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Abstract 

Childhood obesity is a complex disorder that appears to be influenced by an interacting system of 

many factors. Taking this complexity into account, we aim to investigate the causal structure 

underlying childhood obesity. Our focus is on identifying potential early, direct or indirect, causes of 

obesity which may be promising targets for prevention strategies. Using a causal discovery algorithm, 

we estimate a cohort causal graph (CCG) over the life course from childhood to adolescence. We 

adapt a popular method, the so-called PC-algorithm, to deal with missing values by multiple 

imputation, with mixed discrete and continuous variables, and that takes background knowledge such 

as the time-structure of cohort data into account. The algorithm is then applied to learn the causal 

relations among 51 variables including obesity, early life factors, diet, lifestyle, insulin resistance, 

puberty stage and cultural background of 5,112 children from the European IDEFICS/I.Family cohort 

across three waves (2007-2014). The robustness of the learned causal structure is addressed in a series 

of alternative and sensitivity analyses; in particular, we use bootstrap resamples to assess the stability 

of aspects of the learned CCG. Our results suggest some but only indirect possible causal paths from 

early modifiable risk factors, such as audio-visual media consumption and physical activity, to obesity 

(measured by age- and sex-adjusted BMI z-scores) six years later.  
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Introduction 

Childhood obesity is a serious public health problem in many countries [1] leading to severe co-

morbidities in later life such as type 2 diabetes, cardiovascular diseases, certain types of cancer, 

depression and other psychosocial problems [2-4]. Prevention of obesity in children and adolescents 

seems to be the “only feasible solution” to tackle the obesity epidemic [5]. But prevention strategies 

need promising targets to achieve any public health effect. However, childhood obesity is a complex 

disorder that appears to be influenced by an interacting system of individual behaviour, group and 

societal settings such as family, school or the country-specific infrastructure (e.g. public health system, 

built environment) [6]. 

While most investigations focus on single exposure-outcome associations, our approach is to assess 

the complex interplay of obesity-related factors over the transition from childhood to adolescence by 

estimating a “cohort causal graph” (CCG), i.e. a causal graph that allows for the longitudinal structure 

of cohort data, including early life, individual, familial and social aspects using data from the 

European IDEFICS/I.Family cohort [7]. Our analysis accounts simultaneously for the temporal order 

of the covariates [8, 9], mixed variable scales and missing values [10]. In addition, we assess the 

stability and robustness of the estimated causal graph using the bootstrap and further sensitivity 

analyses. The main aim is to identify plausible causal paths from early modifiable risk factors, such as 

diet, physical activity (PA), media consumption, subjective well-being and sleep, to body mass index 

(BMI) six years later. These may suggest or rule out potential targets for future obesity prevention 

strategies.  

Methods 

Study Population 

The IDEFICS/I.Family cohort [7, 11] is a European cohort study initiated with the overall aims to 

identify and prevent dietary and lifestyle induced health effects in infants, children and adolescents. 

The baseline survey (B) was conducted in 2007/08 in eight European countries (Belgium, Cyprus, 

Estonia, Germany, Hungary, Italy, Spain and Sweden) with 16,229 participating children (2 to 9.9 
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years old). The first follow-up examinations (FU1, conducted in 2009/10) included 13,596 children 

and applied the same standardised assessments. The second follow-up examinations (FU2, conducted 

in 2013/14) enrolled 7,105 children who already participated at B or FU1.  

Covariates 

We included variables reflecting eating behaviour, lifestyle, social, cultural and environmental factors 

that are assumed to be related to overweight and obesity across the early life course. A detailed 

description of all measurements and their units used in our analysis is provided in Table 1 and in the 

supplement. Some of these variables are time-invariant and would not be targeted by any intervention 

programme in later childhood, such as region of residence or migration background. Other time-

invariant variables might impact a child’s development during pregnancy and as an infant, such as 

mother’s age at birth or breastfeeding duration; we will refer to these as early life factors. All other 

variables are time-varying and were measured repeatedly. Age- and sex-specific BMI z-scores (BMI) 

for children and adolescents were calculated according to the extended IOTF criteria [12]; for 

simplicity we refer to these as BMI. The homeostatic model assessment (HOMA-IR, short HOMA) 

index [13] served as a marker for insulin resistance. The diet of the child was measured by a validated 

FFQ [14] and was classified by an adapted version of the Youth Healthy Eating Index (YHEI) [15]. 

The YHEI assesses the consumption frequencies of both healthy and unhealthy food as well as eating 

behaviours, where a higher score indicates a healthier diet [16]. PA was measured by questionnaire, 

and an audio-visual media consumption score (AVM) was used as proxy for sedentary behaviour. 

Total sleep duration including nocturnal sleep was estimated based on 24-h dietary recall data at 

baseline [17] and quantified by self-reports at the two follow-ups. Multiple dimensions of 

psychosocial well-being were assessed bz questionnaire which was developed for parents’ response on 

behalf of children and adolescents [18]. Children above the age of 12 completed the questionnaires for 

themselves. Further details on the study population and used covariates are given in the supplement. 

