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Abstract

Reliably estimating the dynamics of transmissible diseases from noisy surveillance data is an enduring
problem in modern epidemiology. Key parameters, such as the instantaneous reproduction number, Rt at
time t, are often inferred from incident time series, with the aim of informing policymakers on the growth
rate of outbreaks or testing hypotheses about the effectiveness of public health interventions. However, the
reliability of these inferences depends critically on reporting errors and latencies innate to those time series.
While studies have proposed corrections for these issues, methodology for formally assessing how these
sources of noise degrade Rt estimate quality is lacking. By adapting Fisher information and experimental
design theory, we develop an analytical framework to quantify the uncertainty induced by under-reporting
and delays in reporting infections. This yields a novel metric, defined by the geometric means of reporting
and cumulative delay probabilities, for ranking surveillance data informativeness. We apply this metric to
two primary data sources for inferring Rt: epidemic case and death curves. We find that the assumption
of death curves as more reliable, commonly made for acute infectious diseases such as COVID-19 and
influenza, is not obvious and possibly untrue in many settings. Our framework clarifies and quantifies
how actionable information about pathogen transmissibility is lost due to surveillance limitations.

Key-words: epidemic curves, death counts, surveillance
limits, outbreak analytics, reproduction numbers, noise.

INTRODUCTION

The instantaneous reproduction number, denoted Rt
at time t, is an important and popular temporal measure
of the transmissibility of an unfolding infectious disease
epidemic [1]. This parameter defines the average number
of secondary infections generated by a primary one at t,
providing a critical threshold for delineating growing epi-
demics (Rt > 1) from those likely to become controlled
(Rt < 1). Estimates of Rt derived from surveillance data
are widely used to evaluate the efficacies of interventions
[2, 3] (e.g., lock-downs), forecast upcoming disease bur-
den [4, 5] (e.g., hospitalisations), inform policymaking
[1] and improve public health awareness [6].

The reliability of these estimates depends fundamen-
tally on the quality and timeliness of the surveillance
data available. Practical epidemic monitoring is subject
to various errors or imperfections that can obscure or bias
inferred transmission dynamics [7]. Prime among these
are under-reporting and reporting delays, which can
scale and smear Rt estimates, potentially misinforming

public health authorities [8, 9]. Under-reporting causes
some fraction of infections to never be reported, while
delays redistribute reports of infections incorrectly across
time. The ideal data source for estimating Rt is the time
series of new or incident infections, It.

Unfortunately, infections are difficult to observe di-
rectly and proxies such as reported cases, deaths, hospi-
talisations, prevalence and viral surveys from wastewater
must be used to gauge epidemic transmissibility [1, 10].
Each of these data streams provides a noisy approxima-
tion to the unknown It but with distinct and important
relative advantages. We focus on the most popular ones:
the epidemic curve of reported cases, Ct at time t, and
that of death counts, Dt, and investigate how their innate
noise sources differentially limit Rt inference quality.

The epidemic case curve, Ct, records the most rou-
tinely available data i.e., counts of new cases [11], but is
limited by delays and under-reporting. Ascertainment de-
lays smear or reorder the case incidence and may emerge
from fixed surveillance capacities, weekend effects and
lags in diagnosing symptomatic patients (e.g., the time
from infection to a positive test) [8, 12]. Delays may be
classed as occurred but not yet reported (OBNR), when
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source times of delayed cases eventually become known
(i.e., delays cause right censoring of the case counts), or
what we term as never reported (NEVR), when source
times of past cases are never uncovered [13–15].

Case under-reporting or under-ascertainment strongly
distorts the true, but unknown, infection incidence curve,
altering its size and shape [9, 16]. Temporal fluctuations
in testing intensity, behaviour-based reporting (e.g., by
severity of symptoms) [17], undetected asymptomatic
carriers and other surveillance bottlenecks can cause
under-ascertainment or inconsistent reporting [18, 19].
Constant reporting (CONR) describes when the case
detection fraction or probability is stable. We term the
more realistic scenario in which this probability varies
appreciably with time as variable reporting (VARR).

