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ABSTRACT 

Objective: To compare the effectiveness of multiple artificial intelligence (AI) models with 

unweighted Opioid Risk Tool (ORT) in opioid use disorder (OUD) prediction. 

Materials and Methods: This is a retrospective cohort study of deidentified claims data from 

2009 to 2020. The study cohort includes 474,208 patients. Cases are prescription opioid users 

with at least one diagnosis of OUD or at least one prescription for buprenorphine or methadone. 

Controls are prescription opioid users with no OUD diagnoses or buprenorphine or methadone 

prescriptions. Cases and controls are matched based on age, sex, opioid use duration and 

longitudinal data availability. OUD prediction performance of logistic regression (LR), random 

forest (RF), XGBoost, long short-term memory (LSTM), transformer, our proposed AI model for 

OUD prediction (MUPOD), and the unweighted ORT were assessed using accuracy, precision, 

recall, F1-score and AUC.  

Results: Data includes 474,208 patients; 269,748 were females with an average age of 56.78 

years. On 100 randomly selected test sets including 47,396 patients, MUPOD can predict OUD 

more efficiently (AUC=0.742±0.021) compared to LR (AUC=0.651±0.025), RF 

(AUC=0.679±0.026), XGBoost (AUC=0.690±0.027), LSTM (AUC=0.706±0.026), transformer 

(AUC=0.725±0.024) as well as the unweighted ORT model (AUC=0.559±0.025).  

Discussion: OUD is a leading cause of death in the United States. AI can be harnessed with 

available claims data to produce automated OUD prediction tools. We compared the 

effectiveness of AI models for OUD prediction and showed that AI can predict OUD more 

effectively than the unweighted ORT tool.  

Conclusion: Embedding AI algorithms into clinical care may assist clinicians in risk 

stratification and management of patients receiving opioid therapy. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.18.22275281doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275281
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

Early prediction and engagement of individuals at risk of developing an opioid use 

disorder (OUD) is a critical unmet need and public health emergency.1,2 According to latest 

estimates, 40.3 million people aged 12 and over in the U.S. have a substance use disorder (SUD), 

with 2.7 million reporting an OUD.3 Individuals with OUD often do not seek treatment or have 

internalized stigma about OUD that limits treatment.4,5 While there are tools developed currently 

to predict aberrant behavior when prescribing opioids6 from a general primary care population7, 

there are only a few clinical tools, such as the Opioid Risk Tool (ORT)8 and the revised 

unweighted version of ORT (ORT-OUD)9, developed and validated for assessing the risk of 

OUD.  

However, these tools have been created based on small and unrepresentative samples 

(ORT using data from 185 patients and ORT-OUD using 1178 patients) and have limited 

generalizability and predictive validity with sensitivity and specificity ranging from 0.25 to 0.83 

and 0.43 to 0.88, respectively.8,9 Further, due to the social stigma associated with OUD, primary 

care professionals are often reluctant to screen and diagnose an individual with OUD using these 

tools as they require the clinicians to ask about stigmatized events in patients’ history such as 

personal and family history of substance use and mental health disorders10. These complications 

present barriers for early identification and engagement of individuals at risk for OUD. 

Since individuals are reluctant to seek treatment, one solution is to identify patients 

otherwise engaged in the health care system where a majority of ambulatory care is provided.11,12  

Available U.S. national administrative and clinical data can be utilized to help clinicians screen 

and identify high risk patients providing an opportunity for primary care professionals to play a 

greater role in increasing early detection, treatment, and prevention of OUD. Combining existing 
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and routinely collected administrative data with Artificial Intelligence (AI) offers the potential to 

understand factors predicting OUD risk and trajectories in a longitudinal framework. To this end, 

there have been multiple attempts to create OUD prediction tools utilizing healthcare data and 

AI, machine learning and statistical methods. Classical machine learning and statistical models 

such as random forests13, gradient boosting machines14 and logistic regressions15 have been used 

with claims data16–20, electronic health records and lab tests21 as well as national survey data 

sets.22 Others have produced OUD prediction tools customized for specific cohorts such as 

lumbar spine surgery patients23 or arthroscopic hip surgery patients.24 Statewide prescription 

drug monitoring program data is another source of data that have been used in different parts of 

the country with higher rates of OUD to create population specific OUD prediction tools.25,26 

More recently, deep learning models have been applied to solve SUD prediction tasks,27 opioid 

long term use prediction,28 as well as OUD prediction29–32 and have shown superior performance 

compared to classical machine learning models.  

