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Abstract

Measles is a highly contagious viral disease and remains a severe public health
problem. Monitoring measles cases provides a powerful tool to identify outbreaks
and epidemics. However, burden estimates of measles are challenging to obtain be-
cause of heterogeneous surveillance systems and a lack of resources for rapid labora-
tory tests means that many cases are reported based on symptoms alone, which has
low specificity. We consider diagnostically confirmed measles case data in Ethiopia
between 2009 and 2017 and propose a local Gaussian process binary classifier with
spatial dependence to provide case predictions for untested individuals based on age,
vaccination status, and location. By applying our modeling framework to untested
suspected reported cases, we provide more accurate burden estimates at the district
level. We validate our methods through simulation studies. We also find that our
approach, which provides burden estimates at the district level, highlights temporal
variation in the specificity of symptom-based diagnosis.
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1 Introduction

Measles is a highly contagious viral disease that can cause significant morbidity and mor-

tality, especially in children. In the pre-vaccination era, measles caused an estimated 2.6

million deaths each year (WHO, 2019) and is still one of the leading causes of child mor-

bidity and mortality in many African countries with high birth rate (Cutts et al., 2021).

Though the widespread use of measles vaccines has greatly decreased the incidence of

measles infection and mortality rate (Portnoy et al., 2019), it remains a serious public

health concern.

Reliable and robust surveillance is a critical tool in the design and implementation

of vaccination, control, and elimination policies (Cutts et al., 2021; Beyene et al., 2016).

The World Health Organization (WHO) has been conducting case-based surveillance for

measles in 44 countries out of 47 WHO member states on the WHO African Region and the

performance varies widely by country (Masresha et al., 2018). WHO member states submit

information on suspected measles cases, clinically defined as a fever and a maculopapular

(non-vesicular) rash and at least one of cough, coryza, or conjunctivitis, as part of routine

surveillance activities. Given the ubiquity of these symptoms, especially in children, the

clinical case definition has low positive predictive value, particularly in settings with low

prevalence (Hutchins et al., 2004), and laboratory confirmation is an important component

of measles surveillance. Laboratory confirmation of suspected measles cases is commonly

done via enzyme-linked immunosorbent assay (ELISA) for measles-specific immunoglobulin

M (IgM) antibodies. However, due to lack of medical infrastructure and professionals, a

significant proportion of suspected measles cases reported (fever and rash) are not confirmed

with a laboratory test in many low- and middle-income settings (Masresha et al., 2018).

This partial observation and confirmation relative to the true incidence adds uncertainty

to measles burden estimation over time, especially in countries with poor vital registration

and disease surveillance systems.

Estimates of the burden of measles disease and mortality, as well as evaluation of the

performance of vaccination programs, rely on statistical models fit to reported time series

of measles cases (Simons et al., 2012; Eilertson et al., 2019; Dixon et al., 2021) . The low
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specificity of the measles clinical case definition (Hutchins et al., 2004) implies that an

uncertain fraction of these reported cases – determined by the rate of diagnostic confir-

mation, the background prevalence of measles, and the prevalence of non-measles febrile

rash – could lead to biases in these critical operational metrics. Here we propose a hybrid

approach to estimate the burden of reported measles cases by combining the diagnosti-

cally confirmed cases with an estimate of the number of untested cases that would be

diagnostically confirmed, if tested.

In order to estimate the burden of cases among untested suspected cases, we study

multiple classifiers: (i) a local logistic regression (Cockcroft et al., 2009) that builds separate

classifier for each subdivision, (ii) a flexible Gaussian process-based version (cf. Williams

and Rasmussen, 2006) of the local logistic regression, and (iii) a novel spatially varying

local Gaussian process classifier that uses local (subdivision-level) information as well as

information from neighboring regions. Introducing spatial dependence allows classifiers to

borrow information from neighbors to better train a predictive model for districts with few

or even no test confirmed data on record.

