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Abstract: 42 

Diabetic foot complications (DFCs) comprising diabetic foot ulcer (DFU), charcot’s 43 

neuroarthropathy and amputations are a collective term used for the ailments of the foot that 44 

individuals with diabetes incur. Despite implementation of national and international guidelines, 45 

DFCs are still a growing challenge to the individual and society. Novel markers for the treatment 46 

and prevention of DFCs are thus needed. The aim of this study was to investigate circulating 47 

metabolites associated with the prevalence and incidence of DFCs in persons with type 1 diabetes 48 

(T1D). A panel of non-targeted serum metabolites (n=75) were analyzed using mass spectrometry 49 

in 637 individuals with T1D with a median follow up time of 10 years. Cross sectional associations 50 

between metabolites and DFCs were analysed by linear regression models at baseline, Cox 51 

proportional hazards model at follow-up and adjusted for relevant confounders (age, sex, HbA1c, 52 

systolic blood pressure, bmi, smoking, statin use, total cholesterol, plasma triglycerides, and renal 53 

function). The median (interquartile range) age was 55 (47, 64) years, diabetes duration of 35 (25, 54 

44) years and HbA1c levels 64 (8%) (56, 72(7.3%, 8.7%)) mmol/mol. In the adjusted model, four 55 

amino acids (Proline, Threonine, Valine, and Leucine) were associated with a decreased incidence 56 

of Charcot’s arthropathy at baseline (p<0.05). In addition, circulating ribonic acid levels were 57 

associated with an increased risk of DFUs during follow-up (HR 1.38(1.06-1.8); p<0.05) which 58 

were validated in an independent cross-sectional T1D cohort (p<0.05). This study identifies novel 59 

circulating metabolites, as potential biomarkers for risk stratification of diabetic foot complications. 60 

 61 
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Keywords: Metabolomics, diabetic foot complications, diabetic foot ulcer, amputation, Charcot 66 

Introduction 67 

The complications that afflict the feet of individuals with diabetes are often referred to under the 68 

common term diabetic foot complications. Generally, the term covers four ailments that afflict the 69 

diabetic foot; diabetic foot ulcers (DFU), infections of the diabetic foot, amputations incurred by 70 

individuals with diabetes and Charcot’s arthropathy. The ailments encompassed in the term are 71 

closely linked to each other; and with a lifetime risk of 19-34% the DFU is the most common 72 

diabetic foot complication incurred by individuals with diabetes(1). The DFU is often the triggering 73 

event for infections and amputations of the diabetic foot(1) and has been associated to risk of 74 

Charcot’s arthropathy(2). Apart from the connection between the individual ailments of the diabetic 75 

foot, the diabetic foot borrows from both the macro and microvascular complications of diabetes 76 

with connections to neuropathy, peripheral arterial disease and retinopathy among others(3). To put 77 

the challenge in perspective an individual with diabetes is subjected to amputation of the lower limb 78 

or part of a lower limb every 30 sec. on a global scale(4). In addition to the burden incurred by the 79 

individual, the diabetic foot complication poses a significant economic challenge to all societies in 80 

the world. The cost of treating the diabetic foot complication is substantial, with a 5.4 times higher 81 

cost of treating an individual with a diabetic foot complication compared to an individual with 82 

diabetes without a foot complication(5). On a larger scale 1% of the total health-care budget in 83 

England was spend on treating the diabetic foot(6). These challenges have led to several national 84 

and international strategies with the intend of reducing the incidence of diabetic foot 85 

complications(7). This has, however, not lead to a significant reduction in the incidence or cost of 86 

diabetic foot complications in general. In addition, the projected increase in size and lifespan of the 87 

global diabetic population, new treatment strategies are needed to incur reductions in or even 88 

prevention of prevention of diabetic foot complications(3).  89 
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One of the emerging frontiers in prevention and treatment of the diabetic foot complication is 90 

metabolomics. Metabolomics has shown promise in identifying pathways and biomarkers 91 

associated with risk of developing diabetes(8; 9). Furthermore, specific metabolites have been 92 

associated with increased risk of developing complications associated with diabetes(10). Despite the 93 

increased focus on the relationship between metabolomics and diabetic complications, studies on 94 

this topic are still lacking.  95 

Thus, the aim of the current study was to investigate the association between a non-targeted panel 96 

of circulating serum metabolites and three severe forms of diabetic foot complications (DFU, 97 

amputations and Charcot’s arthropathy (form here on referred to as diabetic foot complications or 98 