Although the recently developed AI and machine learning models showed promising 

performance, they still have significant limitations such as using underrepresented data sets or 

traditional models with low capacity, and none have been compared with the current risk models 

for OUD prediction. This study is a comprehensive comparison of the state-of-the-art AI and 

machine learning models, a novel AI model we have specifically developed to solve OUD 

prediction tasks, and the ORT-OUD tool as a common practice for OUD risk screening among 

primary care providers. Our proposed model, called Multi-stream transformer for Predicting 

Opioid use Disorder (MUPOD), was developed in our prior pilot work29 and is extended in the 

current study. MUPOD is developed to simultaneously analyze patients’ medications, diagnoses, 
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procedures and demographic records longitudinally by attending to segments within and across 

these data streams and predicts the onset of OUD.  

METHODS 

This retrospective study uses over 11 years of deidentified national claims data to train, 

test and compare state of the art AI and machine learning models and the ORT-OUD tool as a 

well-stablished OUD prediction tool. Use of this data for this study was approved as an exempt 

protocol by The University of Kentucky’s Institutional Review Board.  

Data 

The large-scale IBM Health MarketScan Commercial Claims database33 (formerly known 

as Truven) including years 2009 to 2020 were used. Data include person-specific clinical 

utilization, expenditures and enrollment across inpatient, outpatient, prescription drug and carve-

out services. The database contains over 3 billion prescriptions, 8 billion diagnoses, and 10 

billion procedure records for over 164 million patients. These enrollees are nationally 

representative of the US population with respect to gender, regional distribution, and age.  

Cohort Selection 

The study cohort for this work includes patients with 1) at least one OUD diagnosis 

(ICD-9 of 304.0x, 305.5x or ICD-10 of F11.xx) in their records or at least one prescription for 

medications used to treat opioid use disorder, buprenorphine or methadone, and 2) at least 3 

opioid prescriptions (other than buprenorphine and methadone) filled six months or more prior to 

the first OUD diagnoses date, and 3) at least 12 months of data availability. The inclusion criteria 

of at least 3 opioid prescriptions and 12 months of data availability were designed based on 

domain knowledge and to address data sparsity and outlier issues in the data. This selection 
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resulted in 237,104 cases. The control cohort includes patients who: 1) have never been 

diagnosed with OUD nor received a buprenorphine or methadone prescription, and 2) have at 

least 3 opioid prescriptions (other than buprenorphine and methadone) filled six months or more 

prior to their last record in the data, 3) have at least 12 month of data availability. This selection 

resulted in 7,755,649 controls. Cases and controls were then matched based on age, sex, opioid 

use duration and longitudinal data availability using an anchor-based method (refer to section S2 

in the supplement for more details on our matching algorithms). The final data includes 474,208 

patients with equal number of cases and controls which were used to conduct our experiments. 

Our experiments include both balanced and imbalanced scenarios (with substantially more 

controls than cases to assess real world utility of our methods). Note, the prediction window in 

this study is 6 months meaning that the prediction is performed using data from the first record 

up to 6 months prior to initial diagnosis/last record date.  

Predictors  

Predictors included all medications, diagnoses and procedure codes as well as 

demographic variables including sex and age. Medications were grouped using their root 

classification based on Medispan generic product identifiers34, and diagnoses and procedures 

were grouped using clinical classification software (CCS)35 codes. Medications, diagnoses and 

procedures included 94, 283 and 242 variables, respectively plus the 2 demographic variables. 

Variable distributions were used to exclude extremely sparse variables (see section S3 in 

supplemental material). The final variable set contained 269 variables including 50 medications, 

138 diagnoses, 79 procedures, and 2 demographic variables.  
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AI models 

Machine learning models used in this study included logistic regression15, random 

forest13 and xgboost14 methods. Deep learning models include long short-term memory36 model, 

transformer model37 and an extended version of the novel deep learning model we developed for 

OUD prediction called MUPOD.29 MUPOD was originally developed for OUD prediction using 

22 medications and diagnoses codes for 392,492 patients with spondylosis; intervertebral disc 

disorders; other back problems (CCS code of 205). Here, we extended this method and trained it 

using 269 medications, diagnoses, procedures and demographics of 474,208 patients’ data. 

Section S5 in the supplemental material includes more details on the MUPOD’s architecture and 

mathematical equations.  

