetable component of PRIMEtime, the population is divided into five-year age and 171 

sex cohorts that are simulated through time. In a closed cohort simulation, the model is typically run 172 

until everyone in the starting population is dead. In an open cohort simulation, which incorporates 173 
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future birth cohorts, the model can be run until the desired time horizon is reached or until there are 174 

no further birth cohorts entering the simulation. 175 

Each population age- and sex- cohort is simulated in a proportional multi-state lifetable.[23] This 176 

consists of a standard lifetable model, which simulates the survival experience of a cohort based on 177 

age- and sex-specific mortality rates, connected with the series of disease-specific models described 178 

above. There are three key actions that occur in the proportional multi-state lifetable model. 179 

First, when we simulate a change in prevalence of obesity, this influences incidence of obesity-related 180 

diseases, which, over time, lead to changes in disease-specific mortality rates. These changes in 181 

disease-specific mortality rates modify the total mortality rate in the main lifetable, while holding the 182 

proportion of mortality due to all other causes (i.e. causes not related to obesity) constant. 183 

Second, everyone in the lifetable cohort who is alive has a utility weight, which reflects average 184 

‘quality of life’ at each age and sex. In the same way that total mortality in the lifetable is modified by 185 

changes in disease-specific mortality, the total utility in the lifetable is modified by changes in disease-186 

specific utility, which are derived in the disease-specific models from the change in incidence and/or 187 

prevalence of the disease and the disease-specific utility weight(s).  188 

Third, everyone in the lifetable cohort who is alive has an average cost associated with their health 189 

care. This cost increases or decreases, based on changes in rates of obesity-related diseases, which 190 

are derived in the disease-specific models from the change in incidence and/or prevalence of the 191 

disease and the disease-specific health care cost. 192 

Together, the lifetable, disease-specific and risk factor exposure models simulate each cohort ageing, 193 

over time, until everyone is dead, has reached 100 years of age, or the simulation has reached the end 194 

of its time horizon. From these simulations, PRIMEtime can determine the effect of a change in 195 

prevalence of a risk factor on: (a) population life expectancy; (b) gain or loss of quality-adjusted life 196 

years (QALYs); and (c) impact on costs to the health or social care system.  197 
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Country-specific input data 198 

Population and mortality 199 

PRIMEtime can be adapted for any country context with a number of country-specific inputs. 200 

Population is entered by sex and 5-year age group, with the exception of the 0 to 4 year old group, 201 

which is split into 0 year olds and 1 to 4 years olds to facilitate calculation of life expectancy at birth. 202 

To run a closed cohort analysis, only the population in the baseline year of analysis is required. If 203 

running an open cohort analysis, future cohorts of 0 to 4 years olds can be estimated from population 204 

projections. The model currently has capacity to accept new entrants into the modelling until 2050. 205 

PRIMEtime also requires mortality rates from all causes by sex and single year of age, from age 0 to 206 

100+.  207 

Both mortality rates and population numbers can be downloaded in the required format from the 208 

Human Mortality Database[24] for 41 countries and, in some cases, also by population sub-groups, 209 

e.g. by ethnicity. The Institute of Health Metrics Results Tool[25] also provides links to their collations 210 

of population, mortality and life table data for Global Burden of Disease analyses, which is an 211 

alternative source of data for countries not included in the Human Mortality Database or if within-212 

country data collections are not accessible. These sources currently provide data up to 2019. 213 

Population estimates for later years (e.g. for open cohort analyses incorporating future birth cohorts) 214 

are based on population projections. The United Nations provide a database of global population 215 

projections if local estimates are not available. 216 

Disease epidemiology 217 

Population-specific disease rates can be derived from a variety of sources such as death and disease 218 

registries and disease-specific studies. Alternatively, PRIMEtime users can draw on Global Burden of 219 

Disease (GBD) syntheses of these sources. Cause-specific incidence, prevalence and mortality rates 220 

can be downloaded, by age and sex, using the GBD Results Tool.[25] These data can be used in 221 
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PRIMEtime for non-commercial purposes under the Creative Commons Attribution-Non Commercial 222 

4.0 International License.[26] 223 

A key challenge in populating the PRIMEtime model is the requirement for cause-specific case fatality 224 

rates. In the PRIMEtime model, the case fatality reflects the excess mortality of someone with the 225 

disease compared with someone who does not have the disease. These rates are rarely reported, 226 

however they can be derived from cause-specific incidence, prevalence and mortality rates, together 227 

with population numbers and all-cause mortality rates, using the disbayes R package, which can be 228 

found on the GitHub repository.[27] This package is recommended as, using a Bayesian approach, it 229 

estimates case fatality using the same three-state model and assumptions that underpin disease 230 

simulation in the PRIMEtime model, so consistency in approach is maintained. 231 

Background trends in cause-specific incidence and case fatality rates can be estimated by fitting 232 

models to rates derived over multiple years. The GBD Results Tool[25] contains yearly estimates of 233 

rates from 1990. 234 

Risk factor exposure 235 

Prevalence of risk factors can be derived from population survey data. PRIMEtime is designed to take 236 

the mean and standard deviation of the distribution of risk in the population, by age and sex. This 237 

allows the population impact fraction to be calculated continuously (e.g. where the relative risk is 238 

defined per unit of BMI) or categorically (e.g. where relative risks are defined for overweight and obese 239 

categories of prevalence). There is also an option for taking background trends in risk factors into 240 

account. 241 

Derivation of risk factor prevalence and trends depend on the availability of survey data, which is 242 

highly country-specific. Cobiac et al[8] provides an example of deriving trends in body mass index from 243 

health survey data in England. However, some global collations of data also exist, such as the World 244 

Health Organization Global Health Observatory[3] and the Global Dietary Database.[28] 245 
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Costs 246 