Death time series, Dt, count newly reported deaths
attributable to the pathogen being studied and are also
subject to under-reporting and reporting delays, but with
two main differences [10]. First, death reporting delays
incorporate an extra lag for the intrinsic time it takes an
infection to culminate in mortality (this also subsumes
hospitalisation periods). Second, apart from the under-
reporting fraction of deaths, there is another scaling fac-
tor known as the infection fatality ratio, which defines the
proportion of infections that result in mortality [2, 20].
We visualise how the noise types underlying case and
death curves distort infection incidence in Fig. 1.

Although the influences of surveillance latencies and
under-ascertainment fractions on key parameters, such as
Rt, are known [8, 19, 21, 22] and much ongoing work
attempts to compensate for these noise sources [10, 23–
25], there exists no formal framework for assessing and
exposing how they inherently limit information available
for estimating epidemic dynamics. Most studies utilise
simulation-based approaches (with some exceptions e.g.,
[9, 22]) to characterise surveillance defects, which while
invaluable, preclude generalisable insights into how epi-
demic monitoring shapes parameter inference.

Here we develop one such analytic framework for
quantifying the information within epidemic data. Using
Fisher information theory we derive a measure of how
much usable information an epidemic time series con-
tains for inferring Rt at every time. This yields metrics
for cross-comparing different types of surveillance time
series as we are able to explicitly quantify how under-
reporting (both CONR and VARR) and reporting delays
(exactly for OBNR with a tight upper bound for NEVR)
degrade available information. As this metric only de-
pends on the properties of surveillance (and not Rt or It)
we extract simulation-agnostic insights into what are the
least and most detrimental types of surveillance noise.

We prove for constrained mean reporting fractions and

Fig. 1: Under-reporting and delayed reporting noise.
We simulate true infection incidence It (black) from a
renewal model (Eq. (15) with Ebola virus dynamics) with
reproduction number Rt that switches from supercritical
to subcritical spread due to an intervention. Panel A
shows under-reported case curves (50 realisations, vari-
ous colours) with reporting fractions sampled from the
distribution in the inset. We observe stochastic trajecto-
ries and appreciable under-counting of peak incidence.
Panel B considers delays in case reports (50 realisations,
various colours) from the distribution plotted in the inset.
We find variability and a smearing of the sharp change in
incidence due to Rt (also provided as an inset). The main
question of this study is how do we quantify which of
these two scenarios incurs a larger loss of the information
originally available from It, ideally without simulation.

mean delays, that it is preferable to minimise variability
among reporting fractions but to maximise the variability
of the reporting delay distribution such that a minority
of infections face large delays but the majority possess
short lags to notification. This proceeds from standard
experimental design theory applied to our metric, which
shows that the information embedded within an epidemic
curve depends on the product of the geometric means of
the reporting fractions and cumulative delay probabilities
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corrupting that curve. This central result also provides a
non-dimensional score for summarising and ranking the
reliability of (or uncertainty within) different surveillance
data for inferring pathogen transmissibility.

Last, we apply this framework to explore and critique
a common claim in the literature, which asserts that death
curves are more robust for inferring transmissibility
than case curves. This claim, which as far as we can
tell has never been formally verified, is usually made
for acute infectious diseases such as COVID-19 and
pandemic influenza [2, 20], where cases are severely
under-reported, with symptom-based fluctuations in re-
porting. In such settings it seems plausible to reason that
deaths are less likely under-counted and more reliable for
Rt inference. However, we compute our metrics using
COVID-19 reporting rate estimates [18, 26] and discover
few instances in which death curves are definitively more
informative or reliable than case counts.

While this may not rule out the possibility of having a
more reliable death time series, it elucidates and exposes
how the different noise terms within both data sources
corrupt information and presents new methodology for
exploring these types of questions more precisely. We
illustrate how to compute our metrics practically using
empirical COVID-19 and Ebola virus disease (EVD)
noise distributions and outline how other common data
such as hospitalisations, prevalence and wastewater virus
surveys conform to our framework. Hopefully the tools
we developed here will improve quantification of noise
and information and highlight key areas where enhanced
surveillance strategies can maximise impact.