LR and RF were trained using static data as they are more effective on static and non-

longitudinal data. LSTM, Transformer and MUPOD were trained using longitudinal data (see 

section S1 in the supplemental materials for more details on data formatting). The longitudinal 

data for each patient 𝑝! in a complete list of 𝑛 patients 𝑃 = {𝑝", … , 𝑝#} includes tuples	+𝑡$! , 𝑋!. 

where 𝑡$! is the 𝑗%& timestamp for patient 𝑝! and 𝑋! = {𝑥"! , … , 𝑥'! } is a vector including 

medications, diagnoses, procedures and demographics information of patient 𝑝! at time 𝑡$!. To 

create static date, this format was converted to a matrix Y with 𝑃 = {𝑝", … , 𝑝#}  rows and 𝐹 =

{𝑓", … , 𝑓#} columns where 𝑃 is the number of patients, and 𝐹 is the number of static variables 

including frequency values for medication, diagnosis, procedures features across time steps as 

well as the demographic features. LSTM models were trained using concatenated medication, 

diagnoses, procedure and demographic data streams. We dynamically unrolled the LSTM 

models based on the input sequences' lengths and applied a fully connected layer and an argmax 

function on the last output to make the final decisions38. Transformer is the original encoder 
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block of the transformer model37 trained using concatenated medication, diagnosis, procedures 

and demographics features. Then, a fully connected layer and softmax39 function were used to 

perform the final classifications. 

Performance assessment 

Accuracy, precision, recall, F1-score and area under the receiver operating curve (AUC) 

were used to measure the predictive power of all models. Accuracy measures the ratio of total 

correct predictions of the models for all samples in the test sets. Precision (also known as 

positive predictive value) shows how precise a model is when predicting a sample as OUD 

positive. Recall (or sensitivity) shows how accurate the model is in retrieving all OUD 

positive samples in the test data. F1 is the harmonic mean of precision and recall and AUC 

summarizes the model's predictive modeling capabilities across different settings.40 All models 

were tested on 100 randomly selected test sets sampled from 47,396 unseen patients’ data. The 

results presented in this study are averages and standard deviations across these 100 test sets.  

RESULTS 

Sample characteristics  

In general, demographics in terms of age, sex, months of opioid use prescription, and data 

availability were similar among cases and controls (Table 1). For example, average age of cases 

and controls were 56.51 years (25th and 75th percentiles = 46, 66) and 56.95 years (25th and 75th 

percentiles = 46,66), respectively. The majority were female (56.89% among both cases and 

controls), cases had a higher average of opioid prescription use (93.54 MME/day among cases 

vs. 73.22 MME/day among controls).  
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Table 1. Patient Characteristics among Cases and Controls, IBM MarketScan, 2009 – 2020. 
Demographic variables, and top-5a frequent medications, diagnoses and procedures among cases. 

Characteristics Cases 
(n=237,104) 

Controls 
(n=237,104) 

Total 

Demographics    
    Age 56.51b  

(46, 66)c 
56.95  
(46, 66) 

56.73 
(46, 66) 

    Sex (females) 134,892d  
(56.89%) 

134,892 
(56.89%) 

269,784 
(56.89%) 

    Monthly opioid prescription use 20.21b  
(7, 27)c 

17.99  
(6, 24) 

19.10  
(6, 25) 

    Data availability 47.39b  
(25, 66)c 

47.49  
(25, 66) 

47.44  
(25, 66) 

Top-5 most frequent Medications    
    Analgesics–Opioid (65x) 237,104d 

(100%) 
237,104 
(100%) 

474,208 
(100%) 

    Antidepressants (58x) 155,481 
(65.57%) 

126,122 
(53.19%) 

281,603 
(59.38%) 

    Analgesics - Anti-inflammatory (66x) 153,361 
(64.68%) 

147,312 
(62.13%) 

300,673 
(63.40%) 

    Musculoskeletal Therapy Agents (75x) 146,604 
(61.83%) 

124,912 
(52.68%) 

271516 
(57.26%) 

    Central Nervous System Agents (57x) 133,771 
(56.42%) 

111,175 
(46.89%) 

244,946 
(51.65%) 

Top-5 most frequent Diagnoses    
    Spondylosis; intervertebral disc  
    disorders; other back problems (205) 

195,689d 

(82.53%) 
171,362 
(72.27%) 

367,051 
(77.40%) 

    Other connective tissue disease (211) 175,881 
(74.18%) 