There is currently no global database of age- and sex-specific costs of disease treatment in different 247 

countries. For PRIMEtime analyses in the UK, the unit costs of treatment for the explicitly modelled 248 

diseases and the average costs associated with health care for all other diseases, have been derived 249 

from a range of administrative datasets. Briggs et al.[29] have published a detailed description of these 250 

methods. 251 

Model Implementation 252 

Simulation options 253 

PRIMEtime provides a number of options for evaluation. The user can: 254 

‒ define discount rates for health and cost impacts; 255 

‒ define time horizons for population simulation and for output of data; 256 

‒ set time lags on the effects of a risk factor on diseases; 257 

‒ include or exclude background trends in risk factors; 258 

‒ include or exclude diseases; and 259 

‒ select population cohorts for simulation (a closed cohort analysis only simulates outcomes for 260 

the population alive in the baseline year of analysis, whereas an open cohort analysis also 261 

simulates outcomes for those born in future years). 262 

These choices depend on the purpose of the PRIMEtime simulation. For example, calculating cost-263 

effectiveness or return-on-investment of an intervention, will generally require discounting of cost 264 

and health outcomes. Comparing cost-effectiveness of multiple preventive interventions can generally 265 

be performed using a closed cohort simulation, since the relative performance of different 266 

interventions is unlikely to be greatly impacted by the addition of future birth cohorts who will not 267 

experience health benefits until well into the future. However, an open cohort simulation may be 268 
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preferred if PRIMEtime is being used to simulate impacts of a scenario on rates of obesity-related 269 

diseases or costs of treating these diseases, over time into the future. 270 

Scenario specification 271 

PRIMEtime currently allows for simultaneous simulation of up to five scenarios or population sub-272 

groups. While the model can be run any number of times for different evaluations, simultaneous 273 

simulation facilitates analyses where uncertainty in the relative order of or difference between 274 

scenarios or sub-groups is important. For example, by simultaneously simulating outcome by quintile 275 

of Index of Multiple Deprivation, it is possible to estimate uncertainty in the slope index of inequality, 276 

a measure of health inequality. 277 

Probabilistic Sensitivity Analysis 278 

The PRIMEtime model is designed to be run iteratively. If only one iteration is performed, the model 279 

will produce point-estimates of outputs based on the mean values of model input parameters. 280 

However, when run many times, the model will randomly select from uncertain distributions around 281 

input parameters to produce a range of outputs, from which mean or median values and 95% 282 

uncertainty intervals can be determined. The degree of uncertainty in outputs depends on the number 283 

of inputs that are uncertain, and the distribution of uncertainty around those inputs. As a rule-of-284 

thumb, we recommend running as many iterations as are required to achieve stability in outputs to 285 

the desired number of significant figures. Typically, this is between 2000 and 5000 iterations. 286 

PRIMEtime evaluation of obesity interventions 287 

Intervention specification 288 

We demonstrate use of the PRIMEtime model in evaluating three interventions for addressing obesity 289 

in the UK population: 290 

1. Implementing a Soft Drinks Industry Levy (SSB tax) 291 
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2. Banning television advertising of foods and drinks high in fat, sugar, and salt (HFSS) between 292 

5:30 AM and 9:00 PM (TV ad bans).  293 

3. Offering total diet replacement to adults (18+ years) with a BMI greater than 30 kg/m2 (Weight 294 

loss program). 295 

Intervention effects were derived from previously published analyses as described in Table 1. For this 296 

study, we evaluated the interventions individually and additionally evaluated a combination of all 297 

three interventions, as if rolled out in the UK population from a baseline year of 2015.  298 

UK data inputs 299 

For the obesity intervention evaluation, we populated the PRIMEtime model with data for the UK. 300 

Table 2  described the data sources and assumptions made, and Text S1 provides the data as entered 301 

into PRIMEtime. 302 

Table 1 Intervention scenarios  303 

Target group Per person effect Source 

SSB tax 

Whole 

population 

-1.8 kcal (-3.1 to -0.50)* Estimated from the results of interrupted time series 

analyses of weekly household reductions in purchasing 

of sugar in drinks before and after the SDIL,[30] 

assuming an average of 2.4 people per household,[31] 

and a calorie content of 3.75 kcal per gram of 

sugar.[32]  

TV ad bans 

Children aged 5 

to 17 years 

-9.1 kcal (-18 to -0.50)* Estimated by Mytton et al,[14] assuming a complete 

withdrawal of HFSS advertising between 5:30 AM and 

9:00 PM, a mean ad duration of 25.9 seconds (standard 
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deviation 11.9 seconds) and an association between a 

child’s daily energy intake and ad viewing for high fat, 

sugar and salt foods and drinks of 14.2 kcal per minute 

(0.7 to 27.7). 

We assumed that modelled changes in BMI at age 17 

years would be sustained through adulthood. 

Weight loss program 

Adults aged ≥18 

years with a 

BMI>30 kg/m2 

-7.2 kg (-9.4 to -4.9) at a 

cost of 2017GDP796 

per person 

Estimated by Kent et al.[13] from the results of a 

randomised controlled trial of a total diet replacement 

programme for weight management in primary care.  

We assumed a weight regain of 27.2 grams per month 

(18.4 to 35.9) based on the results of a systematic 

review and meta-analysis of trials reporting weight 

regain following weight loss intervention.[33]  

We assumed the intervention would be offered to all 

registered patients with a BMI>30kg/m2. Rates of 

eligibility and willingness to participate, were based on 

the results of the randomised controlled trial.[34, 35] 

Combination 

As per individual 

interventions 

As per individual 

interventions 

The calorie effect of the SSB tax (via sugar reduction) 

and the calorie effect of the TV ad bans are assumed to 

be additive in childhood. As with the individual analysis 

of the TV ad bans intervention, the difference in BMI 

due to the intervention at age 17, is assumed to be 

maintained into adulthood when the interventions are 
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combined. The combined analysis takes into account 

the impact of the SSB tax and TV ad bans on the 

proportion of adults who are obese and therefore 

eligible for the weight loss program. 