RESULTS

Methods overview

We summarise the salient points from the Methods and
outline the main arguments that underpin all subsequent
Results sections. Our analysis is centred on the renewal
model [27], which is widely applied to describe the
dynamics of epidemics of COVID-19, Ebola virus dis-
ease (EVD), influenza, dengue, measles, and many others
[21]. This model posits that new infections at time step t
(It), are Poisson (Pois) distributed with mean that is the
product of the instantaneous reproduction number (Rt)
and total infectiousness (Λt). Here Λt defines how past
infections engender new ones based on w, the generation
time distribution of the pathogen. In Eq. (15) and Table I
we provide precise definitions of these variables.

An important problem in infectious disease epidemi-
ology is the estimation of Rt across the duration of an
epidemic [1]. However, as infections cannot be observed,
we commonly have to infer Rt from noisy proxies such

Symbols Definitions or Explanations

t time step (also x, s), often 1 ≤ t ≤ τ
τ present or maximum time step value
Xt some variable X at arbitrary time step t
Xb
a time series {Xa, Xa+1, . . . , Xb−1, Xb}

Rt instantaneous reproduction number
R̂t, R̃t maximum likelihood, unbiased Rt estimates
Rt transformed reproduction number 2

√
Rt

It count of (true) infections incident at t
wx probability of x time units between infections
w the generation time distribution (w∞1 )
Λt total infectiousness (depends on It−1

1 and w)
Ct count of reported cases incident at t
ρt proportion of infections reported as cases
ρ sampling proportion distribution (ρ∞1 )
ρ̄ mean reporting fraction constraint
δx probability of case reporting delay of x
Fs cumulative delay probability

∑s
x=0 δx

δ case reporting delay distribution (δ∞1 )
δ̄ mean reporting delay constraint
Dt count of reported deaths incident at t
ifrt infection fatality ratio of pathogen at t
σt proportion of incident deaths reported
σtifrt proportion of infections reported as deaths
γx probability of infection-to-death delay of x
Hs cumulative death delay probability

∑s
x=0 γx

γ infection-to-death delay distribution (γ∞1 )
a, b, k various distribution hyperparameters
m, p data and parameter vector dimensions
µt expected count of infections over time step t
Q matrix of under-reporting and reporting delays

Functions Definitions or Explanations

`(Y b
a ) log-likelihood function for parameters Y b

a

FX(Y ) Fisher information of Y from data source X
T(Xb

a) total Fisher information from data stream Xb
a

η(Xb
a) relative total Fisher information of Xb

a to Iba
θ(Xb

a) relative data quality of source Xb
a to Iba

G(yba) the geometric mean of noise variables yba
LX the description length under data stream X

h(X), ax, bx dummy functions for notational simplicity

Acronyms Definitions or Explanations

MLE maximum likelihood estimate
FI Fisher information (sets MLE uncertainty)

CONR constant reporting (fixed probabilities)
VARR variable reporting (probabilities vary in time)
OBNR occurred but not yet reported delays
NEVR never reported delays (source times unknown)

Table I: Summary of Notation.
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as the time series of reported cases or deaths. These can
be described by generalised renewal models that include
terms for practical noise sources such as under-reporting
and delays in reporting [28]. We define these models in
Eq. (1) and Eq. (2) and detail the properties of various
noise sources in the Methods. Our aim is to understand
and quantify how much information for inferring Rt, as
a fraction of what would be available if infections were
observable, can be extracted from these proxies.

We pursue this aim by adapting concepts from sta-
tistical theory and information geometry. We first con-
struct the log-likelihood function of the parameter vector
Rτ1 := {Rt : 1 ≤ t ≤ τ}, with τ as the present or last
observation time and t scaled in units (e.g., weeks) so
that each Rt can be assumed independent. This function
is `(Rτ1) =

∑τ
t=1 `(Rt) with `(Rt) := logP(It |Rt)

computed from the Poisson distribution of the renewal
model. Eq. (16) results and admits the maximum likeli-
hood estimates (MLEs), R̂t for all t, as its maxima. The
reliability of these MLEs is characterised by the Fisher
information (FI) of Rτ1 from the time series or curve of
incident infections Iτ1 := {It : 1 ≤ t ≤ τ}.