164,259 
(69.28%) 

340,140 
(71.73%) 

    Other non-traumatic joint disorders (204) 156,426 
(65.97%) 

147,637 
(62.27%) 

304,063 
(64.12%) 

    Other nervous system disorder (95) 147,486 
(62.20%) 

125,903 
(53.10) 

273,389 
(57.65%) 

    Other upper respiratory infections (126) 125,245 
(52.82%) 

121,599 
(51.28%) 

246,844 
(52.05%) 

Top-5 most frequent Procedures    
    Laboratory – Chemistry and  
    Hematology (233) 

210,436d 

(88.75%) 
207,501 
(87.51%) 

417937 
(88.13%) 

    Other diagnostic radiology and  
    related techniques (226) 

197,851 
(83.44%) 

188,039 
(79.31%) 

385,890 
(81.37%) 

    Microscopic examination (bacterial smear, culture,  
    toxicology) (206) 
 

182,717 
(77.06%) 

171,087 
(72.16%) 

353,804 
(74.61%) 

    Electrocardiogram (202) 
 

140,532 
(59.27%) 

131,380 
(55.41%) 

271,912 
(57.34%) 

    Pathology (234) 
 

140,004 
(59.05) 

135,414 
(57.11%) 

275,418 
(58.08%) 

a Variables including extremely broad range of medical codes are not presented in this table. This includes diagnoses CCS codes of Residual 
codes, unclassified (259) and medical examination/evaluation (256); and procedure codes Other therapeutic Procedures (231), Other Laboratory 
(235), Medications (Injections, infusions and other forms) (204) and DME and supplies (243). b Average among patients. c 25th and 75th 
percentiles. d Total number of patients. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.18.22275281doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275281
http://creativecommons.org/licenses/by-nc-nd/4.0/


The biggest difference between the top-5 medication use frequencies among cases and controls 

included antidepressant medications (65.57% vs 53.19%, respectively). In terms of top-5 most 

frequent diagnoses, the “Spondylosis; intervertebral disc disorders; other back problems (CCS 

code = 205)” was more common among cases compared to controls (82.53% vs 72.27%). For 

procedures, “Microscopic examination (bacterial smear, culture, toxicology) (CCS code = 206)” 

was more common among cases than controls (77.06% vs 72.16%). 

 

OUD prediction on balanced test sets 

Prediction results for logistic regression, random forest, XGBoost, LSTM, transformer 

and MUPOD as well as the ORT-OUD9 tool are presented in Table 2. Note, the suggested 

decision threshold for ORT-OUD is 3; however, the prediction performance results for 

thresholds 1, 2, 3 and 4 provide a more comprehensive comparison. The models corresponding 

to each of these thresholds are denoted as ORT-OUD-x where x=1, 2,3, or 4. MUPOD has the 

highest accuracy (0.652±0.019), recall (0.890±0.021), F1-score (F1=0.718±0.014) and AUC 

(0.742±0.021) compared to all other AI models and the ORT-OUD tools. Ranking the models in 

Table 2 from the most efficient to the least with regard to their AUC scores as a primary metric 

for model evaluation reveals MUPOD > transformer > LSTM > XGBoost > random forest> 

logistic regression> ORT-OUD. Among all versions of ORT-OUD tools, the highest performing 

threshold turned out to be 1 instead of 3 in terms of F1-score. As the thresholds increases from 1 

to 4, the precision increases while the recall significantly drops leading to a significantly lower 

F1 score.    
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Table 2. Performance of OUD prediction using AI, machine learning and ORT-OUD models.  
Model Acc. Prec. Rec. F1 AUC 