NB. Values are expressed as means and 95% confidence intervals, except where otherwise noted.  

* Impact on body weight (kg) estimated using energy balance model predictions from Hall et al.[36, 

37] 

 304 

Table 2 PRIMEtime data inputs 305 

PRIMEtime data input Source 

Population numbers UK population numbers were determined by 5-year age group and sex 

from the Human Mortality Database.[24] Future cohorts of 0-4 year 

olds were derived by sex from the Office for National Statistics 

(principal projection).[38]  

All-cause mortality rates UK all-cause mortality rates were taken from the Human Mortality 

Database,[24] by single year of age and sex. 

Background trends in 

overweight and obesity 

Predicted trends in overweight and obesity were taken from models 

fitted to 27 years of Health Survey for England data, by Cobiac et al.[8] 

We assumed BMI trends in PRIMEtime would follow the non-linear 

model in base case analyses and the linear model in sensitivity 

analyses. 

Disease rates – incidence, 

case fatality and starting 

prevalence 

Incidence and case fatality rates were derived from Global Burden of 

Disease[39] estimates of incidence, prevalence and mortality, using 

disbayes.[27] Spline models were used to smooth data by age. 
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Background trends in 

disease incidence and case 

fatality 

We approximated average annual trends in incidence and case fatality 

rates, by sex and age group (0-34 years; 35-64 years; 65+ years), from 

the difference in rates between 1995 and 2005 for model validation, 

and between 2005 and 2015 for intervention analyses. 

Relative risks  We derived relative risks of obesity-related diseases from systematic 

reviews that had been published up to January 2021. 

Utility weights Parameters for estimating disease-specific and background utility 

weights were taken from a UK catalogue of EQ-5D scores.[40] 

Disease costs We estimated an average cost per prevalent case of each modelled 

disease, by determining: (a) the total costs of disease treatment from 

Department of Health and Social Care budget allocations to primary, 

hospital, community and specialised care services in England; then (b)  

dividing the total cost by the average number of prevalent cases.[25] 

We also estimated an overall average cost of health care from the 

total budget allocation for all diseases, divided by the number of 

people in the population.[24] Further details of these methods are 

provided in Text S2. 

The health care costs were estimated for the 2018-19 budget year and 

adjusted to the 2015 modelling baseline year using CPI adjustors.[41]  

 306 

Model validation 307 

To validate the epidemiological modelling, we additionally populated PRIMEtime with UK data for a 308 

baseline year of 2005, then ran the model forward in time to 2015 and compared simulated 309 

prevalence estimates for all cardio-metabolic diseases and cancers with other published data. For 310 
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comparison we used: (1) GBD estimates of prevalence in the year 2015;7 and (2) estimates of 311 

prevalence for the period 2010-2015, from an analysis of linked clinical datasets by Kuan et al.[42] 312 

Intervention evaluation 313 

To simulate impact of the interventions on obesity prevalence, we ran an open cohort analysis from 314 

2015 to 2050, adding new entrants to the population based on UK population projections. To simulate 315 

overall impact on population health (QALYs) and health care costs, we ran a closed cohort analysis 316 

over the lifetime of the population alive in 2015. QALYs and costs were discounted using HM Treasury 317 

rates of 3.5% costs and 1.5% health (0 to 30 years), 3% costs and 1.29% health (31-75 years) and 2.5% 318 

costs and 1.07% health (76-125 years).[43] We also calculated the net monetary benefit of each 319 

intervention and the combination of interventions, which reflects the value of each option in 320 

monetary terms, assuming a willingness-to-pay threshold for health.[44] For these calculations we 321 

assumed a value of £60,000 per QALY, as recommended by HM Treasury.[45] 322 

Results 323 

Model validation 324 

Figure 2 illustrates the results of the model validation runs, and full results can be found in Table S1 325 

(PRIMEtime vs. GBD) and Table S2 (PRIMEtime vs. Kuan et al) in the supplementary appendix (Text 326 

S3). Overall, estimates from PRIMEtime were slightly higher than estimates from GBD for 13 out of 14 327 

diseases, and slightly lower than estimates from Kuan et al for 12 out of 13 diseases (Kuan et al did 328 

not have a comparable disease category for hypertensive heart disease). The absolute difference in 329 

the prevalent proportion of the population with disease was less than 1 percentage point for 12 out 330 

of 14 diseases in comparison with the GBD estimates, and for 11 out of the 13 diseases in the 331 

comparison with the Kuan et al estimates. We found the largest percentage differences for diabetes 332 

(Kuan et al 2.7 percentage points lower; GBD 2.5 percentage points higher) and atrial fibrillation and 333 
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flutter (Kuan et al 2.5 percentage points higher). The mean absolute percentage error across all 334 

outcomes was 0.12 percentage points. 335 

Prevalence of overweight and obesity  336 

The modelling shows that all of the interventions are likely to reduce population prevalence of 337 

overweight and obesity over time, but the pattern of impact varies between interventions (Figure 3). 338 

Restricting television advertising of unhealthy foods has the largest impact in reducing overweight and 339 

obesity overall, with effects concentrated during childhood. The reduction in prevalence starts at 340 

around 0.31 percentage points (95% uncertainty interval: 0.021 to 0.58) for males and 0.34 percentage 341 

points (0.023 to 0.65) for females, then increases over time as more children are born and exposed to 342 

the intervention. The sugar-sweetened beverage tax also has a slightly smaller impact; benefiting both 343 

children and adults, it achieves a reduction in prevalence of overweight and obesity of around 0.19 344 

percentage points (0.058 to 0.31) for males and 0.20 percentage points (0.063 to 0.34) for females 345 

initially, and remains relatively stable through time (Text S3 – Table S3). The weight loss program, 346 

while very effective for the obese adult population who participate in the program, has the smallest 347 

overall effect on population prevalence of overweight and obesity, initially reducing prevalence by just 348 