In this paper, we focus on measles burden estimation with partial surveillance informa-

tion. Our contributions may be summarized as follows: (1) We propose a local Gaussian

process binary classifier with spatial dependence to provide individual level test predictions

using age, vaccination status and location information. (2) Our modeling framework pro-

vides more accurate burden estimation at a high spatial resolution, for example district

level in Ethiopia. These burden estimates can help with analyses of the dynamics of the

measles epidemic and provide guidance in policy design and operation.

The rest of the paper is organized as follows. In Section 2 we introduce the measles

surveillance data in Ethiopia which motivated the development of our model. In Section

3 we present the structure of our model together with two other models that are closely

related in our logistic model framework. In Section 4 we study our approach through

extensive simulation both in classification and burden estimation. In Section 5 we show

the results and findings of applying our models to Ethiopia surveillance data. In Section

6 we discuss the range of applications for our model and some directions for future study
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and research.

2 Measles Surveillance Data in Ethiopia (2009-2017)

Ethiopia is located in the Horn of Africa where measles remains endemic. Though there

are efforts to achieve elimination goals, periodic measles outbreaks are still putting millions

of people’s welfare at risk. To reduce and prevent the illness and death caused by measles,

Ethiopia has been engaged in immunization plans among children in different ages since

1980 (Akalu, 2015) and initiated measles case based surveillance since 2003, which is sup-

ported by partial laboratory confirmation of suspected cases starting from 2004 (Federal

Ministry of Health of Ethiopia, 2017, 2011). In this study, we extract the individual-level

surveillance data in Ethiopia from 2009 to 2017 coordinated by the Ethiopian Public Health

Institute (EPHI) which has two components: 13,409 cases who seek healthcare and have

laboratory IgM status tested on record, and 31,853 cases who are suspected measles cases

with febrile rash that are submitted by healthcare providers without IgM test status. Age

(in months), vaccination status (in number of doses) and location information up to district

level of each case are also being recorded. 1

Measles vaccination coverage has significant spatial dependence in Ethiopia (Takahashi

et al., 2017; Geremew et al., 2019). For instance urban children are more likely to have

received all eight basic vaccinations than rural children (65% vs. 35%), and the coverage

is lowest in Affar (15%) and highest in Addis Ababa (89%) (CSA and ICF, 2017). As

shown in Figure 1 (b), eastern provinces Afar, Somali have lowest vaccination coverage;

the provinces to the west have higher vaccination coverage. The age distribution of all the

cases reported also has variability on map of Ethiopia. As shown in Figure 1 (a), the mean

age is higher in northern provinces such as Tigray, Afar, Amhara, and lower in the western

provinces. Figure 1 (c) shows the number of reported cases at district level which also

varies in space; we noticed some districts don’t have any cases reported in 2009-2017, 8 out

of 70 districts reported cases less than 20, 5 among which have fewer than 10 cases; 6 of

1Ethiopia is administratively divided into four levels: regions (provinces), zones, woredas (districts) and

kebele (wards)(Wubneh, 2017).
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Figure 1: Distributions of (a) mean age at province level (b) mean number of

vaccination received at province level and (c) number of cases at district level

of all records with IgM test status on map of Ethiopia

the districts have all cases reported in one measles status (all test positive or all negative).

Lack of sufficient confirmed cases and imbalance among classes at these districts make it

challenging to provide individual-level predictions and hence burden estimation.

Figure 2: The aggregated number of confirmed cases and suspected

cases from 2009 to 2017 in Ethiopia

Figure 2 is the time series plot that compares the number of laboratory confirmed

cases and the reported suspected cases from 2009 to 2017. We notice that only a small

proportion of cases received laboratory test results; confirmed cases have lower variability
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and suspected cases have relatively large variance over time. Though the trend between the

two are almost the same, the magnitude of the ratio between the number of confirmed and

suspected cases is not constant overtime. It indicates that with the purpose of providing

accurate measles burden estimation based on the current surveillance data, purely relying

on the suspected cases tends to overestimate the disease burden, whereas only using the

confirmed cases will underestimate the true disease burden.