Logistic Regression 0.609 
±0.021 

0.631 
±0.026 

0.519 
±0.031 

0.569 
±0.027 

0.651 
±0.025 

Random Forest 0.631 
±0.022 

0.624 
±0.022 

0.650 
±0.030 

0.637 
±0.022 

0.679 
±0.026 

XGBoost 0.638 
±0.023 

0.631 
±0.024 

0.659 
±0.031 

0.644 
±0.024 

0.690 
±0.027 

LSTM 0.648 
±0.024 

0.628 
±0.022 

0.719 
±0.033 

0.670 
±0.023 

0.706 
±0.026 

Transformer 0.651 
±0.021 

0.603 
±0.016 

0.874 
±0.023 

0.713 
±0.016 

0.725 
±0.024 

MUPOD 0.652a 

±0.019 
0.602 
±0.014 

0.890 
±0.021 

0.718 
±0.014 

0.742 
±0.021 

ORT-OUD-1 0.534 
±0.021 

0.523 
±0.015 

0.714 
±0.030 

0.603 
±0.019 

0.559± 
0.025 

ORT-OUD-2 0.547 
±0.020 

0.574 
±0.034 

0.350 
±0.030 

0.434 
±0.031 

0.559± 
0.025 

ORT-OUD-3b 0.527 
±0.013 

0.619 
±0.064 

0.129 
±0.020 

0.213 
±0.030 

0.559± 
0.025 

ORT-OUD-4 0.513 
±0.007 

0.691 
±0.131 

0.039 
±0.011 

0.074 
±0.021 

0.559± 
0.025 

a Bolded numbers are the highest values in each column. b Proposed decision threshold in the 
original ORT-OUD study is 3.   
 

OUD prediction on imbalanced test sets 

The predictive power of the models was further tested on three imbalanced test sets to 

estimate the generalizability of the models more efficiently in real world environment (Table 3). 

We created three imbalanced test sets with the ratio of cases to controls set to 0.5, 0.2, 0.1 and 

0.01 and tested the models using these imbalanced test sets. The highest AUC for all imbalanced 

test sets was obtained by MUPOD. The ORT-4 had the highest precisions (0.517±0.209, 
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0.304±0.204, 0.156±0.192 and 0.020±0.064 for .5N, .2N, .1N and .01N test sets, respectively) 

and the MUPOD model had the highest recall (0.888±.029, 0.883±.047, 0.897±.058, and 

0.918±0.180 for .5N, .2N., .1N and .01N test sets, respectively). MUPOD had the highest F1 

score (0.579±.018) for the .5N test sets, but the highest F1 score for the other three imbalanced 

test sets were obtained using the LSTM model (0.370±0.031, 0.245±0.030 and 0.035±0.014 for 

.2N, .1N, and .01N, respectively).  

Table 3 also shows the effect of using different decision thresholds for the ORT-OUD 

tool. Among the ORT-OUD tools, the ORT-OUD-1 had the highest F1 score for two of the 

imbalanced test sets (0.472±0.020 and 0.288±0.026 for .5N and .2N sets, respectively). ORT-

OUD-3, the ORT-OUD tool with the recommended threshold of 3, had the highest F1 score 

(0.180 ± 0.046) for the most extreme imbalanced test set. However, ORT-OUD-4 would be a 

more effective tool compared to the other versions of ORT-OUD tools when a more precise 

decision-making system is desired.  

Table 3. OUD prediction results for imbalanced test sets. 
Model Precision Recall F1-Score AUC 

.5Na .2N .1N .01N .5N .2N .1N .01N .5N .2N .1N .01 .5N .2N .1N .01 
Logistic 
Regression 