DFCs)) among adult persons with type 1 diabetes (T1D).  99 

Research Design and Methods 100 

637 individuals with T1D and a wide range of albuminuria were recruited from the outpatient clinic 101 

at Steno Diabetes Center Copenhagen (SDCC).  102 

This is a longitudinal observational cohort recruited between 2009 and 2011. Details of this cohort 103 

have been previously described (11). 104 

Another cross-sectional observational cohort with 161 T1D individuals being followed at SDCC 105 

and recruited during 2016-2017, also described in detail previously (12), was used as the validation 106 

cohort. 107 

All participants were subdivided into different albuminuria stages, normoalbuminuria (<3.39 108 

mg/mmol corresponding to <30 mg/24 h or mg/g), moderately increased albuminuria (3.39–33.79 109 

mg/mmol corresponding to 30–299 mg/24 h or mg/g), and severely increased albuminuria (≥33.90 110 

mg/mmol corresponding to ≥300 mg/24 h or mg/g). Participants with end stage kidney disease 111 

defined as receiving dialysis, kidney transplantation, estimated glomerular filtration rate (eGFR)< 112 

15ml/min/1.73m2 at baseline were excluded.  113 
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In the current study plasma metabolomics data along with information on (with or without) all foot 114 

complications (diabetic foot ulcer (DFU), amputation, and Charcot’s arthropathy) was available for 115 

637 individuals in the primary study whereas 126 individuals with T1D and peripheral neuropathy 116 

had information available only on DFUs (validation cohort). 117 

The study was conducted according to the Helsinki Declaration on ethical principles for medical 118 

research. The study was approved by the Danish Ethical Committee for the Capital Region of 119 

Denmark (Hillerød, Denmark), Danish Patient Safety Authorities and Danish Data Protection 120 

Agency. All participants provided informed written consent. 121 

 Baseline Characteristics and Diagnosis Codes 122 

All information on clinical characteristics and diabetic foot complications was extracted from the 123 

patient’s electronic health records. Three diabetic foot complications including DFUs, amputations, 124 

and Charcot’s arthropathy were investigated in the current study. All information on diabetic foot 125 

complications were attained in accordance with the international classification of diseases, tenth 126 

revision(13). A DFU was defined as a lesion of the skin on the foot of the person with type 1 127 

diabetes  (14). All information on procedures (amputations) were attained in accordance with 128 

Danish version of the Nordic Classification of Surgical Procedures(15). Date of diabetic foot 129 

complications diagnosis was cross referenced with date of participant blood sampling for 130 

metabolomic and biochemical analysis (or baseline). The diagnosis was then registered as “at 131 

baseline” if date of diagnosis was made prior to or at baseline and as during follow-up if date of 132 

diagnosis was after baseline. eGFR was calculated using the CKD-EPI 2012 equation (16). 133 

Participant baseline characteristics (Table 1) refer to the time point where blood collections were 134 

made for metabolomics analyses. Longitudinal data was acquired until 31st Dec 2020. Data 135 

regarding potential changes in medication during follow-up were not available. 136 
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 Serum Metabolomics Analyses  137 

The method used has previously been described in detail by Tofte et. al(17). In brief, the 138 

metabolomic measurements were performed using serum stored at -80° C. Leco Pegasus four-139 

dimensional gas chromatography with time off flight mass spectrometry (4D GC×GC TOFMS) 140 

instrument (Leco Corp. MI, USA) was used for metabolomics measurements. Using ChromaTOF 141 

raw data were assessed using peak-picking and resulting data were processed (alignment and 142 

normalization) with Guinea(18) and postprocessed in R-software. Inclusion of metabolites in the 143 

following analysis was based on certainty of the identification and level of technical precision. No 144 

restrictions for prior hypothesis or known pathways were implemented. A total of 75 metabolites 145 

(ESM Table 1, Supplementary table 4.1.1.3) were measured and included in analyses. These 146 

included amino acids, free fatty acids and compounds from the polyol and energy metabolite 147 

pathways.  148 

Metabolites with missing or undetectable values less than or equal to 20%, underwent imputation 149 

using the k-nearest neighbor algorithm and were log2-transformed as previously described (17; 19). 150 