Statistical Analysis 

For our analyses, only children who participated in all three surveys were considered. Multiple 

imputation (MI) was applied to avoid loss of study subjects and to reduce potential bias due to missing 
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values [19]; specifically we used tenfold imputation with random forests as implemented in the R-

package mice [20]. MI assumes that values were missing at random (MAR). To strengthen the 

plausibility of the MAR assumption, the imputation models were fitted on a larger dataset containing 

additional variables that contribute to the various scores such as AVM or well-being [19]. 

To estimate the cohort causal graph (CCG), we applied a method of causal discovery known as PC-

algorithm [21]. The algorithm outputs empirically plausible causal directed acyclic graphs (causal 

DAGs) suggesting direct and indirect causal relations, as shown by directed edges or directed paths. 

As a DAG represents certain conditional (in)dependencies between variables [22], the PC-algorithm 

proceeds by investigating conditional independencies in the data using statistical tests, and then 

determines all DAGs that agree with these independencies. The result is not unique since different 

DAGs can represent the same conditional independencies, i.e. certain causal structures are 

indistinguishable. Instead, the algorithm outputs the equivalence class of all DAGs that represent the 

detected conditional independencies. This class is represented by a so-called completed partially 

directed acyclic graph (CPDAG) [23] containing directed and undirected edges, where an undirected 

edge means that both causal directions occur in the equivalence class. The validity of the PC-algorithm 

relies on the assumptions of causal sufficiency, i.e. absence of latent confounding, and of faithfulness, 

under which the PC-algorithm consistently selects the true CPDAG [21]. Of note, while the causal 

interpretation of directed edges or paths in the output of causal discovery algorithms relies on causal 

sufficiency, which may often be implausible, the absence of such edges and paths can still be 

interpreted as absence of causal relations even without causal sufficiency.  

The PC-algorithm had to be modified for application to multiply imputed cohort data [10, 24, 25]. 

Further, to account for the cohort structure we used the tiered PC-algorithm tPC [26]. This was then 

combined with functions from micd [27] to deal with multiply imputed data containing a mix of 

categorical and continuous variables. The R packages micd and tPC are both extensions of pcalg [28]. 

The tPC-algorithm outputs a maximally oriented partially directed acyclic graph (MPDAG), which is 

similar to a CPDAG but can contain more directed edges due to background knowledge [8, 29]. tPC 

determines an MPDAG under the restriction that edges are prohibited from pointing backwards in time 
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which also reduces the number of required statistical tests for conditional independencies. In our 

analysis we pre-specified the following ordering: region, sex and migration → ISCED and income at 

baseline → all early life factors → baseline variables → ISCED and income at FU1 → remaining FU1 

variables → ISCED and income at FU2 → remaining FU2 variables. Additionally, specific 

orientations between certain pairs of variables were prohibited, for example from breastfeeding to 

birth weight. We carried out a number of alternative and sensitivity analyses to check the robustness of 

the estimated MPDAG against specific analytical choices: (a) while the main analysis used a nominal 

level of 0.05 for the conditional independence tests, we compared this with a nominal level of 0.1 (MI-

0.1); (b) using test-wise deletion (TWD) instead of MI and (c) applying a different, likelihood-based, 

causal discovery algorithm which uses the EM algorithm for missing values [30]. Moreover, to assess 

the general stability of the output we drew 100 bootstrap samples from the analysis data, applied to 

each a single random forest imputation using the same imputation model as in the main analysis, and 

then estimated 100 bootstrap graphs (BGs). Thus, we can take the frequencies of interesting causal 

structures in the bootstrap samples as indication of their stability, e.g. specific edges (direct causal 

links) or indirect links via (partially) directed paths between exposures and outcome. In a directed 

path, all edges between two nodes are directed, while in a partially directed path, at least one edge 

between two nodes is undirected. More background on causal graphs and other graph characteristics 

are described in the supplement. 

Results 

Study Sample 

The study sample included 5,112 children who participated in all three surveys. Table 2 shows that 

children were on average aged 5.9 years at baseline and 11.7 years at FU2. BMI z-scores increased on 

average by approx. 0.2 standard deviations (SD) over the years (0.32 to 0.55). The overall number of 

missing values was 15 % with some variables exhibiting very large numbers of missings such as PA at 

FU2 (50.1 %) (see Figure S1 and Table S1 characteristics after imputation). Diagnostic plots of the 

multiply imputed data were satisfactory (see Figure S2). 
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Cohort Causal Graph 

The CCG resulting from our main analysis is shown in Figure 1 (see also https://bips-hb.github.io/ccg-

childhood-obesity for an interactive graph). Overall the graph was rather sparse with 104 edges linking 

51 variables, of which 12 could not be oriented. Focusing on BMI as outcome, there were direct links 

from region, familial educational level, birthweight and mother’s BMI (B) to BMI (B); in contrast, 

there were no paths from any of the modifiable risk factors to BMI (B). However, all of these 

modifiable baseline factors (sleep, AVM, YHEI, PA, well-being) were possible ancestors and hence 

possible causes of BMI in both follow-ups (cf. Table 3), i.e. they had partially directed paths to BMI. 