3 Methods

Motivated by Ethiopia’s measles surveillance data, we present our proposed classification

methods. This method provides individual-level prediction on measles test status (positive

or negative) which can be further extended to the reported suspected cases with no lab-

oratory confirmation to provide burden estimates that account for spatial heterogeneity.

Classification methods like logistic regression, decision trees, Naive Bayes, support-vector

machines and neural network (Hastie et al., 2009) have been widely applied in disease pre-

diction (cf. Wiemken and Kelley, 2019). We consider various models based upon a flexible

logistic regression framework. To build our classifier, we use training data consist of in-

dividuals with igM test for measles. There are multiple individuals observed at each of

several locations across Ethiopia. We can then use our classifier to make predictions on the

suspected cases that have not been tested but for whom we have vaccination status and

age. Let Yi(s) ∈ {0, 1} be the measles status of the ith individual at location s where 0 and

1 respectively indicate a negative and positive test for measles. There are Js individuals

at the sth location, where s ∈ D ⊆ R2, with D representing the study region. Here D is

Ethiopia while each s is the centroid of a district in Ethiopia. Xi(s) is a vector of p covari-

ates for the i-th subject at location s, here this consists of vaccination status in doses (0-3)

and age in month centered to zero. We provide our final adjusted measles burden estimates

of people who visited the clinics by adding our inferred number of predicted measles cases

from the reported suspected cases to the confirmed cases with laboratory results. In this

section we outline three different classifiers for burden estimation: local logistic regression

(LLR), spatial logistic regression (SLR), and varying coefficient spatial logistic regression
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(V-SLR).

3.1 Local Logistic Regression (LLR)

Logistic regression assumes that the response Yi(s) of subject i at location s follows a

Bernoulli distribution with the probability of success Pi(s) ∈ [0, 1], denoted as Yi(s) ∼

Bernoulli [Pi(s)]. The probability of success Pi(s) is then transformed into µi(s) ∈ R

via the logit function, i.e., µi(s) = log Pi(s)
1−Pi(s)

and thus Pi(s) = 1
1+exp (−µi(s))

. We model

the transformed mean µi(s) = Xi(s)β + β0, where β is a vector of coefficients for their

corresponding predictors and β0 is the intercept. Epidemiological studies have indicated

that many covariate effects are region specific (Geremew et al., 2019; Geweniger and Abbas,

2020; Tesfa et al., 2022) and could be caused by factors such as access to health facilities,

variations in healthcare operations and regional movements and contact patterns. We start

with a baseline model that is a local logistic regression (LLR) fit independently to each

subregion (provinces in the Ethiopian measles data).

Yj(s) ∼ Bernoulli

(
1

1 + exp (−µj(s))

)
,

µj(s) = Xj(s)β(s) + β0(s).

(1)

LLR essentially provides a logistic regression classifier for each location where β(s) and

β0(s) captures the heterogeneity in space of covariates and baseline risk. As shown in Figure

3, we map the coefficients of covariates fitted in each district and find that the covariate

effects are spatially-varying with a gradient from southeast to northwest, which suggests

that the model might benefit from assuming spatial dependence among the covariates; this

acts as our motivation for the spatially varying coefficient model in Section 3.3.

3.2 Spatial Logistic Regression (SLR)

LLR fails to describe the spatial dependence among districts. An approach to allowing

for spatial dependence is to add spatially dependent random effects to the model, which

replaces β0(s) in LLR with W (s) below. This class of models, commonly called spatial

generalized linear models, is well studied in the literature on non-Gaussian spatial data
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Figure 3: (1) Intercepts from LLR models (2) Coefficients of age from LLR

models (3) Coefficient of vaccination status of LLR models (4) Mean positive

rate on map of Ethiopia at province-level.

(cf. Besag et al., 1991; Zhang, 2002; Haran, 2011; Hughes and Haran, 2013). The spatially

dependent logistic regression model (SLR) is specified as follows: hierarchical model can

be expressed as:

Yj(s) ∼ Bernoulli

(
1

1 + exp (−µj(s))

)
,

µj(s) = Xj(s)β +W (s),

W ∼ GP (0,Σ(σ2, ϕ)).