0.022 percentage points (0.015 to 0.030) for males and 0.027 percentage points (0.018 to 0.037) for 349 

females, with lessening benefit over time due to weight regain among participants. The best outcomes 350 

are achieved by combining the interventions, which leads to an initial reduction in population 351 

prevalence of overweight and obesity of 0.51 percentage point (0.20 to 0.82) for males and 0.57 352 

percentage points (0.22 to 0.90) for females. This reduction increases over time, to around 0.81 353 

percentage points (0.21 to 1.4) for males and 0.95 percentage points (0.24 to 1.7) for females by the 354 

end of the simulation in 2050. 355 

Cases of disease 356 

Due to the modelled improvements in overweight and obesity prevalence, all of the modelled 357 

interventions lead to a reduction in incidence of disease (Table 3). The size of the impact of each 358 
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intervention, in the first ten years of implementation is strongly influenced by the nature of the target 359 

population. The sugar-sweetened beverage tax, which is designed to have an effect across all groups 360 

in the population, has the largest benefits in reducing disease in the first ten years. The biggest impact 361 

is on cases of type 2 diabetes, followed by cardiovascular diseases and cancers. While restricting 362 

television advertising of unhealthy foods to children has larger impacts on overweight and obesity 363 

than the SSB tax, it has relatively little effect on cases of disease in the first ten years, since it is 364 

targeting children, who will not experience the benefits of disease prevention until some years into 365 

the future. The weight loss program, on the other hand, has immediate benefits in reducing cases of 366 

type 2 diabetes, cardiovascular diseases and cancers, since it is targeting obese adults, who are at 367 

highest risk of developing obesity-related diseases. When combined, the interventions are predicted 368 

to prevent 15,000 (95% uncertainty interval: 6,600 to 24,000) cases of type 2 diabetes, 4,900 (2,200 369 

to 7,700) cases of cardiovascular diseases and 460 (220 to 720) cases of cancer in the first ten years of 370 

implementation.  371 

Table 3 Impact of the intervention scenarios on incident cases of disease in the first ten years (rounded to two significant 372 
figures). 373 

Disease group* Female Male Total 

SSB tax    

Type 2 diabetes -5,300 (-9,200 to -

1,600) 

-6,400 (-11,000 to -

1,900) 

-12,000 (-20,000 to -

3,500) 

Cardiovascular diseases -1,500 (-2,600 to -

480) 

-2,300 (-4,000 to -

730) 

-3,900 (-6,600 to -

1,200) 

Cancers -240 (-410 to -75) -110 (-190 to -33) -350 (-600 to -110) 

TV ad bans    

Type 2 diabetes 0.0039 (0.0003 to 

0.0078) 

0.0047 (0.0003 to 

0.0094) 

0.0086 (0.0005 to 

0.017) 

Cardiovascular diseases -0.16 (-0.32 to -0.011) -0.23 (-0.46 to -0.015) -0.38 (-0.79 to -0.026) 
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Cancers -6.9 (-14 to -0.48) -1.3 (-2.6 to -0.08) -8.2 (-16 to -0.56) 

Weight loss program    

Type 2 diabetes -1,500 (-2,200 to -

920) 

-1,700 (-2,400 to -

1,000) 

-3,200 (-4,600 to -

1,900) 

Cardiovascular diseases -440 (-640 to -270) -650 (-930 to -400) -1,100 (-1,600 to -

670) 

Cancers -73 (-100 to -46) -32 (-46 to -20) -110 (-150 to -66) 

Combination    

Type 2 diabetes -6,800 (-11,000 to -

3,100) 

-8,100 (-13,000 to -

3,500) 

-15,000 (-24,000 to -

6,600) 

Cardiovascular diseases -2,000 (-3,100 to -

890) 

-3,000 (-4,700 to -

1,300) 

-4,900 (-7,700 to -

2,200) 

Cancers -320 (-500 to -150) -140 (-230 to -67) -460 (-720 to -220) 

* Table S4 in the supplementary appendix (Text S3) shows modelled impact on individual diseases 

within each group. 

 374 

Population health and health care costs 375 

When modelled over the lifetime of the UK population, all of the interventions lead to a health gain 376 

for the population and a reduction in health care spending, and all interventions have a positive net 377 

monetary benefit from a health sector perspective (Table 4). The combination of interventions is 378 

estimated to produce a population health gain of 519,000 (201,000 to 837,000) QALYs and offset £299 379 

(£121 to £515) million in health sector spending, achieving a net monetary benefit of £31,400 (12,200 380 

to 50,700) million. 381 
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Table 4 Lifetime impact of the intervention scenarios on population health and health care costs, and the net monetary benefit 382 
of the scenarios 383 

Scenario Health impact (QALYs) Cost offsets (£million) Net monetary benefit 

(£million) 

SSB tax 200,000 (61,200 to 

345,000) 

-128 (-237 to -37.5) 12,100 (3,710 to 

20,900) 

TV ad bans 302,000 (19,900 to 

588,000) 

-159 (-331 to -11.2) 18,300 (1,200 to 

35,600) 

Weight loss program 18,600 (8,580 to 

33,300) 

-12.2 (-26.2 to -2.82) 1,130 (519 to 2,020) 

Combination 519,000 (201,000 to 

837,000) 

-299 (-515 to -121) 31,400 (12,200 to 

50,700) 

 384 

Uncertainty 385 

Uncertainty around intervention effects on sugar intake (SSB tax), calorie intake (TV ad bans) or weight 386 

change (Weight loss program) have the biggest influence on uncertainty in the model predictions of 387 

health gain, health sector cost offsets and net monetary benefit (Figure 4). The uncertainty in relative 388 

risks of obesity-related diseases, utility values quantifying quality of life, and disease unit costs are less 389 

influential. Results are similar when the interventions are evaluated individually (Text S3 – Figure S1).  390 