Statistical analysis 151 

All statistical analysis and subsequent data visualization were carried out using the R-software.  152 

Continuous variables are given as median (interquartile range Q1-Q3 or IQR). Skewed variables, 153 

including all metabolites were log transformed before association testing. Categorical variables are 154 

given as total number followed by %. Clinical characteristics at baseline between two groups with 155 

and without diabetes foot complications were compared using Welch two sample t-test, Fisher’s 156 

exact test or Chi-squared test for continuous or categorical variables, respectively. Circulating 157 

metabolites and specific diabetic foot complication outcome were evaluated as follows: Cross 158 

sectional associations between each metabolite and diabetic foot complication outcome at baseline 159 

were assessed using multivariate linear regression models adjusted for relevant clinical variables.  160 
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The following models were used: Crude model: unadjusted, M1 model adjusted for age, gender, 161 

body mass index, systolic blood pressure, cholesterol, HbA1c, smoking, statin use, and triglycerides, 162 

also referred to as adjusted model. M2 model was M1 with additional adjustment for renal function 163 

markers (eGFR and/or UACR) also referred to as “fully adjusted” model. Multiple testing 164 

correction for p values were perfomed using the Benjamini-Hochberg method (padjusted) throughout 165 

the analyses.  166 

Cox proportional hazards model was used to assess longitudinal follow-up end points. The hazard 167 

ratios (HR) are reported per doubling of specified metabolites level. Significant or top performing 168 

metabolites with Padjusted <0.05 in the adjusted (M1) longitudinal cox proportional hazards model 169 

were included in survival analysis with the fully adjusted cox proportional hazards (M2) model for 170 

end points. The R-package “survminer” was used for constructing a) Kaplan-Meier plots for end 171 

points during longitudinal follow-up with stratification on median levels of the top-performing 172 

metabolite at baseline, and b) forest plot of the hazard ratios of the top-performing metabolite and 173 

clinical covariates. Integration of the results from all the crude models was visualized with the R-174 

package “circlize”. Significance was defined as p<0.05 (before multiple testing) and padjusted<0.05 175 

(after multiple testing) unless other is noted. Significance for validation cohort was defined as 176 

p<0.05.  177 

Results 178 

Clinical characteristics of study population 179 

The primary study included 637 participants (54.6% males) with T1D, a median (IQR) age of 55 180 

(47-64) years, diabetes duration of 35 (25-44) years (Table 1). In the following the participants are 181 

divided in two groups; first group without any diabetic foot complication at baseline (n=577) and 182 

the second group with at least one foot complication at baseline (n=60). 183 
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Age, diabetes duration, and urinary albumin creatinine ratio (UACR) were significantly higher in 184 

T1D with foot complications compared to the T1D without foot complications group. The estimated 185 

glomerular filtration rate (eGFR) was significantly lower in the two groups with foot complications 186 

compared to the group without foot complications (Table 1). 187 

All T1D individuals from baseline that did not incur a diabetic foot complication during a median 188 

follow up time of 10 years formed the no-foot complications group (n=488) whereas those who 189 

developed at least one foot complication during a median follow up (n=89) formed the foot 190 

complications group, for longitudinal analysis (Extra supplementary material, ESM Table 2). A 191 

total of 68 diagnoses of diabetic foot complications were registered at baseline (Table 1), while 149 192 

new diagnoses were made during follow-up (ESM Table 2).  193 

 Cross-sectional analysis  194 

All 75 circulating metabolites were included in a linear regression analysis at baseline 195 

(Supplementary file Table 4.1.1.3).   196 

In the crude model, 20 metabolites were associated with Charcot’s arthropathy at baseline before 197 

multiple testing correction (p<0.05) but only 9 remained significant after correction (padjusted<0.05; 198 

Figure 1, Supplementary Figure 4.1.1.1 and Table 4.1.1.2). In the M1 four amino acids (Proline, 199 

Threonine, Valine, and Leucine) were negatively while six other metabolites were positively 200 

associated with Charcot’s arthropathy at baseline (padjusted<0.05; Figure 1, Supplementary Figure 201 

4.1.2.1, and Table 4.1.2.2). In the M2 model, only proline remained associated (padjusted<0.05) with 202 

decreased incidence of Charcot’s arthropathy (Figure 1, Supplementary figure 4.1.4.1 and Table 203 