Larger FI values imply smaller asymptotic uncertainty
around the MLEs [29]. We obtain FI(Rt), the FI of
Rt, in Eq. (17) by evaluating the average curvature of
the log-likelihood function. We then formulate the total
information, T(Iτ1 ), as a product of FI(Rt) terms across
t as Eq. (18). This follows from the independence of the
Rt variables and is a novel measure of the reliability of
the infection time series. It is also delimits the maximum
possible precision around the MLEs of Rt for any time
series. Since Iτ1 is often unobservable, T(Iτ1 ) is generally
not computable and a theoretical maximum. However,
our subsequent results circumvent this issue.

In the upcoming sections we employ this same recipe
of constructing a log-likelihood and computing MLEs
and FI values but now for practical time series or data
streams that are corrupted by under-reporting and delays.
This yields Eq. (3)-Eq. (8), which contain the ingredients
for deriving the total information in case, death and any
other incidence data that is related to Iτ1 via a generalised
renewal model (this includes prevalence, hospitalisations
and virus abundance found in wastewater). We derive a
key result for T(Cτ1 ) in Eq. (9), showing exactly how
case data Cτ1 causes a loss in Rt estimate reliability.

Building on this expression we develop metrics η(Cτ1 )
and θ(Cτ1 ) in Eq. (10)-Eq. (11), which effectively quan-
tify T(Cτ1 )

T(Iτ1 ) i.e., the level of informativeness of case data
relative to true infections. The smaller these metrics are,
the more information that is lost due to surveillance
noise. Importantly, these metrics are analytic, require
no knowledge of Iτ1 or the generation time distribution

(both are difficult to observe) and are interpretable since
each noise type contributes a separate geometric mean
term. Further, they play an integral role in defining the
statistical complexity of the generalised renewal model
describing that time series, as we find in Eq. (12).

Repeating the above recipe we obtain similar metrics
for death data Dτ

1 , by characterising the ratio T(Dτ
1 )

T(Iτ1 ) in
Eq. (13)-Eq. (14). We can similarly compute ratios for
hospitalisations, prevalence and viral wastewater data by
including appropriate delay and under-reporting terms as
needed. We complete our results by including empirical
estimates of case and death noise sources within our
framework to compare T(Cτ1 )

T(Iτ1 ) and T(Dτ
1 )

T(Iτ1 ) for COVID-19
and EVD. We find that the common assumption of deaths
being more informative than cases is not likely true for
COVID-19 but holds under some conditions for EVD.

Renewal models with noisy observations

We denote the empirically observed or reported num-
ber of cases at time step or unit t, subject to noise from
both under-reporting and reporting delays, as Ct with
Cτ1 := {Ct : 1 ≤ t ≤ τ} as the epidemic case curve.
This curve is obtained from routine outbreak surveillance
and is a corrupted version of the true incidence Iτ1 [10],
modelled by Eq. (15). These noise sources (see Methods
for statistical descriptions) are parametrised by reporting
fractions ρτ1 := {ρt : 1 ≤ t ≤ τ} and a delay distribution
δ := {δx : x ≥ 0}. Here ρt is the fraction of infections
reported as cases at t and the δx the probability of a lag
from infection times to case report of x units.

We assume that these noise sources are estimated from
auxiliary line-list or contact tracing data [12, 30]. As a
result, we can construct Eq. (1) as in [25] (see Methods).
Note that if noise source estimates are unavailable then
Rτ1 becomes statistically non-identifiable or ill-defined.

Ct ∼ Pois

(
t∑

x=1
δt−xρxΛxRx

)
. (1)

This noisy renewal model suggests that Ct (unlike It)
contains partial information about the entire time series
of reproduction numbers for x ≤ t as mediated by delay
and reporting probabilities. Perfect reporting corresponds
to ρx = 1 for all x, δ0 = 1 (δx 6=0 = 0) and means Ct →
It. The models in (i)-(ii) of the Methods are obtained by
individually removing noise sources from Eq. (1).