Sensitivity 391 

The modelled net monetary benefit remained positive in all sensitivity scenarios we evaluated (Text 392 

S3 – Figure S2). The magnitude of net monetary benefit is most strongly influenced by the preferred 393 

discount rates. The outcome is more favourable with lower or no discounting, since this effectively 394 

gives more weight to future health gains and averted health care costs. Whereas the net monetary 395 

benefit is less favourable (although still positive) with a higher discount rate overall, or when the rate 396 

of discounting of health gains is increased more than costs, (e.g. when changing to NICE rates). Net 397 
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monetary benefit does not vary substantially with variations in the modelled background trends in 398 

BMI distribution, background trends in disease incidence and case fatality rates, and assumed lags in 399 

effect of BMI changes on disease incidence. Increasing the number of modelled obesity-related 400 

diseases included in the simulation does influence the magnitude of impact on health and health care 401 

costs, but the overall impact on net monetary benefit is small. 402 

Discussion 403 

Main findings and interpretation 404 

In this paper we have described the PRIMEtime model, a tool for evaluating health and economic 405 

impacts of diet and obesity policies. The model uses routinely available epidemiological data to 406 

simulate the effects of changes in diet and obesity on 19 non-communicable diseases, over the lifetime 407 

of the population, or out to the year 2050 if including future birth cohorts. From these simulations, 408 

the model can estimate impact of a policy on population health (overweight and obesity prevalence, 409 

cases of disease averted, quality-adjusted life years gained), health and social care costs, and 410 

economic measures (net monetary benefit, cost-effectiveness ratios).  411 

The PRIMEtime modelling of a SSB tax, a ban on television advertising of unhealthy foods, and a weight 412 

loss program illustrates the potentially wide variation in impact of interventions on prevalence of 413 

overweight and obesity, and subsequent changes in health and the need for health care. This variation 414 

is due to both the characteristics of the intervention and population that is targeted.  415 

While reductions in TV advertising of unhealthy foods to children has the largest impact in reducing 416 

prevalence of overweight and obesity, the SSB tax has much larger and more immediate benefits in 417 

reducing disease. The weight loss program also has immediate benefits in improving health despite 418 

relatively small benefits in reducing overweight and obesity on a population-scale. The variability in 419 

impact, both by age and over time, demonstrates the importance of using models to determine how 420 

best to combine intervention strategies to achieve maximum population benefit. 421 
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From a health sector perspective, the modelling shows that all three policies will likely have a positive 422 

net monetary benefit. This would suggest that all three of the obesity interventions are a good 423 

investment for HM Treasury. However, even when combined these three interventions are predicted 424 

to reduce prevalence of overweight and obesity by less than 1 percentage point by 2050. With almost 425 

a third of children and two-thirds of adults currently overweight or obese,[5] much more will be 426 

needed to address the problem.  427 

Study strengths and limitations 428 

While PRIMEtime is not primarily designed for forecasting disease rates, the accuracy of the 429 

underlying epidemiological model will nevertheless impact on the absolute magnitude of its outputs, 430 

such as QALYs and health care costs. Therefore it is reassuring that in validation PRIMEtime simulated 431 

future prevalence of diseases close to estimates from GBD and Kuan et al.[42] (<1 percentage point 432 

difference for 85% of estimates). For the majority of diseases, prevalence estimates from PRIMEtime 433 

were slightly higher than those from GBD and slightly lower than those from Kuan et al. This may partly 434 

relate to differences in the way that the two comparison studies have arrived at their estimates. The 435 

GBD collates data from a variety of sources, such as surveys, registries and published studies, and uses 436 

statistical models to estimate country-specific disease rates that are regionally and globally consistent. 437 

Whereas, Kuan et al have derived prevalence by analysing electronic health records from the primary 438 

care Clinical Practice Research Datalink linked with hospital admissions records from Hospital Episode 439 

Statistics, using a newly developed system of algorithmic phenotyping to identify cases of disease.[46] 440 

The linked databases are considered representative of the English population,[47] which constitutes 441 

around 85% of the UK population that we simulated in PRIMEtime. 442 

Other reasons for differences between PRIMEtime predictions and later estimates may include 443 

changes in incidence or case fatality rates that were not captured by trend estimates (e.g. due to 444 

increased or decreased funding of prevention or treatment practices) and assumptions embedded in 445 

the epidemiological modelling. PRIMEtime simulates the epidemiology using a proportional multi-446 
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state lifetable design.[23] In a standard multi-state lifetable model, an individual or population cohort 447 

transition from one state to another (e.g. from healthy, to having disease X, to dying from disease X 448 

or other causes). But as additional diseases are added to the simulation, the model quickly becomes 449 

intractable due the need for additional disease states (e.g. having disease X only, having disease Y only 450 

and having diseases X and Y) and data required to quantify rates of transition between these many 451 

states. A proportional multi-state lifetable model overcomes this problem by allowing the individual 452 

or population cohort to proportionally exist in multiple disease states. This approach potentially has 453 

an advantage in modelling health impacts of preventive interventions, where a change in population 454 

exposure to a risk factor, can influence many diseases. However, implicit in allowing a population 455 

cohort to proportionally exist across multiple disease states is the assumption that the diseases are 456 

independent. In some cases, this assumption is clearly violated. For example, prevalence of diabetes 457 

increases risk of both heart disease[48] and stroke,[49] even when adjusted for baseline 458 

cardiovascular risks such as obesity. In PRIMEtime, we adjust for the dependence between diabetes 459 

and cardiovascular disease outcomes, by treating diabetes as both a risk factor and a disease in the 460 

model structure. But data to explicitly incorporate other possible relationships, such as between 461 

cancer prevalence and cardiovascular outcomes, are limited. 462 

While the proportional multi-state lifetable approach does involve some trade-offs, the methods are 463 

widely used in modelling tools designed to evaluate health and economic impacts of diet and obesity 464 

interventions (e.g.[50-55]). Models that do not take this approach, typically only simulate one disease 465 