4.1.4.2).  204 

Seventeen metabolites showed an association with amputations at baseline before multiple testing 205 

(p<0.05, Supplementary Table 5.1.1.2) in the crude model, while six remained significant after 206 

correction (padjusted<0.05). Of the six metabolites, five were positively associated (Ribonic acid, 207 
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Myo Inositol, 4-Hydroxybenzeneacetic acid, Ribitol, and Succinic acid) while amino acid 208 

Threonine was negatively correlated with amputations (Supplementary Figure 5.1.1.1). In the M1 209 

model three metabolites showed a significant association with amputations at baseline before but 210 

none after the multiple testing correction (Supplementary Figure 5.1.2.1 and Table 5.1.2.2). None of 211 

the metabolites were associated with the incidence of DFUs at baseline after correcting for multiple 212 

testing in the crude or adjusted models (padjusted>0.05; Supplementary Tables 6.1.1.3, 6.1.2.3, and 213 

6.1.3.3). 214 

 Longitudinal analysis 215 

All plasma metabolites used for cross-sectional analysis were examined for longitudinal analyses.  216 

Albeit 17 circulating metabolites associated with the risk of incurring Charcot’s arthropathy during 217 

follow-up in the crude model, only four metabolites (Ribonic acid, Ribitol, Creatinine, Myo 218 

Inositol) remained significant (Supplementary Figure 4.2.1.1 and Table 4.2.1.2) after multiple 219 

testing correction. In the M1 model out of 16 metabolites associated to risk of incurring Charcot’s 220 

arthropathy during follow up (p<0.05, Supplementary Table 4.2.2.2), none retained after multiple 221 

testing correction. Similarly, no metabolites remained significant in M3.  222 

None of the tested metabolites were associated with risk of incurring an amputation during follow-223 

up in crude or adjusted models (padjusted>0.05; supplementary Tables 5.2.1.2, 5.2.2.2, and 5.2.3.2).  224 

 In the crude model 11 metabolites were significantly associated (padjusted<0.05) to the risk of 225 

incurring a DFU during follow-up (Supplementary Figure 6.2.1.1 and Table 6.2.1.2). In the M1 226 

model two metabolites (Ribonic acid and Tyrosine) remained significantly associated with risk of 227 

incurring DFU during follow-up (Supplementary Figure 6.2.2.1 and Table 6.2.2.2). Ribonic acid 228 

retained a significant association with risk of incurring a DFU during follow-up with a hazard ratio 229 

of 1.39 (1.08-1.8 (p=0.012) (Supplementary Section 6.2.3.3 and Figure 6.2.3.3.1)) after adjustment 230 

for renal function. 231 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2023. ; https://doi.org/10.1101/2022.05.16.22275166doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.16.22275166
http://creativecommons.org/licenses/by-nc-nd/4.0/


A survival analysis of DFU-free days stratified on median plasma levels of Ribonic acid in the 232 

study population showed a significantly higher number of DFU-free days in the group with the 233 

lowest levels of Ribonic acid in serum at baseline (p<0.0001) (Figure 2). 234 

Overall associations of significant metabolites and diabetic foot complication outcomes from the 235 

crude model have been depicted in Figure 3 chord diagram.  236 

Validation 237 

We replicated Ribonic acid association with DFU in the cross-sectional validation study with 126 238 

T1D individuals: 27 with DFU and 99 without any DFU (ESM Table 3). 239 

Higher circulating Ribonic acid levels were significantly associated with DFU risk in the crude 240 

(Beta: 0.57; p = 0.013), M1 (Beta: 0.57; p=0.019) and M2 (Beta: 0.53; p=0.024) models, 241 

respectively (ESM Table 4; ESM figure 1).  242 

Discussion 243 

This is one of the first prospective studies to examine a possible correlation between circulating 244 

plasma metabolites and diabetic foot complications. Several metabolites with association to 245 

incidence and risk of incurring diabetic foot complications are identified in the current study. 246 

Perhaps the most interesting being Ribonic acid also known as Ribonate, a derivate of the sugar 247 