Other practical epidemic surveillance data such as the
time series of new deaths or hospitalisations conform to
the framework in Eq. (1) either directly or with additional
effective delay and under-reporting stages [20]. The main
one we investigate here is the count of new deaths (due
to infections) across time, which we denote Dτ

1 := {Dt :
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1 ≤ t ≤ τ}. The death curve involves a reporting delay
that includes the intrinsic lag from infection to death. We
let γ := {γx : x ≥ 0} represent the distribution of lag
from infection to observed death and στ1 := {σt : 1 ≤
t ≤ τ} be the fraction of deaths that are reported.

An important additional component when describing
the chain from Iτ1 to Dτ

1 is the infection fatality ratio,
ifrt, which is the probability at time t that an infection
culminates in a death event [10]. Fusing these compo-
nents yields Eq. (2) as a model for death counts Dt.

Dt ∼ Pois

(
t∑

x=1
ifrxγt−xσxΛxRx

)
. (2)

In a later section we explain how analogues of Eq. (1)-
Eq. (2) also fit other data streams such as hospitalisations
and prevalence. Some studies [2, 31] replace this Pois
formulation with a negative binomially (NB) distribution
to model extra variance in these data. In the Appendix we
show that this does not disrupt our subsequent results on
the relative informativeness of surveillance data (though
the NB formulation is less tractable and unsuitable for
extracting generalisable, simulation-free insights).

Fisher information derivations for practical data

We derive the FI of parameters Rτ1 given the case
curve Cτ1 . This procedure mirrors that used in the Meth-
ods to obtain Eq. (18). We initially assume that reporting
delays are OBNR i.e., that we eventually learn the source
time of cases at a later date. This corresponds to a right
censoring that can be compensated for using nowcasting
techniques [13]. Later we prove that this not only defines
a practical noise model but also serves as an upper bound
on the information available from NEVR delays, where
the true timestamps of cases are never resolved. Mathe-
matically, the OBNR assumption lets us decompose the
sum in Eq. (1). We can therefore identify the component
of Ct that is informative about Rx. This follows from the
statistical relationship Ct |Rx ∼ Pois (δt−xρxΛxRx).

As we are interested in the total information that Cτ1
contains about every Rt we collect and sum contributions
from every Ct. We can better understand this process
by constructing the matrix Q in Eq. (3), which expands
the convolution of the reporting fractions with the delay
probabilities over the entire observed time series.

Q =


δ0ρτ δ1ρτ−1 δ2ρτ−2 · · · δτ−1ρ1

0 δ0ρτ−1 δ1ρτ−2 · · · δτ−2ρ1
... 0 δ0ρτ−2

. . .
...

...
... 0

. . . δ1ρ1

0 0 · · · · · · δ0ρ1

 . (3)

We work with the vector µ = [µτ , µτ−1, . . . , µ1]ᵀ with
µt = ΛtRt and ᵀ denoting the transpose operation. Then
Qµ = [E[Cτ ], E[Cτ−1], . . . , E[C1]]ᵀ with E[Ct] as the
mean of the reported case incidence at time t.

The components of Cτ1 that contain information about
every Rt parameter follow from Qᵀµ = [δ0ρτµτ , (δ0 +
δ1)ρτ−1µτ−1, . . . , (δ0 + . . .+ δτ−1)ρ1µ1]. The elements
of this vector are Poisson means formed by collecting
and summing the components of Cτ1 that inform about
[Rτ , Rτ−1, . . . , R1], respectively. Hence we obtain the
key relationship in Eq. (4) with Fτ−t :=

∑τ−t
x=0 δx as the

cumulative probability delay distribution.

Cτ1 |Rt ∼ Pois (ρtFτ−tΛtRt) . (4)

The ability to decompose the row or column sums from
Q into the Poisson relationships of Eq. (4) is a conse-
quence of the independence properties of renewal models
and the infinite divisibility of Poisson formulations.