These included paths from all five modifiable baseline risk factors to BMI six years later. For instance, 

there were five partially directed paths from YHEI (B) to BMI (FU2) (Figure 2). Almost all paths 

between exposures and BMI (FU2) went through AVM (FU1) and HOMA (FU1, FU2), many also 

through well-being (FU1) and some through YHEI (B). In the CCG we also see that the exposures 

themselves were moderately interconnected within the same tier and across time, with many 

orientations of edges among the exposures at FU1 being undecidable. Note also that most repeated 

measurements were linked by edges with the notable exception of BMI.  

Bootstrap Analysis 

We assessed the stability of key features of the main CCG based on 100 BGs. Of the 104 edges in the 

main CCG, 36 were found to be very stable (in more than 80% of BGs), with a further six edges in 

more than 70% of BGs (see Table S2). Of these stable edges, 16 were between repeated measures of 

the same variable, e.g. HOMA.FU1-HOMA.FU2, and 13 emanated from modifiable risk factors. In 

contrast, 50 edges were clearly unstable, i.e. occurred in 50% or fewer of the BGs. The presence of 

any paths from exposures to BMI was rather stable. Specifically, we considered directed or partially 

directed paths from baseline modifiable exposures to later BMI (FU2) (see Table 4). The most 

frequent were paths from YHEI to BMI (84% of BGs), while paths from sleep duration to BMI were 

in 75% of the BGs; paths from the other three baseline exposures (well-being, AVM, PA) to BMI 

occurred in 80% of the BGs. There were usually multiple causal paths found between an exposure and 

the outcome, and the number of different possible causal paths was high. For instance, the median 
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number of different (partially) directed paths from AVM (B) to BMI (FU2) found in each BG was 20. 

No BGs ever contained a direct edge from a baseline modifiable exposure to BMI at FU2. Further, we 

expected the repeated measurements to be linked to each other, which was true for all modifiable risk 

factors but not for BMI in the main CCG. Table 5 shows patterns between repeated measurements in 

the main CCG and the BGs. It can be seen for BMI that in 95 BGs the paths BFU1FU2 or 

BFU1FU2B were found despite not being contained in the main CCG. 

As suggested by others, BGs tend to be more complex [31, 32], which is also what we found: The BGs 

contained on average 22 edges more than the CCG in the main analysis. For better comparison with 

this main CCG, we constructed a graph containing the same number of edges based on the most 

frequent edges; this resulted in the inclusion of all edges that occurred in more than 44 of BGs (see 

Figure S6). The (structural) Hamming distance between main CCG and BG44 was 56 (73), indicating 

that about half of the edges between the two graphs are the same. 

Sensitivity Analyses 

Using a larger nominal significance level of 10% (CCG MI-0.1) essentially confirmed the core results 

from the main graph with only few more edges (Table 6, Figure S3). The CCGs estimated with two 

alternative methods for missing values (TWD and EM) were with 40 to 50% more edges less sparse 

than the main graph (cf. Figures S4, S5), where only 20% of the edges in the main analysis were also 

found in the TWD graph. This was also reflected by the Hamming distances, which was large with 

205 for TWD compared to the main CCG. The structural Hamming distance, which additionally 

counts directional changes, indicated for the MI-0.1 graph that the increase of the nominal level 

resulted in some undirected edges being directed (e.g., well-being (FU2)YHEI (FU2)), or vice versa, 

and others to be re-directed (e.g., the edge between PA (B) and YHEI (B)). 

Discussion 

The estimated CCG suggested rather sparse causal relationships between various variables around 

childhood obesity, with dependencies of the same measures across time being the strongest and most 

stable as one might expect. All the individually modifiable risk factors diet, PA, sleep duration, 
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subjective well-being and audio-visual media consumption at baseline were stably found to be 

possible indirect, but not direct, causes of BMI six years later, mostly via the HOMA index which was 

closely linked to BMI. Associations between media exposure [33-36], sleep [37-39], PA [37], diet 

[37], well-being [41] and insulin resistance measured by HOMA were previously found by others and 

in the IDEFICS/I.Family cohort, partly in smaller subsets and using different variables such as 

objective accelerometer-based measurements of PA [40-42]. Insulin resistance is strongly associated 

with obesity, which is reflected by an undirected edge in the CCG. Excess adipose tissue is a known 

risk factor for insulin resistance; however, normal-weight children may also be affected [43]. From the 

early life factors, birthweight was a (possible) ancestor of BMI (B, FU1, FU2) and formula milk 

feeding for BMI (FU1, FU2). High birth weight is known to be associated with childhood obesity [44]; 

and a recent systematic review describes that there is moderate evidence that breast milk consumption 

reduces the risk of overweight and obesity at age 2 years and older [45]. 