(e.g. the Coronary heart disease (CHD) policy model[56, 57]) or estimate changes in incidence and/or 466 

mortality of diseases without addressing co-morbidity (e.g. the Foresight model,[58]) thus sacrificing 467 

capacity to simulate changing effects on quality of life and health care costs through time.  468 

PRIMEtime is primarily designed for scenario evaluation. It is a tool that can be used to compare future 469 

impacts of policies, under a common set of assumptions about future unknowns, and to explore 470 

uncertainties in potential outcomes, in order to help set priorities for action and better understand 471 
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risks associated with decisions. Uncertainty bounds reflect best estimates of the likely range of 472 

outcomes, but will never capture impacts of future unpredictable events, such as the emergence of 473 

new pandemic diseases. Thus, the true strength of simulation is in comparison of alternative policy 474 

options under the same set of assumptions. And these assumptions must be updated as knowledge 475 

develops. For example, the selection of diet- and obesity-related diseases in PRIMEtime, and 476 

quantification of the dose-response relationships, as captured in Table S4 and Table S5 477 

(supplementary appendix Text S1) should be regularly revisited and updated as new systematic 478 

reviews and meta-analyses are published. 479 

Potential policy and research implications 480 

The three interventions we have evaluated in PRIMEtime are all components of the UK government’s 481 

latest obesity strategy.[17] The SSB tax was implemented as a Soft Drinks Industry Levy in 2018;[59] 482 

and a 9pm watershed on advertising of high fat, salt and sugar foods, is scheduled to come into effect 483 

at the end of 2022.[60] While weight loss programs for those who are already obese are 484 

recommended, as of mid-2021, there do not appear to be specific plans for added funding. While the 485 

modelling indicates that all three are a good investment, the relatively small overall impact on the 486 

high prevalence of overweight and obesity in the UK suggests that much more will be required to 487 

improve health and reduce the associated costs of care.  488 

A broader range of interventions targeting dietary intake and obesity may be beneficial for health in 489 

the UK, but it is likely that we also need to give greater consideration to the structural and systemic 490 

changes that are needed in our society to address the underlying drivers of the obesity epidemic. With 491 

globalisation has come enormous shifts in the way that we work, travel, produce and distribute food, 492 

which have impacted on both our dietary intake and energy expenditure.[61] While the underlying 493 

drivers and feedback mechanisms are sometime complex,[62] the last decade has seen big advances 494 

in the way that we can collect and make use of data to better understand these forces, as well as big 495 

advances in the tools available to build and run models. Since the early 2000s there has been rapid 496 
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growth in the development and use of models to find cost-effective interventions that directly target 497 

physical activity, dietary intake and obesity.[63, 64] But models can potentially now play a much 498 

broader role in simulating impacts of policies or trends that impact on the food system or active 499 

environment, either directly or indirectly. In the future, integration of health models, such as 500 

PRIMEtime, with models the simulate the complexities of our economies and changing climate, may 501 

help us better understand and address the underlying drivers of the obesity epidemic. 502 

References 503 

1. Williams G, Fruhbeck G. Obesity: science to practice: John Wiley & Sons; 2009. 504 

2. Caballero B. The global epidemic of obesity: an overview. Epidemiol Rev. 2007;29(1):1-5. 505 

3. The Global Health Observatory: Indicators: World Health Organization;  [13 May 2021]. Available 506 

from: https://www.who.int/data/gho/data/indicators. 507 

4. Dai H, Alsalhe TA, Chalghaf N, Riccò M, Bragazzi NL, Wu J. The global burden of disease 508 

attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the 509 

Global Burden of Disease Study. PLoS Med. 2020;17(7):e1003198. 510 

5. Health Survey for England. UK: NHS Digital. 511 

6. Theis DR, White M. Is obesity policy in England fit for purpose? Analysis of government strategies 512 

and policies, 1992–2020. The Milbank Quarterly. 2021;99(1):126-70. 513 

7. Jebb S, Aveyard P, Hawkes C. The evolution of policy and actions to tackle obesity in E ngland. 514 

Obes Rev. 2013;14:42-59. 515 

8. Cobiac LJ, Scarborough P. Modelling future trajectories of obesity and body mass index in 516 

England. PLoS ONE. 2021;16(6):e0252072. doi: 10.1371/journal.pone.0252072. 517 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

9. Metcalf CJE, Edmunds W, Lessler J. Six challenges in modelling for public health policy. Epidemics. 518 

2015;10:93-6. 519 

10. Webber L, Mytton OT, Briggs ADM, Woodcock J, Scarborough P, McPherson K, et al. The Brighton 520 

declaration: the value of non-communicable disease modelling in population health sciences. Eur J 521 

Epidemiol. 2014;29(12):867-70. doi: 10.1007/s10654-014-9978-0. 522 

11. Cobiac LJ, Scarborough P, Kaur A, Rayner M. The Eatwell guide: Modelling the health implications 523 

of incorporating new sugar and fibre guidelines. PLoS ONE. 2016;11(12):e0167859. 524 

12. Briggs AD, Cobiac LJ, Wolstenholme J, Scarborough P. PRIMEtime CE: a multistate life table model 525 

for estimating the cost-effectiveness of interventions affecting diet and physical activity. BMC Health 526 

Serv Res. 2019;19(1):485. 527 

13. Kent S, Aveyard P, Astbury N, Mihaylova B, Jebb SA. Is Doctor Referral to a Low-Energy Total Diet 528 

Replacement Program Cost-Effective for the Routine Treatment of Obesity? Obesity. 2019;27(3):391-529 

8. 530 

14. Mytton OT, Boyland E, Adams J, Collins B, O’Connell M, Russell SJ, et al. The potential health 531 

impact of restricting less-healthy food and beverage advertising on UK television between 05.30 and 532 