(2)

We model {W (s), s ∈ D} as a Gaussian process with mean 0 and an exponential

covariance function to describe the spatial dependence among different locations: Σi,j =

Cov(W (si),W (sj)) = σ2 exp(−di,j/ϕ), where di,j is the distance between location i and
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j, σ2 is the variance and ϕ is the spatial scaling parameter (larger value of ϕ has higher

covariance). For any collection of n locations this implies that W = [W (s1), ...,W (sn)] is

an n−dimensional multivariate normal with an n × n covariance matrix. This model is

also studied as Gaussian process binary classifier (Williams and Rasmussen, 2006) and can

be intuitively understood as an extension of logistic regression which captures both the

linear effect specified by predictors and the non-linear effects which are caused by the joint

variability between districts described by the spatial dependence.

3.3 Varying Coefficient Spatial Logistic Regression (V-SLR)

LLR (Equation 1) and SLR (Equation 2) provide binary classification while allowing for

spatial heterogeneity. However, as is the case for our Ethiopia data, it is common for

many locations to have a limited number of observations or even zero observations. This

poses challenges for training a reliable classifier locally; in some cases the few observations

may all belong to a single class (all positive or all negative), making the problem even

more challenging. SLR model handles these situations better than LLR model but only

utilizes neighboring information through the spatial dependence in random effect W (s). In

addition, we find that the coefficients for our Gaussian process classifier also vary smoothly

in space (see Figure 3). We propose a novel model that utilizes this information based on

SLR and further borrow information from neighboring locations through the coefficients of

covariates which can be achieved by modeling each predictor βk = [βk(s1), ..., βk(sn)] for

k = {1, ..., p} as a Gaussian process with mean 0 and covariance Σk where Σk is a n by

n matrix. Together with the random effect W ∼ GP (0,ΣW ) where ΣW is also n by n in

dimension, we utilize p + 1 Gaussian processes to describe the spatial dependence among

classifiers in different locations. The full hierarchical model can be expressed as:

Yj(s) ∼ Bernoulli

(
1

1 + exp (−µj(s))

)
,

µj(s) = Xj(s)β +W (s) + ϵ,

βk ∼ GP (0,Σβk
)

W ∼ GP (0,ΣW )

(3)
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where Σ
(i,j)
βk

= σ2
βk
exp(−di,j/ϕβk

) and Σ
(i,j)
W = σ2

W exp(−di,j/ϕW ), ϵ is added into the model

to account for the imbalance in the response variable. We refer to Equation 3 as varying

coefficient spatial logistic regression model (V-SLR). V-SLR meets our expectation in the

exploratory analysis in Figure 3 where spatial variation presents in both coefficients and

random effects, and can overcome the drawbacks encountered by LLR and SLR by con-

structing a classifier for locations with few or even zero observations based on the spatial

dependency with the neighboring locations.

Details regarding prior distributions and the Markov chain Monte Carlo (MCMC) al-

gorithm used to carry out Bayesian inference are provided in the Supplement. For effi-

ciency and extendability, we implement the MCMC algorithms using the language Nimble

(de Valpine et al., 2017).

4 Simulation Studies

In this section, we use synthetic data under multiple experimental settings to evaluate the

performance of our proposed V-SLR method, together with LLR and SLR as two baseline

models. With the purpose of providing classification of measles status at individual-level at

various districts, we evaluate the performance of the classifiers in terms of true positive rate

(TPR), true negative rate (TNR), accuracy (ACC) and area under the receiver operating

characteristic curve (AUC). We also evaluate the performance of burden estimation both

at country-level and district-level. In both simulation studies, we use the administrative

map of Ethiopia with province and district levels.