Overall, our results suggested that cultural, perinatal and familial variables are potentially more 

immediate causal influences on obesity, while individually modifiable risk factors play a rather 

indirect role. Based on the selected CCG, we might hypothesise that early life interventions targeting 

health behaviours of the child may be insufficient to prevent childhood obesity. This finding is 

compatible with the view that the causal structure governing childhood health behaviours and 

outcomes should be considered from a complex adaptive system's perspective [46-48]. Maitland et al. 

[49], for example, describe the practical implementation of a “whole of systems” approach. 

Using sensitivity analyses we investigated the robustness of the CCG regarding the handling of 

missing values and used bootstrap samples to assess the stability of learned graph structures. The 

method for handling missing values is not negligible as more complex and quite different graphs were 

estimated using TWD or the EM-algorithm instead of MI. Moreover, it was noticeable that the TWD 

graph, unlike the CCG, was not able to detect edges between repeated measurements. Witte et al. [25] 

showed that TWD can fail in recovering certain causal structures regardless of the underlying 

missingness mechanism (MCAR, MAR or MNAR). Further, MI was usually more efficient than 

TWD, although datasets including variables with mixed measurement scales were more problematic.  
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We used bootstrap resamples to account for the uncertainty in the selection of the CCG [31, 50, 51]. In 

interpreting the results it has to be kept in mind that the BGs tended to have more edges than the main 

CCG, due to spurious dependences induced by sampling with replacement from the given data [31, 

32]. We therefore considered the BGs purely as a measure of the stability rather than, say, for 

estimating edge probabilities. Thus, edge and path frequencies indicate the stability of presence and 

absence of certain graph structures. While about a third of the learned edges in the main analysis were 

quite stable, we also found that half of the edges were rather unstable. Similarly, we found that the 

existence of some paths from early modifiable risk factors to later BMI was quite stable, but the actual 

paths themselves were very variable, i.e. a particular path may not be selected in more than 20% of 

BGs. In contrast, the absence of direct links from early modifiable risk factors to later BMI was very 

stable as these occurred in no BGs. This can be interpreted as the absence of direct causal influences 

even when the assumption of causal sufficiency is violated. 

The main analysis was able to find the expected paths for repeated measurements of HOMA and the 

modifiable risk factors, but not for BMI, and only partly for daily family meals and mother’s BMI. 

The BGs runs revealed that missing edges between the repeated measurements of BMI are very rare. 

The CCG is therefore difficult to explain in this respect. In contrast, the learned CCG suggests the 

plausible relationship that BMI is conditionally independent of modifiable risk factors given the child's 

insulin resistance status (HOMA).  

The instabilities that we found through the bootstrap analysis might partly be explained by the rather 

low sample size for the perhaps rather weak associations, the extra uncertainty due to the high 

proportion of missing values, and the large intervals between follow-ups. Especially the confidence in 

specific paths might be rather low which is critical. A greater stability would, for instance, be desirable 

for subsequent analyses that use a learned causal graph to determine adjustment sets to estimate causal 

effects [52]. Some graphical rules for identifying adjustment sets just take the adjacent nodes of the 

exposure into account and others require also the mediators between exposure and outcome, for which 

reliable knowledge on causal paths is required [53, 54]. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 10, 2023. ; https://doi.org/10.1101/2022.05.18.22275036doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275036


12 

 

Recently, Peterson, Osler & Ekstrom [9] also proposed an extension of the PC-algorithm to include 

temporal information for inferring a graph from observational data. However, our work is the first 

application of causal discovery to real-world cohort data accounting jointly for missing values, mixed 

discrete and continuous variables, and background knowledge such as time-ordering. The required 

theory and software have only recently been developed [10, 55].  

The IDEFICS/I.Family cohort provides a rich source of phenotypes capturing different dimensions of 

dietary and lifestyle related health aspects repeatedly measured over the early life course. However, a 

challenge was the choice of variables included in the analysis; these needed to be sufficiently different 

(i.e. not measuring the same underlying construct) to find meaningful dependencies between the 

different dimensions of obesity. The further sensitivity analyses (see web page) showed that different 

choices yielded slightly different selected CCGs, but the overall message remained the same: 

adolescents’ BMI was not directly affected by earlier behavioural variables, but had indirect, 

potentially causal, links through AVM (FU1) and HOMA (FU1, FU2).  

Further general sources of bias with observational data could also affect our results, such as reporting 

or selection bias. However, all participating countries adhered to a harmonised protocol and to quality 

control procedures ensuring high data quality.  