Ribose and part of the pentose pathway. A significant association between risk of incurring a DFU 248 

and plasma levels of Ribonic acid. Prior studies have associated Ribonic acid with the incidence and 249 

future risk of retinopathy and nephropathy in the same cohort examined here(17; 19). This may hint 250 

at general correlation between complications associated with diabetes and plasma levels of Ribonic 251 

acid in this one cohort. While this may still be true, a study by Chen et al. identified an association 252 

between plasma levels of Ribonic acid and retinopathy when comparing a population with diabetes 253 

and retinopathy to a population with diabetes without retinopathy(20). Similarly, Hu et al. found 254 

that all-cause mortality was linked to plasma levels of Ribonic acid in a population with chronic 255 
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kidney disease(21). A possible role for Ribonic acid and/or the pentose pathway, as a marker of 256 

diabetes, is further supported by animal models that have shown that Ribonic acid levels in urine 257 

and plasma are elevated when diabetes is induced(22; 23). Although the proposed role of the 258 

pentose pathway and Ribonic acid is still unclear, it is a candidate for future research both when 259 

looking for potential biomarker and metabolomic pathways to target, in treatment and prevention of 260 

diabetic foot complications.  261 

 262 

In addition to the connection between Ribonic acid and development of DFUs, an inverse 263 

association between plasma levels of four amino acids (Threonine, Leucine, Valine, and Proline) 264 

and incidence Charcot’s arthropathy at baseline was found. Like Ribonic acid the role of circulating 265 

amino acids in diabetes complications is unclear. There have been studies showing a vital role for 266 

amino acids in human metabolic pathways including gluconeogenesis(24-26) and the secretion of 267 

insulin and glucagon(27). In regard to diabetic complications and circulating amino acids the 268 

published data is sparse for foot related complications albeit associations to microvascular 269 

complications (nephropathy and autonomic neuropathy) have been shown (10; 28-30). A recent 270 

study by Hung et al. found an association between DFU healing and plasma levels of four amino 271 

acids. These amino acids included Threonine and Leucine, which were also found in our study(31). 272 

An association between amino acids and healing of pressure, trauma and burn ulcers have been 273 

proposed in other studies(32; 33). Prospective randomized studies have even hinted at beneficial 274 

effects on pressure-ulcer healing of nutritional supplements including specific amino acids(34). 275 

However, the beneficial effects are still uncertain due to the limited available data(35). Similar 276 

results have been seen when adding nutritional supplements to treatment of individuals with 277 

diabetes; smaller retrospective and prospective studies have shown promise(36; 37), but the 278 

combined data is insufficient to conclude if there is a beneficial effect(38). While the role of diet in 279 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2023. ; https://doi.org/10.1101/2022.05.16.22275166doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.16.22275166
http://creativecommons.org/licenses/by-nc-nd/4.0/


diabetic foot complications is still unclear, the role of diet in diabetes in general is not up for 280 

debate(39). We need further studies on the association between diabetic foot complications and 281 

amino acids to identify the most potent biomarkers and targets for treatment and prevention of 282 

diabetic foot complications. 283 

Study limitations included missing information on medication. Consequently, information on 284 

dosage and changes in dosage during the study is unavailable. In addition, information on some of 285 

the known clinical risk factors (toe blood pressure and foot deformities) in development of diabetic 286 

foot complications were unavailable at the time of data analysis. Finally, information on diet, which 287 

may affect the composition of the individual participants metabolome, was unavailable. On the 288 

other hand, the strengths of this study are, the large size of the cohort with T1D, long follow-up, 289 

high throughput metabolomic measurements using mass spectrometry and high qualitative 290 

bioinformatic data analyses methods.  291 

 292 

A recent editorial from our institute highlights the importance of including longitudinal follow-up, 293 

as presented in this study, in metabolomic and similar studies on diabetes and its complications(40). 294 

This study adds to the growing evidence base for specific metabolites associated to complications of 295 

diabetes, specifically DFU and Charcot’s arthropathy. The identified circulating metabolites have 296 

already been described in the literature, suggesting associations with diabetes and microvascular 297 

complications. Plasma metabolomics in diabetic foot complications is an intriguing prospect, as risk 298 

profiling promises the opportunity to prevent rather than treat these debilitating ailments. In 299 

addition, metabolomics can help uncover molecular pathways of foot complication development, 300 

that are also potential targets for developing novel therapeutics. 301 

 302 

 303 
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 455 

 456 

Tables and figures 457 

Table 1. Clinical characteristics of the study participants at baseline  458 

 All study 
participants 

T1D 
participants 
without foot 
complications 
 

T1D with at least 
one foot 
complication  
 

p-value* 

n (%) 637 (100) 577 (90.6) 60 (9.4) - 
Men, n (%) 348 (54.6) 314 (54.4) 34 (56.6) 0.8 
Age, years 55 (47, 64) 55 (47, 63) 60 (52, 68) <0.001 