21.00 hours: A modelling study. PLoS Med. 2020;17(10):e1003212. 533 

15. Alonso S, Tan M, Wang C, Kent S, Cobiac L, MacGregor GA, et al. Impact of the 2003 to 2018 534 

Population Salt Intake Reduction Program in England: A Modeling Study. Hypertension. 535 

2021;77(4):1086-94. 536 

16. Cobiac LJ, Scarborough P. Modelling the health co-benefits of sustainable diets in the UK, France, 537 

Finland, Italy and Sweden. Eur J Clin Nutr. 2019;73(4):624-33. 538 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

17. Department of Health and Social Care. Tackling obesity: empowering adults and children to live 539 

healthier lives. UK: Department of Health and Social Care, 2020. 540 

18. Morgenstern H, Bursic ES. A method for using epidemiologic data to estimate the potential 541 

impact of an intervention on the health status of a target population. J Community Health. 542 

1982;7(4):292-309. 543 

19. Hill AB. The environment and disease: association or causation? : Sage Publications; 1965. 544 

20. Barendregt J, Oortmarssen GJ, Vos T, Murray CJL. A generic model for the assessment of disease 545 

epidemiology: the computational basis of DisMod II. Popul Health Metr. 2003;1. doi: 10.1186/1478-546 

7954-1-4. 547 

21. Lawes C, Vander Hoorn S, Law M, Elliott P. High blood pressure. In: Ezzati M, Lopez A, Rodgers A, 548 

Murray C, editors. Comparative Quantification of Health Risks: Global and Regional Burden of 549 

Disease Attributable to Selected Major Risk Factors. Geneva: World Health Organisation; 2004. 550 

22. Renehan AG, Soerjomataram I, Tyson M, Egger M, Zwahlen M, Coebergh JW, et al. Incident 551 

cancer burden attributable to excess body mass index in 30 European countries. Int J Cancer. 552 

2010;126(3):692-702. 553 

23. Barendregt JJ, Van Oortmarssen GJ, Van Hout BA, Van Den Bosch JM, Bonneux L. Coping with 554 

multiple morbidity in a life table. Math Popul Stud. 1998;7(1):29-49. 555 

24. University of California Berkeley (USA), Max Planck Institute for Demographic Research 556 

(Germany). Human Mortality Database  [5 May 2021]. Available from: www.mortality.org. 557 

25. Institute for Health Metrics and Evaluation. Global Health Data Exchange: GBD Results Tool  [5 558 

May 2021]. Available from: http://ghdx.healthdata.org/gbd-results-tool. 559 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

26. Institute for Health Metrics and Evaluation. Terms and Conditions  [5 May 2021]. Available from: 560 

http://www.healthdata.org/about/terms-and-conditions. 561 

27. Jackson C. disbayes  [5 May 2021]. Available from: https://github.com/chjackson/disbayes. 562 

28. Global Dietary Database: Tufts University;  [13 May 2021]. Available from: 563 

https://www.globaldietarydatabase.org/. 564 

29. Briggs AD, Scarborough P, Wolstenholme J. Estimating comparable English healthcare costs for 565 

multiple diseases and unrelated future costs for use in health and public health economic modelling. 566 

PLoS ONE. 2018;13(5):e0197257. 567 

30. Rogers N, Pell D, Mytton O, Penney T, Briggs A, Cummins S, et al. Changes in soft drinks 568 

purchased by British households associated with the UK soft drinks industry levy: a controlled 569 

interrupted time series analysis. BMJ Open (Under review). 570 

31. Number of households by household size and age of household reference person (HRP), English 571 

regions and UK constituent countries, 2019 UK: Office for National Statistics; 2019 [22 June 2019]. 572 

Available from: 573 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/families/adho574 

cs/11520numberofhouseholdsbyhouseholdsizeandageofhouseholdreferencepersonhrpenglishregion575 

sandukconstituentcountries2019. 576 

32. FAO. Food energy - methods of analysis and conversion factors. Rome: Food and Agriculture 577 

Organization of the United Nations, 2003. 578 

33. Hartmann-Boyce J, Theodoulou A, Oke JL, Butler AR, Scarborough P, Bastounis A, et al. 579 

Association between characteristics of behavioural weight loss programmes and weight change after 580 

programme end: systematic review and meta-analysis. bmj. 2021;374. 581 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

34. Jebb SA, Astbury NM, Tearne S, Nickless A, Aveyard P. Doctor Referral of Overweight People to a 582 

Low-Energy Treatment (DROPLET) in primary care using total diet replacement products: a protocol 583 

for a randomised controlled trial. BMJ open. 2017;7(8). 584 

35. Astbury NM, Aveyard P, Nickless A, Hood K, Corfield K, Lowe R, et al. Doctor Referral of 585 

Overweight People to Low Energy total diet replacement Treatment (DROPLET): pragmatic 586 

randomised controlled trial. bmj. 2018;362. 587 

36. Hall KD, Butte NF, Swinburn BA, Chow CC. Dynamics of childhood growth and obesity: 588 

development and validation of a quantitative mathematical model. The lancet Diabetes & 589 

endocrinology. 2013;1(2):97-105. 590 

37. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the 591 

effect of energy imbalance on bodyweight. Lancet. 2011;378(9793):826-37. PubMed PMID: S0140-592 

6736(11)60812-X. 593 

38. Office for National Statistics. 2016-based National Population Projections 2017 [1 September 594 

2020]. Available from: 595 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationproje596 

ctions/datasets/z3zippedpopulationprojectionsdatafilesengland. 597 

39. Global Burden of Disease Study 2015 (GBD 2015) Data Resources: Institute for Health Metrics and 598 

Evalaution, University of Washington; 2016 [cited 2016 12 December 2016]. Available from: 599 

http://ghdx.healthdata.org/gbd-2015. 600 

40. Sullivan PW, Slejko JF, Sculpher MJ, Ghushchyan V. Catalogue of EQ-5D scores for the United 601 

Kingdom. Med Decis Making. 2011;31(6):800-4. 602 

41. CPI INDEX 06 : HEALTH 2015=100 United Kingdom: Office for National Statistics;  [14 May 2021]. 603 

Available from: https://www.ons.gov.uk/economy/inflationandpriceindices/timeseries/d7bz/mm23. 604 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