Conclusion 

A causal discovery analysis was performed on the IDEFICS/I.Family cohort investigating (causal) 

dependencies underlying childhood and adolescent obesity in 2 to 16-year-old Europeans. The 

resulting CCG suggested that cultural, perinatal and familial factors and insulin resistance (HOMA-

IR) potentially played a more immediate causal role than individually modifiable risk factors which 

had stable but only indirect relations with adolescents’ BMI.  
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Figure Legends 

 

 

Figure 1: Causal graph of childhood obesity based on N = 5,112 European children and adolescents 

born between 1997 and 2006 estimated by the tiered PC-algorithm for multiple imputed datasets. The 

nodes colours correspond to the different stages of the life course. Edges without arrowheads could not 

be orientated by the algorithm. An overlap of nodes and edges was unavoidable. We advise to look at 

the interactive graphs here: https://bips-hb.github.io/ccg-childhood-obesity/. 

AVM: audio-visual media consumption, B: Baseline, FU1: first follow-up, FU2: second follow-up, HH diet: 

month when the child was introduced into the household's diet, HOMA: homeostatic model assessment – insulin 

resistance, ISCED: highest parental education (International Standard Classification of Education), PA: physical 

activity, YHEI: youth healthy eating index, zBMI: body mass index z-score 
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Figure 2: All five possible causal paths between the Youth Healthy Eating Index (YHEI) at baseline 

and zBMI at the second follow-up (AVM: audio-visual media consumption, PA: physical activity). 

AVM: audio-visual media consumption, B: Baseline, FU1: first follow-up, FU2: second follow-up, HH diet: 

month when the child was introduced into the household's diet, HOMA: homeostatic model assessment – insulin 

resistance, ISCED: highest parental education (International Standard Classification of Education), PA: physical 

activity, YHEI: youth healthy eating index, zBMI: body mass index z-score 
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Tables 

Table 1: Variables used in the analysis with units and further explanations. Background knowledge was used to order them into different tiers. Units of 

continuous variables are given in italics. 

Tiers Variable/Node Unit Comments 

Context Sex female, male Sex of child 

Context Region 
North, Central, 

South 

Place of residence in one of the following European countries: North (Estonia, Sweden), Central (Belgium, Germany, 

Hungary), South (Cyprus, Spain) 

Context Migrant no, yes 
Children were assumed to have a migrant background if they usually speak with their parents in a language other than the 

national language of the corresponding country 

Early life 
Mother's age at 

birth 
years   

Early life Total breastfeeding months Months of breastfeeding, also in combination with other food, prior child's diet was fully integrated into usual household diet 

Early life Birthweight Gram  

Early life 
Weeks of 

pregnancy 
weeks  

Early life Formula milk no, yes Type of feeding prior child's diet was fully integrated into the usual household diet 

Early life HH diet months Month when the child was introduced into the household's diet 

Early life 
Smoking during 

pregnancy 
no, yes Mother consumed tobacco during pregnancy 

B, FU1, FU2 Age months  

B, FU1 School 

kindergarten, 

school, neither 

one 

Child attended kindergarten/pre-school, school or neither one 

B, FU1, FU2 AVM h/day 
Audio-visual media consumption score: average hours per day spent with TV, videos, or DVDs, accounting for weekdays and 

weekends. Hours using the internet per week were only assessed at FU2. 

B, FU1, FU2 zBMI z-score 

Z-scores of the body mass index [kg/m²]. Body weight was measured in fasting state in light underwear on a calibrated scale 

accurate to 0.1 kg (adapted Tanita BC 420 MA for children ≤6 years, Tanita BC 418 MA for children >6 years, Tanita Europe 

GmbH, Sindelfingen, Germany); height was measured to the nearest 0.1 cm by a SECA 225 Stadiometer (Seca GmbH & Co. 

KG., Hamburg, Germany) 

B, FU1, FU2 Mother's BMI kg/m² Body mass index of the mother, derived from self-reported weight and height 
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Tiers Variable/Node Unit Comments 

B, FU1, FU2 Daily family meals no, yes The family has a meal together at least once a day 

B, FU1, FU2 Income low, middle, high Country-specific parental income categories, harmonised between countries [56] 

B, FU1, FU2 ISCED low, middle, high International Standard Classification of Education, highest parental education [57] 

B, FU1, FU2 PA h/day 
Physical activity measured by questionnaire based on the reported average time spent playing outdoors (hours/week) and the 

time being in recreation areas or doing sports in a sport club (hours/week) 

B, FU1, FU2 Sleep h/day 

Nocturnal sleep in hours was assessed by self-reports in FU1 and FU2. The average nocturnal sleep (hours/night) was 

calculated as the weighted average of reported usual weekday and weekend sleeping times. At baseline, nocturnal sleep was 

derived based on 24-h dietary recall data where the parents were asked ‘What time did your child go to bed?’ and ‘What time 

did your child get up?’ 