4.1 Performance on Classification

In order to conduct simulations based on synthetic data that resembles real data in Ethiopia,

we keep the individual demographic records on age, vaccination status and location infor-

mation the same as the surveillance data in Ethiopia. However, we generate the measles

status for each individual according to the logistic model with spatial dependency as de-

scribed in Section 3.3. This provides control over the ground truth of the model through
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pre-specified coefficients and random effects. We use these covariates as predictors and an

exponential covariance function to describe spatial dependence2, Σ(i,j) = σ2 exp(−di,j/ϕ),

with parameters σ2, ϕ > 0. The coefficients for age, vaccination status are generated

by βk ∼ GP (0,Σk) where k ∈ {age, vaccination}, and random effects W generated by

W ∼ GP (0,ΣW ). The variance parameters for Σk and ΣW are set to be 1. We design

three levels of spatial dependence on the covariates and random effects by varying ϕ: low

(ϕ = 200), medium (ϕ = 500), and high (ϕ = 800) spatial dependence. We set ϵ to 0 for

all the three panels of synthetic data.

Spatial

Dependence

Evaluation

Metric
LLR SLR V-SLR

low (ϕ = 200) TPR 0.67 (0.03) 0.86 (0.03) 0.79 (0.02)

TNR 0.69 (0.02) 0.85 (0.04) 0.77 (0.03)

ACC 0.67 (0.01) 0.86 (0.01) 0.78 (0.01)

AUC 0.73 (0.02) 0.93 (0.01) 0.83 (0.01)

medium (ϕ = 500) TPR 0.59 (0.01) 0.83 (0.02) 0.82 (0.02)

TNR 0.80 (0.05) 0.82 (0.02) 0.85 (0.01)

ACC 0.65 (0.01) 0.82 (0.01) 0.84 (0.01)

AUC 0.70 (0.02) 0.89 (0.02) 0.93(0.02)

high (ϕ = 800) TPR 0.61 (0.01) 0.82 (0.01) 0.85 (0.01)

TNR 0.65 (0.03) 0.83 (0.02) 0.86 (0.03)

ACC 0.63 (0.01) 0.83 (0.01) 0.85 (0.01)

AUC 0.70 (0.02) 0.89 (0.02) 0.93 (0.02)

Table 1: Performance of LLR, SLR and V-SLR models under simulation settings with 3

levels of spatial dependence. Monte Carlo error reported in parentheses; bold numbers

represent the best performance (only if the improvement is statistically significant).

All the simulation studies were conducted through 10-fold cross-validation. We ran-

domly split the data into 10 folds of similar size; for each fold, we train the 3 classifiers

2distances are measured in km
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using the remaining folds as training data set and evaluate the performance of these classi-

fiers on the hold out fold as testing set. We report the average of metrics in the simulation

study across the 10 folds in Table 1. As shown in the table, the overall performance of

SLR and our proposed V-SLR model are both better than LLR model on all the 3 levels

of spatial dependence in the simulation setting, which implies that we can improve the

performance of individual-level classifiers through introducing spatial dependence. In the

medium and high spatial dependence settings, V-SLR are in general performing better than

that of SLR. For the evaluation metrics, true positive rate, also referred to as sensitivity,

is evaluating the probability that an actual positive will test positive. True negative rate

refers to the probability of a negative test, given that one does not have measles. Accuracy

gives the overall prediction accuracy regardless of positive or negative cases; area under

curve in our study refers to the integration of the area under the operating characteristic

curve, which plots the true positive rate against the false positive rate at varying discrim-

ination threshold. For TPR and TNR, V-SLR model outperforms LLR model, but shows

no obvious advancement over SLR. On metric of ACC and AUC, V-SLR model outper-

forms LLR model and SLR model in both medium and high spatial dependence settings.

Our heuristic to choose between the three models involves analyzing the correlogram of

the intercepts and coefficients fitted from LLR model. We used the ‘correlog’ function in

the ‘ncf’ package (Ottar and Cai, 2016) in the statistical language R to draw correlogram

plots. If we see significant spatial dependence in the intercept term (if the confidence band

excludes 0), then spatial dependence models (SLR and V-SLR models) are preferred; if fur-

ther spatial dependence presents in coefficients term, then the V-SLR model is preferred.