Diabetes duration (years) 35 (25, 44) 34 (23, 43) 44 (36, 52) <0.001 
Smokers, n (%) 133 (20.8) 123 (21.3) 10 (16.6) 0.4 

BMI, kg/m
2
 24.8 (22.5, 27.5) 24.8 (22.5, 27.2) 25.3 (22.7, 29.1) 0.6 

Systolic blood pressure, 
mmHg 

130 (119, 142) 129 (118, 142) 131 (120, 148) 0.4 

HbA1c, mmol/mol 64 (56, 72) 64 (55, 72) 66 (58, 72) 0.2 
eGFR, ml/min/1.73 m2 85 (64, 102) 86 (68, 104) 59 (43, 88) <0.001 
UACR, mg/g 13 (6, 42) 12 (6, 39) 41 (20, 206) <0.001 
LDL, mmol/l  2.4 (2.0, 2.9) 2.4 (2.0, 2.9) 2.1 (1.7, 2.6) 0.089 
Triglycerides, mmol/l  1.0 (0.7, 1.3) 1.0 (0.7, 1.4) 0.9 (0.8, 1.2) 0.8 
DFC, n  68  - 68 - 
DFU, n (%) 19 (3) - 19 (31.6) - 
Amputations, n (%) 23 (3.6) - 23 (38.3) - 
Charcot’s arthropathy, n (%) 26 (4.1) - 26 (43.3) - 
Values are Median (IQR).  459 
T1D: Type 1 Diabetes; BMI: Body mass index; HbA1c: Glycosylated hemoglobin A1c; eGFR: Estimated 460 
glomerular filtration rate; LDL: Low density lipoproteins; UACR: urinary albumin excretion rate; DFC: 461 
Diabetic foot complication comprising diagnosis of diabetic foot ulcer (DFU), amputations, or Charcot’s 462 
arthropathy. 463 
*P value <0.05 were considered significant and are depicted in bold. P values were calculated using Welch 464 
Two Sample t-test; Fisher's exact test; or Pearson's Chi-squared test. 465 
 466 
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 471 

 472 

Figure Legends 473 

Figure 1. Cross-sectional analysis - Charcot’s Arthropathy 474 

Cross-sectional analysis of association between baseline metabolites level and Charcot’s arthropathy at 475 
baseline. Divided in crude (with correction for multiple testing), adjusted (further adjusted for age, gender, 476 
body mass index, systolic blood pressure, cholesterol, glycosylated hemoglobin A1c, smoking, statin and 477 
triglycerides) and fully-adjusted (further adjusted for estimated glomerular filtration rate (eGFR) and 478 
urinary-albumin creatinine ratio), with 95% confidence intervals. Significance was defined as p<0.05. In this 479 
figure an significant p-value not adjusted for multiple testing is marked in yellow (p). A p-value that is 480 
significant after adjustment for multiple testing is marked in red (q). Finally, a p-value that is not-significant 481 
before multiple testing is marked in black. 482 
 483 

Figure 2. Survival analysis – diabetic foot ulcer-free days 484 

Kaplan-Meier analysis of ulcer-free days stratified on median of plasma levels of Ribonic acid at baseline.  485 
 486 

Figure 3. Overview of serum metabolite associations with diabetic foot complications (incident and 487 
prevalent; crude model).  488 
 489 
Chord diagram of crude associations between the metabolome (left) and foot complications (right) at 490 
baseline (prevalent cases) and during the follow-up (incident cases). A curve between a metabolite and a 491 
complication depicts a significant crude association (red: positive; blue: negative) after correction for 492 
multiple testing. The category of each metabolite is indicated by the color aside the metabolite name. Amino 493 
acids Leucine, Proline, Threonine and Valine are negatively associated with prevalent Charcot’s arthropathy 494 
(blue curves), whereas most of the other associations are positive (red curves). 495 
 496 
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