B, FU1, FU2 Well-being % 
Composite sum score; it sums up the answers of 16 items reporting emotional well-being, self-esteem, family relations and 

peer contacts during the last week, where each item ranges from 0 to 3 points [18, 58] 

B, FU1, FU2 YHEI % Youth healthy eating score [16] 

B, FU1, FU2 HOMA z-score 
Z-score of the HOmeostatic Model Assessment index to quantify insulin resistance; the HOMA-IR index [pg/ml*mg/dl] was 

calculated from insulin and glucose obtained from blood samples 

FU2 Alcohol no, yes Ever alcohol drinking in teen's life-time 

FU2 Puberty 
pre- or early 

pubertal, pubertal 

Pubertal status based on development of voice (boys) and menarche (girls) [59]. Different pubertal stages were displayed in 

the questionnaire to assist the self-assessment  

FU2 Smoking no, yes Ever smoking tobacco in teen's life-time 

B: Baseline, FU1: first follow-up, FU2: second follow-up 
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Table 2: Characteristics of children in the IDEFICS/I.Family cohort participating in all three surveys 

from 2007 to 2014 

Time-invariant variables N = 5,1121      

Region        

Central (Belgium, Germany, Hungary) 1,378 (27%)      

North (Estonia, Sweden) 1,475 (29%)      

South (Cyprus, Italy, Spain) 2,259 (44%)      

Female  2,505 (49%)      

Migration background  319 (6.7%)      

missing  385      

Completed weeks of pregnancy  39.08 (1.88)      

missing  2,995      

Tobacco smoking during pregnancy        

never  4,285 (89%)      

rarely  171 (3.5%)      

several occasions a week  150 (3.1%)      

daily  226 (4.7%)      

Missing  280      

Mother's age at birth  29.8 (5.0)      

missing  494      

Birthweight [g]  3,345 (574)      

missing  180      

Total breastfeeding [months] 6.8 (6.3)      

missing  247      

Was fed with formula milk  2,640 (52%)      

missing  0      

Fully integrated into household's diet 

[month]  
14.5 (6.5)    

  

missing  722      

     

Time-varying variables  
Baseline  

N = 5,1121 

FU1  

N = 5,1121 

FU2  

N = 5,1121 

  

Age   5.89 (1.78) 7.87 (1.79) 11.69 (1.81)   

School        

kindergarten   2,452 (52%) 1,100 (23%) -   

school   2,250 (47%) 3,584 (76%) -   

neither   41 (0.9%) 8 (0.2%) -   

missing   369 420 -   

BMI z-score   0.32 (1.17) 0.43 (1.17) 0.55 (1.11)   

Well-being [%]   84 (10) 82 (10) 82 (11)   

missing   636 552 625   

Audio-visual media consumption [h/day]   1.57 (0.89) 1.89 (0.94) 2.94 (1.83)   

missing   306 394 654   

Physical activity [h/week]   18 (11) 18 (10) 17 (9)   

missing   252 357 2,561   

Nocturnal sleep [h/day]   10.19 (0.96) 10.01 (0.90) 9.29 (1.03)   

missing   2,130 781 449   

Youth healthy eating index [%]   63 (11) 63 (11) 57 (11)   

missing   343 446 350   

Daily family meals   3,488 (74%) 3,548 (77%) 2,662 (67%)   

missing   367 476 1,147   
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Homa index z-score   0.02 (1.10) 0.40 (0.97) 0.13 (1.15)   

missing   2,902 2,466 1,911   

Pubertal   - - 1,931 (41%)   

missing   - - 423   

Ever alcohol drinking   - - 738 (33%)   

missing   - - 2,852   

Ever tobacco smoking   - - 213 (9.3%)   

missing   - - 2,812   

Mother's BMI   23.8 (4.2) 24.0 (4.3) 25.5 (5.1)   

missing   271 384 2,732   

Household's income        

low   1,612 (36%) 1,410 (31%) 1,197 (28%)   

middle   1,179 (26%) 1,130 (25%) 1,451 (34%)   

high   1,693 (38%) 1,949 (43%) 1,559 (37%)   

Missing   628 623 905   

ISCED        

low   254 (5.1%) 232 (4.8%) 248 (4.9%)   

middle   2,085 (42%) 2,004 (42%) 2,147 (42%)   

high   2,600 (53%) 2,590 (54%) 2,681 (53%)   

Missing   173 286 36 
1n (%); Mean (standard deviation) 

FU1: first follow-up; FU2: second follow-up 
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Table 3: Possible ancestors of BMI at baseline, first and second follow up 

Tier Ancestors of  

BMI (B) 

Ancestors of  

BMI (FU1) 

Ancestors of  

BMI (FU2) 

C Sex Sex Sex 

C Region Region Region 

C Migrant Migrant Migrant 

ELF Mother’s age at birth Mother’s age at birth Mother’s age at birth 

ELF Birthweight Birthweight Birthweight 

ELF Weeks of pregnancy Weeks of pregnancy Weeks of pregnancy 

ELF  Formula milk Formula milk 

B Income Income Income 

B ISCED ISCED ISCED 

B Mother’s BMI Mother’s BMI Mother’s BMI 

B Age Age Age 

B  School School 

B  AVM AVM 

B  BMI BMI 

B  PA PA 

B  Sleep Sleep 

B  Well-being Well-being 

B  YHEI YHEI 

B  HOMA HOMA 

FU1  AVM (FU1) AVM (FU1) 