The SLR model and V-SLR models are more computationally expensive to fit than the

LLR model due to the additional spatial dependence term and the fact that only LLR is

easily parallelized.

4.2 Performance on Burden Estimation

After obtaining the trained classifiers using the three models, LLR, SLR and V-SLR, we

utilize them to estimate the disease burden on testing data set. A burden estimation method
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is desirable if it gives accurate estimates while keeping a relatively smaller uncertainty;

what’s more, in our study, we are interested in better estimates of disease burden not

only on country level, but also on more granulated level in district. Therefore, we first

provide the burden estimates and 95% confidence intervals (CI) from models on country

level, and then compare on whether the constructed CIs cover the ground truth of disease

burden. In our analysis at country level, all CIs constructed from the three models cover

the ground truth with comparable uncertainty. Then we break down the burden estimate

into district and compare confident intervals constructed through LLR model, SLR model,

V-SLR model and a scaling up method. The scaling up method is a common way of

providing burden estimates which first obtains a point estimate of test positive rate at each

district based on training data and then scale it up to the testing data with uncertainty

derived from Binomial distribution. In the cross-validation, we construct district-level

CIs for each method and record the mean number of districts which has disease burden

successfully covered across the folds. In Table 1, we report the performance of district

level coverage of CIs in percentage in 3 different spatial dependence levels. LLR, SLR and

V-SLR all outperforms the scale up methods, which shows the importance of introducing

statistical models in disease burden estimation at finer geographical levels. SLR and V-

SLR both outperforms LLR shows that by introducing spatial dependence in the model,

the performance of burden estimation at the district level improves, which is valuable for

formulating targeted policy. V-SLR covers more ground truth measles burden at district-

level at low and medium spatial dependence settings, but not significantly better.

5 Measles Burden Estimation in Ethiopia

In this section we apply our methods to measles surveillance data set from Ethiopia. As

in the simulation study, we first compare the performance of classifiers at individual-level,

then obtain country-level and district-level disease burden estimates from these classifiers.

In exploratory data analysis, we observe the distribution of vaccination doses are highly

concentrated at 0 and 1, with a smaller proportion on 2 and 3 doses. The phenomenon

is partially attributed to the mistakes in the process of case recording, for example, some
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Spatial

Dependence
Scale Up LLR SLR V-SLR

Low (ϕ = 200) 78.3% (1.9%) 81.0% (3.4%) 96.6% (2.0%) 97.0% (2.1%)

Medium (ϕ = 500) 82.3% (3.6%) 85.4% (3.1%) 97.7% (1.7%) 98.3% (1.5%)

High (ϕ = 800) 85.9% (2.9%) 91.3% (3.0%) 97.9% (2.0%) 97.4% (1.5%)

Table 2: 10-fold cross-validation performance comparing scaling up method vs LLR, SLR

and V-SLR models on percentage of burden estimation CIs that covers the ground truth

at district-level. Monte Carlo error reported in parentheses.

doctors may treated this question as whether or not the case have received measles vac-

cination before or the individual forgot the accurate number of doses received, thus some

cases who received 2 or 3 doses are recorded as 1. As a result, we coded our vaccination

status as binary, with 0 represents no vaccination received before and 1 as have received

vaccination regardless the number of doses; the binary coding of vaccination also helps

with interpretability on the coefficients. In addition, we observe a nonlinear relationship

between age and proportion of measles test positive, which indicates adding a quadratic

term of age in the classifiers as predictors. Note that in the original data, there were some

mismatches in the location information at district and province level, for example, multi-

ple objects in district Mirab Gojjam are matched to province Amhara and it actually in

province Oromia. We made corrections to 5 districts in total with such mismatches.

5.1 Performance on Classification

We first investigate the performance of classifiers introduced in Section 3 (LLR, SLR and V-

SLR models) in the application to the individual-level binary classification of measles status

in Ethiopia. All the data analysis results are conducted through 5-fold cross-validation

in order to evaluate the performance among different classifiers. Performance between

different classifiers is evaluated in terms of TPR, TNR, ACC and AUC as in Section 4.1

and we report the average of each metric across the 5 folds. SLR and V-SLR models

are classifiers at district-level, LLR is fitted at province-level because of insufficient valid
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observations at multiple districts.