42. Kuan V, Denaxas S, Gonzalez-Izquierdo A, Direk K, Bhatti O, Husain S, et al. A chronological map of 605 

308 physical and mental health conditions from 4 million individuals in the English National Health 606 

Service. The Lancet Digital Health. 2019;1(2):e63-e77. 607 

43. HM Treasury. The Green Book: Central Government Guidance on Appraisaland Evaluation. UK: 608 

HM Treasury, 2018. 609 

44. Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. New York: 610 

Oxford University Press; 2006. 611 

45. Glover D, Henderson J. Quantifying health impacts of government policies2010 21 October 2021. 612 

Available from: 613 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file614 

/216003/dh_120108.pdf. 615 

46. Denaxas S, Gonzalez-Izquierdo A, Direk K, Fitzpatrick NK, Fatemifar G, Banerjee A, et al. UK 616 

phenomics platform for developing and validating electronic health record phenotypes: CALIBER. J 617 

Am Med Inform Assoc. 2019;26(12):1545-59. 618 

47. Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, Van Staa T, et al. Data resource 619 

profile: clinical practice research datalink (CPRD). Int J Epidemiol. 2015;44(3):827-36. 620 

48. Peters SA, Huxley RR, Woodward M. Diabetes as risk factor for incident coronary heart disease in 621 

women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 622 

individuals and 28,203 coronary events. Diabetologia. 2014;57(8):1542-51. 623 

49. Peters SA, Huxley RR, Woodward M. Diabetes as a risk factor for stroke in women compared with 624 

men: a systematic review and meta-analysis of 64 cohorts, including 775 385 individuals and 12 539 625 

strokes. Lancet. 2014;383(9933):1973-80. 626 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

50. Brown V, Ananthapavan J, Veerman L, Sacks G, Lal A, Peeters A, et al. The potential cost-627 

effectiveness and equity impacts of restricting television advertising of unhealthy food and 628 

beverages to Australian children. Nutrients. 2018;10(5):622. 629 

51. Cleghorn C, Jones A, Freeman L, Wilson N. Updated Cost-effectiveness Modelling of a Behavioural 630 

Weight Loss Intervention Involving a Primary Care Provider. New Zealand: University of Otago, 2020. 631 

52. Cobiac LJ, Vos T, Veerman JL. Cost-effectiveness of Lighten Up to a Healthy Lifestyle and Weight 632 

Watchers. Report for Queensland Health. Centre for Burden of Disease and Cost-Effectiveness, The 633 

University of Queensland, 2008. 634 

53. Forster M, Veerman JL, Barendregt JJ, Vos T. Cost-effectiveness of diet and exercise interventions 635 

to reduce overweight and obesity. Int J Obes. 2011. 636 

54. Jones AC, Veerman JL, Hammond D. The health and economic impact of a tax on sugary drinks in 637 

Canada. Waterloo (ON): University of Waterloo, 2017. 638 

55. Bourke EJ, Veerman JL. The potential impact of taxing sugar drinks on health inequality in 639 

Indonesia. BMJ global health. 2018;3(6):e000923. 640 

56. Moran A, Zhao D, Gu D, Coxson P, Chen C-S, Cheng J, et al. The future impact of population 641 

growth and aging on coronary heart disease in China: projections from the Coronary Heart Disease 642 

Policy Model-China. BMC Public Health. 2008;8(1):1-14. 643 

57. Weinstein MC, Coxson PG, Williams LW, Pass TM, Stason WB, Goldman L. Forecasting coronary 644 

heart disease incidence, mortality, and cost: the Coronary Heart Disease Policy Model. Am J Public 645 

Health. 1987;77(11):1417-26. 646 

58. McPherson K, Marsh T, Brown M. Foresight. Tackling obesities – modelling future trends in 647 

obesity and the impact on health. London: Government Office for Science, 2007. 648 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

59. HM Revenue & Customs. Soft Drinks Industry Levy: UK Government; 2016 [cited 2021 7 April 649 

2021]. Available from: https://www.gov.uk/government/publications/soft-drinks-industry-levy/soft-650 

drinks-industry-levy. 651 

60. Introducing further advertising restrictions on TV and online for products high in fat, salt and 652 

sugar: government response: UK Government; 24 June 2021 [30 August 2021]. Available from: 653 

https://www.gov.uk/government/consultations/further-advertising-restrictions-for-products-high-654 

in-fat-salt-and-sugar/outcome/introducing-further-advertising-restrictions-on-tv-and-online-for-655 

products-high-in-fat-salt-and-sugar-government-response. 656 

61. Kawachi I, Wamala SP, ProQuest E, Oxford University P. Globalization and health. Wamala S, 657 

Kawachi I, Kawachi I, Wamala S, editors. New York;Oxford;: Oxford University Press; 2007. 658 

62. Tackling Obesities: Future Choices – Project report. UK: Government Office for Science, 2007. 659 

63. Cobiac LJ, Veerman L, Vos T. The role of cost-effectiveness analysis in developing nutrition policy. 660 

Annu Rev Nutr. 2013;33:373-93. 661 

64. Schwander B, Hiligsmann M, Nuijten M, Evers S. Systematic review and overview of health 662 

economic evaluation models in obesity prevention and therapy. Expert review of 663 

pharmacoeconomics & outcomes research. 2016;16(5):561-70. 664 

 665 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 3, 2023. ; https://doi.org/10.1101/2022.05.18.22275284doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275284
http://creativecommons.org/licenses/by-nc-nd/4.0/