FU1   BMI (FU1) 

FU1  PA (FU1) PA (FU1) 

FU1  Well-being (FU1) Well-being (FU1) 

FU1  HOMA (FU1) HOMA (FU1) 

FU2   Mother’s BMI (FU2) 

FU1   HOMA (FU2) 

AVM: audio-visual media consumption, BMI: body mass index z-scores, B: Baseline, C: Context variables, 

ELF: Early life factors, FU1: first follow-up, FU2: second follow-up, HOMA: homeostatic model assessment – 

insulin resistance, ISCED: highest parental education (International Standard Classification of Education), PA: 

physical activity, YHEI: youth healthy eating index 

Cells are shaded grey if a path between a pair of vertices was forbidden a priori (e.g. due to time constraints). 
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Table 4: Directed and partially directed paths between modifiable risk factors at baseline and BMI six years later in the original CCG and in 100 Bootstrap 

graphs (BGs) 

 Audio-visual Media Consumption 

Partially directed paths from AVM (B) to BMI (FU2) N 

 

Directed paths from AVM (B) to BMI (FU2) N 

CCG Shortest path: 

AVM (B)AVM (FU1)−HOMA (FU1)HOMA (FU2)−BMI (FU2) 
 

 
 

 Number of paths 6  0 

BG Number of BGs with any partially directed path 80  26 

 Most frequent path: 

AVM (B)AVM (FU1)−Well-being (FU1)−HOMA (FU1)HOMA 

(FU2)−BMI (FU2) 

11 

AVM (B)Sleep (B)BMI (B)BMI (FU1)BMI (FU2) 

4 

 3 most frequently visited nodes (based on all paths):    

    YHEI (B) 63 %    BMI (FU1) 55 % 

    AVM (FU1) 62 %    HOMA (FU1) 39 % 

    Sleep (FU1) 55 %    YHEI(B) 30 % 

     

 Physical Activity 

Partially directed paths from PA (B) to BMI (FU2) N 

 

Directed paths from PA (B) to BMI (FU2) N 

CCG Shortest path: 

PA (B)YHEI (B)AVM (FU1)−HOMA (FU1)HOMA 

(FU2)−BMI (FU2) 

 

 

 

 Number of paths 13  0 

BG Number of BGs with any partially directed path 80  19 

 Most frequent path: 

PA (B)PA (FU1)−Well-being (FU1)−HOMA (FU1)HOMA 

(FU2)−BMI (FU2) 

12 PA (B)PA (FU1) Daily family meals (FU2)Mother’s BMI 

(FU2) BMI (FU2) 

4 

 3 most frequently visited nodes (based on all paths):    

    YHEI (B) 82 %    YHEI (B) 61 % 

    AVM (FU1) 62 %    BMI (FU1) 42 % 

    Well-being (FU1) 59 %    Well-being (B) 36 % 
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 Sleep duration 

Partially directed paths from Sleep (B) to BMI (FU2) N 

 

Directed paths from Sleep (B) to BMI (FU2) N 

CCG Shortest path: 

Sleep (B)HOMA (FU1)HOMA (FU2)−BMI (FU2) 
 

 
 

 Number of paths 2  0 

BG Number of BGs with any partially directed path 75  32 

 Most frequent path(s): 

Sleep (B)Sleep (FU1)Sleep (FU2)−Puberty stage (FU2)−zBMI 

(FU2) 

19 

 

Sleep (B)HOMA (FU1)BMI (FU2), 

Sleep (B)HOMA (FU1)HOMA (FU2)BMI (FU2) 

8 

 3 most frequently visited nodes (based on all paths):    

    AVM (B) 63 %    BMI (FU1) 33 % 

    AVM (FU1) 60 %    HOMA (FU1) 32 % 

    Puberty stage (FU2) 58 %    AVM (B) 28 % 

     

 Well-being 

Partially directed paths from Well-being (B) to BMI (FU2) N 

 

Directed paths from Well-being (B) to BMI (FU2) N 

CCG Shortest path: 

Well-being (B)YHEI (B)AVM (FU1)−HOMA (FU1)HOMA 

(FU2)−BMI (FU2) 

 

 

 

 Number of paths 6  0 

BG Number of BGs with any partially directed path 81  26 

 Most frequent path: 

Well-being (B)Well-being (FU1)−HOMA (FU1)HOMA 

(FU2)−BMI (FU2) 

20 

 

Well-being (B) HOMA (FU1)BMI (FU2) 4 

 3 most frequently visited nodes (based on all paths):    

    YHEI (B) 78 %    HOMA (FU1) 53 % 

    AVM (FU1) 66 %    YHEI (B) 45 % 

    Sleep (FU1) 61 %    BMI(FU1) 45 % 
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 Youth Healthy Eating Index 

Partially directed paths from YHEI (B) to BMI (FU2) N 

 

Directed paths from YHEI (B) to BMI (FU2) N 

CCG Shortest path: 