.461 
±.036 

.254 
±.032 

.147 
±.025 

.016 
±.010 

.518 
±.044 

.517 
±.076 

.522 
±.100	

.478 
±.315 

.487 
±.035 

.340 
±.044 

.228 
±.039 

.030 
±.020 

.650 
±.030 

.652 
±.046 

.656 
±.052 

.646 
±.167 

Random 
Forest 

.454 
±.029 

.248 
±.024 

.145 
±.022 

.016 
±.008 

.651 
±.045 

.644 
±.064 

.663 
±.102 

.652 
±.295 

.535 
±.031 

.358 
±.034 

.238 
±.035 

.032 
±.016 

.679 
±.030 

.675 
±.039 

.686 
±.057 

.676 
±.162 

XGBoost .461 
±.030 

.252 
±.025 

.148 
±.020 

.018 
±.009 

.657 
±.042 

.650 
±.067 

.668 
±.096 

.690 
±.292	

.541 
±.030 

.363 
±035 

.242 
±.032 

.034 
±.017 

.689 
±.031 

.689 
±.038 

.699 
±.051 

.693 
±.162 

LSTM .458 
±.024 

.251 
±.021 

.147 
±.018 

.018 
±.007 

.718 
±.043 

.712 
±.067 

.733 
±.091 

.775 
±.292 

.559 
±.027 

.370 
±.031 

.245 
±.030 

.035 
±.014 

.705 
±.029 

.705 
±.042 

.717 
±.057 

.724 
±.167 

Transform
er 

.431 
±.018 

.233 
±.015 

.132 
±.012 

.015 
±.005 

.872 
±.031 

.871 
±.048 

.872 
±.071 

.855 
±.250 

.577 
±.020 

.367 
±.022 

.229 
±.020 

.029 
±.011 

.724 
±.026 

.721 
±.036 

.724 
±.052 

.720 
±.156 

MUPOD .430 
±.016 

.231 
±.012 

.132 
±.009 

.015 
±.004 

.888b 
±.029 

.883 
±.047 

.897 
±.058 

.918 
±.180 

.579 
±.018 

.366 
±.018 

.230 
±.016 

.030 
±.009 

.741 
±.023 

 .737 
±.035 

.746 
±.052 

.732 
±.136 

ORT- 
OUD-1 

.354 
±.016 

.180 
±.016 

.099 
±.012 

.011 
±.005 

.713 
±.035 

.716 
±.069 

.712 
±.086 

.730 
±.303 

.472 
±.020 

.288 
±.026 

.173 
±.021 

.022 
±.009 

.556 
±.027 

.561 
±.042 

.560 
±.058 

.562 
±.188 

ORT- 
OUD-2 

.399 
±.035 

.213 
±.036 

.121 
±031 

.013 
±.011 

.344 
±.039 

.351 
±.063 

.357 
±.095 

.337 
±.305 

.369 
±034 

.265 
±.044 

.180 
±.046 

.024 
±.022 

.556 
±.027 

.561 
±.042 

.560 
±.058 

.562 
±.188 

ORT- 
OUD-3* 

.440 
±.080 

.255 
±.084 

.143 
±.073 

.018 
±.030 

.125 
±.029 

.135 
±.048 

.133 
±.073 

.128 
±.208 

.194 
±.042 

.175 
±.059 

.136 
±.071 

.031 
±.051 

.556 
±.027 

.561 
±.042 

.560 
±.058 

.562 
±.188 

ORT- 
OUD-4 

.517 
±.209 

.304 
±.204 

.156 
±.192 

.020 
±.064 

.037 
±.018 

.039 
±.028 

.036 
±.042 

.040 
±.123 

.069 
±.032 

.068 
±.048 

.057 
±.065 

.026 
±.082 

.556 
±.027 

.561 
±.042 

.560 
±.058 

.562 
±.188 

a The .xN means the number of samples in the cases are 0.x times smaller than the number of 
samples in controls. b Bolded numbers are the highest values in each column. * The 
recommended decision threshold for ORT-OUD model is 3. 
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Overall, MUPOD with the highest AUC for all balanced and imbalanced test sets had the 

best performance compared to all other models. ORT-OUD-4 was the most precise model, but 

with the cost of significantly sacrificing recall and F1scores. Note, similar to ORT-OUD models, 

all AI models can be configured in favor of producing very high precision using the decision-

making threshold in their final neural layer. Precision at recall 0.50 for MUPOD on the 0.5N, 

0.2N, 0.1N, and 0.01N sets are 0.557±0.036, 0.326±0.043, 0.205±0.044, and 0.022±0.015, 

respectively, which are significantly higher than relevant OUD-ORT-4 while recall 0.500 is still 

higher than the ORT-OUD-4 recalls too. Therefore, MUPO can be set in favor of precision if 

needed and still performs significantly more effective than all the ORT tools in Table 3.  

Effect of morphine milligram equivalent 

The effect of opioid dosage prescribed to those patients in the test sets that MUPOD 

could successfully classify as cases (true positive) and controls (true negative) was explored. 

Dosage was measured using Morphine Milligram Equivalent (MME) per day41. Table 4 presents 

MME statistics for true positive and true negative cohorts. Setting A in Table 4 presents the total 

average MME per day across all records from the first record to the first diagnosis date or last 

record date. Further, average MME is shown for the records within the 6-month prediction 

window prior to the first OUD diagnosis/last record date. The total average MME per day for 

cases was 93.54 (30.72, 25th percentile and 68.45, 75th percentile), while this number for controls 

was 73.22 (24.67, 25th percentile and 48.91, 75th percentile). This difference is significantly 

greater the closer to OUD onset (within the 6-month prediction window). For cases, this number 

was 94.05 (20.32, 25th percentile and 67.50, 75th percentile) versus 55.19 (0, 25th percentile and 

39, 75th percentile) for controls. A similar gap between opioid dosage prescription for cases and 

controls has been reported repeatedly in the literature.42–46 In setting B, accumulated value for all 
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opioid prescription for each patient was computed and averaged across all patients in each 

cohort. Sum of MME prescribed to cases was 5452.07 while this number for controls was 

2906.61 and this difference is significantly greater within the 6-month prediction window; 

984.13 for cases versus 433.16 for controls.  