Evaluation

Metric
LLR SLR V-SLR

TPR 0.62 0.63 0.64

TNR 0.75 0.74 0.75

ACC 0.70 0.70 0.72

AUC 0.74 0.74 0.76

Table 3: 5-fold cross-validation performance of LLR, SLR and V-SLR models in terms of

TPR, TNR, ACC and AUC. (Monte Carlo standard error less than or equal to 0.01)

Table 3 provides the cross-validation performance of the three models where V-SLR

model outperforms LLR and SLR models on all the 4 metrics, which indicates the impor-

tance of including spatial dependence in improving predictability of individual-level measles

status. LLR is fast in computation and the results are not far off from SLR and V-SLR

model.

The quadratic term of age has coefficient 0.004 which is shared across all district; the

spatial varying coefficient of age in Figure 4 (a) has both positive and negative values in

districts. Intuitively, as age goes up, the immunity gained either from vaccination or in-

fection should accumulate and thus lower the risk of getting measles. This is true among

children of various ages, however, due to the difference in behavior, the number of adult

observation is a lot fewer and the risk is higher among these adults who visit clinics since

they tends not to visit hospital unless the phenomenon is severe and treatment is needed.

Figure 4 (b) shows the coefficients on vaccination on district level of V-SLR model. The

coefficients are negative for all districts which corresponds to the scientific fact that vacci-

nation reduces the risk of getting infected with measles. The plot also indicates that the

impact of vaccination has spatial heterogeneity across districts. Figure 4 (c) is the plot of

the random effects, which can be viewed as the background risk of being measles positive

consisting all possible factors in addition to age and vaccination status.
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Figure 4: (a) Coefficients of age (b) Coefficients of vaccination (c)

Random effects in V-SLR model on map of Ethiopia.

5.2 Performance on Burden Estimation

In the measles surveillance data of Ethiopia, we constructed individual-level measles status

classifiers based on age, vaccination status and location information, and can utilize them

to provide burden estimation on all the reported suspected cases without laboratory confir-

mation. The constructed confidence intervals at country level are comparable and they all

captured the ground truth burden of measles: the simple scaling up method (from Section

4.2) (1220, 1339), LLR (1228,1328) SLR (1230,1333) and V-SLR (1223, 1324).

When we break down the burden estimation to district level, the confidence intervals for

each district behaves differently for different methods. To better compare and demonstrate

the results, we pick one fold of the cross-validation study and centralize the 95% CIs by

subtracting their ground truth, i.e., the horizontal line at 0 represents ground truth of
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Figure 5: 95% confidence interval for burden estimates of scaling method,

LLR, SLR and V-SLR model on district level.

burden after center correcting at that district. As a result, a CI that covers the true

disease burden at a district will contain 0. Figure 5 shows whether, at the district level,

each CI from the 4 methods covers the ground truth disease burden or not. The CIs are

displayed vertically by methods with blue represents ground truth being covered and red

represents not being covered. CIs constructed through V-SLR model covers the ground

truth disease burden at most districts, followed by SLR and LLR model; the scaling up

method (introduced in Section 4.2), though widely used, has the least accurate CIs at the

district level.
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5.3 Burden Estimation on Suspected Cases