YHEI (B)AVM (FU1)−HOMA (FU1)HOMA (FU2)−BMI (FU2) 
 

 
 

 Number of paths 5  0 

BG Number of BGs with any partially directed path 84  26 

 Most frequent paths: 

YHEI (B)−Daily family meals (B)−Mother's BMI (B)−BMI 

(B)BMI (FU1) BMI (FU2) 

 

19 

 

YHEI (B) AVM (B) AVM (FU1)Daily family meals (FU2) 

Mother's BMI (FU2) BMI (FU2) 

YHEI (B) Daily family meals (B)Mother's BMI (B)BMI (B) 

BMI (FU1)BMI (FU2) 

YHEI (B) AVM (FU1)Daily family meals (FU2)Mother's 

BMI (FU2) BMI (FU2) 

 

2 

 3 most frequently visited nodes (based on all paths):    

    AVM (FU1) 62 %    HOMA (FU1) 32 % 

    Well-being (FU1) 55 %    BMI (FU1) 30 % 

    Sleep duration (FU1) 54 %    AVM (B) 28 % 

     

 

AVM: audio-visual media consumption, B: Baseline, BMI: body mass index z-score, FU1: first follow-up, FU2: second follow-up, HOMA: homeostatic model assessment – 

insulin resistance, ISCED: highest parental education (International Standard Classification of Education), PA: physical activity, YHEI: youth healthy eating index 
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Table 5: Path patterns between repeated measurements in CCG and Bootstrap graphs. 

Pattern BMI AVM PA Sleep 

Well-

being YHEI HOMA 

Daily 

family 

meals 

Mother’s 

BMI Income ISCED 

None 2 - - 2 - 2 0 1 25 0 0 

BFU1  2 2 10 2 - - 2 63 0 0 1 

BFU2 - 1 2 - 1 1 0 2 45 0 0 

BFU1, BFU2 - 1 11 1 2 1 1 34 0 0 0 

FU1FU2 1 9 1 13 5 1 0 0 28 35 36 

BFU2, FU1FU2 - 1 1 1 1 - 0 0 2 5 6 

BFU1FU2 82 20 25 37 38 2 59 0 0 57 57 

BFU1FU2B 13 66 50 44 53 93 38 0 0 3 0 

AVM: audio-visual media consumption, B: Baseline, BMI: body mass index z-score, FU1: first follow-up, FU2: second follow-up, HOMA: homeostatic model assessment – 

insulin resistance, ISCED: highest parental education (International Standard Classification of Education), PA: physical activity, YHEI: youth healthy eating index 

Bold numbers: path included in main CCG 
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Table 6: Characteristics of the discovered graph without singletons 

Characteristics Main MI-0.1 TWD EM Avg.BG BG44 BG75 

Number of selected edges 104 113 139 157 126 104 46 

Number of undirected edges 12 13 14 0 12 3 0 

Avg. node degree 4.8 4.9 6.0 6.2 5.4 4.2 1.8 

Max. node degree 101 112 133 244 12 95 65 

Avg. shortest path length 2.8 2.7 2.4 2.4 2.7 2.2 1.4 

Longest shortest path  97 88 79 710 8 611 512 

Hamming distance [60] - 19 205 117 88 56 70 

Structural Hamming distance [61] - 34 214 131 104 73 86 

Mean edge uncertainty [50] - - - - 10.5 4.4 0.8 
1Region, AVM (FU1), Well-being (B) 
2AVM (FU1), Well-being (B) 
3Migrant  
4Region  
5School (B) 
6Puberty Stage (FU2) 
7Age (FU1) > School (FU1) > Daily family meals (FU1) > YHEI (FU1) > Well-being (FU1) > AVM (FU1) > 

HOMA (FU1) > HOMA (FU2) > BMI (FU2)  
8Age (FU1) > School (FU1) > Daily family meals (FU1) > YHEI (FU1) > AVM (FU1) > HOMA (FU1) > 

HOMA (FU2) > BMI (FU2) 
9Weeks of pregnancy (EL) > Daily family meals (B) > Sleep (B) > AVM (B) > Well-being (B) > HOMA (B) > 

BMI (FU2)  
10Smoking during pregnancy (EL) > Weeks of pregnancy (EL) > Birthweight (EL) > Mother`s BMI (B) > AVM 

(B) > Well-being (B) > Well-being (FU1)  
11 Age (B) > School (B) > Well-being (B) > YHEI (B) > PA (B) > PA (FU1) 
12Age (B) > School (B) > Well-being (B) > Well-being (FU1) > Well-being (FU2)  

 

Avg.BG: Occurs on average in each BootG; BGx: Summarized bootstrap graph with edges that occurred at least 

x times in 100 bootstrap replications; EM: structural EM algorithm; Main: multiple imputation with nominal 

level of 0.05; MI-0.1: multiple imputation with nominal level of 0.1; MEU: Mean edge uncertainty [50]; TWD: 

test-wise deletion 
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