Table 4. Morphine Milligram Equivalent (MME) per day computed for the true positive and true 
negative cohorts.  

Characteristics True Positives  True Negatives 
      n 20881 9886 
     Age 56.52 (46, 66) 57.04 (47, 66) 
     Female 13,337 (56.57%) 13,624 (57.20%) 
Setting A (average MME)   
     Averaged MME: all records (from 
first record to OUD diagnoses/last 
record date) 

93.54 (30.72, 68.45) 
 

73.22 (24.67, 48.91) 

     Averaged MME: within the 6-month 
prediction window immediately 
preceding the diagnoses/last record 

94.05 (20.32, 67.50) 55.19 (0.00, 39.00) 

Setting B (accumulated MME)   
     Accumulated MME: all records 
(from first record to OUD diagnoses/last 
record) 

5452.07 2906.61 

     Accumulated MME: within the 6-
month prediction window immediately 
preceding the diagnoses/last record 

984.13 433.16 

The numbers for MME are overall average (25th percentile, 75th percentile).  
 

Risk factor identification 

We used the shapely additive explanation (SHAP)47 to perform feature importance 

assessments using XGBoost model (see section S6 for more details on the XGBoost model’s 

setting) (Figure 1). SHAP works best with our XGBoost model as our current version of 

MUPOD is not compatible with SHAP. Blue indicates lower frequencies and red indicates higher 

frequencies of the variables; negative SHAP values show association with lower risks of OUD 

and positive values show association with higher risks of developing OUD. The fewer the 

diagnoses and procedures such as ‘spondylosis; intervertebral disc disorders, other back 
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problems’, ‘other diagnostic procedures (interview, evaluation, consultation)’, the lower the risk 

of developing OUD; likewise, the fewer the prescriptions for ‘neuromuscular agents’, 

‘antidepressants’, ‘central nervous system agents’ and ‘analgesics-opioid’ the smaller the risk for 

OUD. Increasing age, presence of ‘other screening for suspected conditions’ and ‘essential 

hypertension’ diagnoses were negatively associated with OUD. These findings is consistent with 

past related studies.48–50  

 
 

Figure 1. OUD risk factor identification using shapely additive explanation method. Blue indicates lower 

frequencies and red indicates higher frequencies of the variables; negative SHAP values show association with 

lower risks of OUD and positive values show association with higher risks of developing OUD. 

 

DISCUSSION 

Using the large-scale national IBM MarketScan data to train and test AI models and 

compare their performance with the ORT-OUD tool, we found that AI models better predicted 

OUD 6 months before the onset of the disease. The proposed AI model, MUPOD, had a higher 

AUC and F1-score compared to the ORT-OUD tool on the balanced test set. Further, MUPOD 

had a higher AUC and F1 score on all imbalanced test sets compared to the ORT-OUD tools. 
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Our findings suggest that using an AI algorithm to identify OUD in clinical care may be more 

effective, and less intrusive, than standard clinical pathways.  

At present, healthcare providers use ORT based tools with the patient in front of them, 

asking questions interactively about risk for OUD. There are limitations with this current state 

including willingness of patients to answer sensitive questions due to stigma associated with 

OUD and with personal and family history. Our study demonstrates that all of the items in ORT-

OUD tool can be efficiently extracted from the large-scale data with automatic extraction of 

pertinent medical history. Therefore, we believe using claims data to assess patients’ risk of 

developing OUD is still a promising heuristic for using the ORT-OUD tool and could potentially 

be combined with individual patient encounters and information to inform clinical diagnosis. 

  

LIMITATION 

Although AI models were thoroughly evaluated using repeated testing, more studies are 

needed to assess the current AI model further in two ways. First, testing the current model using 

claims data sets other than IBM MarketScan. Second, more prospective studies are needed to 

assess our AI model in a clinical setting where the AI model and the ORT based tools are used to 

screen the OUD risk and the patients are followed up for OUD diagnoses longitudinally. In this 

study, we used prescriptions, diagnoses, procedures and demographic features of patients to 

perform OUD prediction. However, there could be other factors such as socio-economic 

variables that can increase the predictive power of AI models and may be included in future 

models.  
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