After comparing the performance of scaling up method, LLR, SLR and V-SLR on both

classification and burden estimation, we choose and apply V-SLR to conduct further study

on providing a model-based burden estimation on the 31,853 suspected reported cases

without laboratory confirmation. To investigate the influence of using symptomatic case

definition, we study the relationship between inferred measles burden and the number of

reported suspected cases and create a descriptive statistic, ratio between the number of

predicted positives and the reported suspected cases. Figure 6 (a) shows the fluctuation of

this ratio (with 95% confidence interval bands) from 2009 to 2017 by month and is aligned

with the number of all suspected cases to better show the trend in time. For time intervals

with high suspected cases, the ratio tends to go lower and when the number of suspected

cases is low, the ratio is higher. It indicates that the ratio between (inferred) measles

cases and the reported febrile and rash cases is not constant across time. We note that

the assumption of constant disease rate among the reported cases over time is widely used

in burden estimation methods based on time series studies without taking individual-level

demographic and geolocational effects into account. When we aggregate the plot by year,

figure 6 (b) shows a more stable ratio across time regardless of the movement of the number

of reported cases. By comparing the two plots, though we observe a stable disease rate by

year, there is fluctuation in this rate in finer time units which may due to the heterogeneity

of people in various aspects such as age, vaccination status, location and time of visit.

6 Conclusion and Discussion

We have proposed a spatially varying coefficient model (V-SLR) that allows to integrate

both clinically confirmed and diagnostically confirmed measles cases to generate a better

estimate of the burden of reported measles at district-level in Ethiopia. We compared the

performance of the proposed model with a naive scaling up method and two other useful

approaches that we called LLR and SLR, both in terms of individual-level classification

and burden estimation on reported suspected cases. Both V-SLR and SLR can incorporate
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Figure 6: Ratio between predicted and suspected cases aligned with number of

suspected cases, aggregated by (a) month and (b) year

some level of low quality data issues such as missingness and imbalance by utilizing infor-

mation from neighbors through spatial dependence. In the simulation study and real data

study, all the methods can provide a reasonable confidence interval of burden estimation

at country level, while the proposed method outperforms the other methods in confidence

intervals at district level, which provides more accurate indication about the measles epi-

demic with spatial heterogeneity taken into account. We apply our proposed method to the

suspected reported cases with febrile rash and bring out some insights on the influence of

using symptomatic cases definition on monitoring measles disease burden. Naively, relying

on uncorrected, clinically confirmed, suspected cases over-report the burden of reported

cases. More importantly, the magnitude of that bias is non-constant in time and varies as

a function of the location, age-distribution, and vaccine history of cases presenting with
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febrile rash. This latter point is important for national-level burden estimation and vaccine

program evaluation as the conventional state-space models that are fit to infer these quan-

tities conventionally assume that reporting rates are constant in time (Dixon et al., 2021;

Thakkar et al., 2019). We note here that these results only address time varying diagnostic

uncertainty due to variability in the predictive value of the clinical case definition and do

not address temporal or spatial variation in care-seeking.

Here we have presented a proof of concept for the use of diagnostic testing results to

develop a classifier and infer burden of infection among untested, clinically confirmed cases.

We note that, in doing so, we have made the strong assumption that tested cases are a

representative sample of clinically compatible cases. In practice, this is unlikely to be the

case, either for this data set, or for applications in other countries, as there is not formal

guidance on the application of diagnostic testing to ensure a representative sample. Thus,

the sample of tested individuals here is a convenience sample and may therefore result in

unforeseen biases. We note that while there are consistent patterns in the fitted parameters

(e.g. individuals with a prior vaccination had lower odds of being measles IgM positive),

interpretation of these parameters must acknowledge the potential for bias due to non-

random sampling. The substantial gap between assumption and reality could be overcome

with a formal sampling design, intended to take advantage of the methods we describe

above. Our individual-level classifier and inference about measles burden provide a way to

utilize the current surveillance data and reform them into a representative sampling and

testing diagnostic, which provide an entrance to analyze the long-lasting chicken-and-egg

problem: the co-dependence between the formation of hard-to-achieve perfect surveillance

data and the development of methodology to analyze surveillance data better.

Data Availability Statements

These data are the property of the government of Ethiopia and the WHO. Access to these

data can be requested directly from WHO Division of Immunization, Vaccinations, and

Biologicals. To illustrate the application of the methods described herein, we have provided

the readers with a simulated data set used in our manuscript. These data have similar
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characteristics to the real data: https://github.com/lxxiww/Measles-Surveillance
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