Using Eq. (4) and analogues to Poisson log-likelihood
definitions from the Methods we derive the FI that Cτ1
contains about Rt as follows in Eq. (5).

FC(Rt) = ρtFτ−tΛtR
−1
t . (5)

As in Eq. (17) we recompute the FI in Eq. (5) under the
transform Rt = 2

√
Rt to obtain FC(Rt) = ρtFτ−tΛt. It

is clear that under-reporting and delays can substantially
reduce our information about instantaneous reproduction
numbers. As we might expect, if ρt = 0 (no reports at
time unit t) or Fτ−t = 0 (all delays are larger than τ−t)
then we have no information on Rt at all from Cτ1 . If
reporting is perfect then ρt = 1, Fτ−t = 1 and FC(Rt)
is equal to the FI from Iτ1 in Eq. (17).

The MLE, R̂t, also follows from Eq. (4) (see Meth-
ods) as (

∑τ
x=tCx |Rt)(ρtFτ−tΛt)−1, with Cx |Rt as

the component of Cx containing information about Rt.
By comparison with the MLE under perfect surveillance
we see that (

∑τ
x=tCx |Rt)(ρtFτ−t)−1 is equivalent to

applying a nowcasting correction as in [12, 13]. An im-
portant point to make here is that while such corrections
can remove bias, allowing inference despite these noise
sources, they cannot improve on the information (in this
case Eq. (5)) inherently available from the data. This is
known as the data processing inequality [32, 33].

If we cannot resolve the components of every Ct
from Eq. (1) as

∑t
x=1 Pois(δt−xρxΛxRx), then the re-

porting delay is classed as NEVR (i.e., we never un-
cover case source dates). Hence we know Qµ but not
Qᵀµ. Accordingly, we must use Eq. (1) to construct
an aggregated log-likelihood `(Rτ1) = logP(Cτ1 |Rτ1) =∑τ

t=1 logP(Cτ1 |Rt). This gives Eq. (6) with the ag-
gregate term h(Rt1) :=

∑t
x=1 δt−xρxΛxRx. We ignore
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constants that do not depend on any Rt in this likelihood.

`(Rτ1) =
τ∑
t=1

Ct log h(Rt1)− h(Rt1). (6)

For every given Rt we decompose h(Rs1) for s ≥ t into
the form δs−tρtΛtRt+at, where at collects all terms that
are not informative about that specific Rt. Here s ≥ t
simply indicates that information about Rt is distributed
across later times due to the reporting delays.

We can then obtain the FI contained in Cτ1 about Rt by
computing E[−∂2`(Rτ1 )

∂R2
t

], yielding Eq. (7) (see Appendix
for derivation details), with bt := at(δs−tρtΛtRt)

−1.

FC(Rt) =
τ∑
x=t

δx−tρtΛt(Rt + bx)−1. (7)

If we could decouple the interactions among the repro-
duction numbers then the bx terms would disappear and
we would recover the expressions derived under OBNR
delay types. Since bx is a function of other reproduction
numbers, the overall FI matrix for Rτ1 is not diagonal
(there are non-zero terms from evaluating E[−∂2`(Rτ1 )

∂RtRx
]).

However, we find that this matrix can be reduced to a
triangular form with determinant equal to the product of
terms (across t) in Eq. (7). We show this for the example
scenario of τ = 3 in the Appendix. As a result, the FI
term for Rt in Eq. (7) does behave like and correspond
to that in Eq. (5). Interestingly, as bx ≥ 0, Eq. (7) yields
the revealing inequality FC(Rt) ≤ ρtFτ−tΛtR

−1
t . This

proves that OBNR delays upper bound the information
available from NEVR delays. Last, we note that robust
transforms cannot be applied to remove the dependence
of Eq. (7) on the unknown Rt parameters. The best we
can do is evaluate Eq. (7) at the MLEs R̂t, for all t.

These MLEs emerge as the joint maxima of the set of
coupled differential equations ∂`(Rτ1 )

∂Rt
=
∑τ

x=t
Ix

bx+Rt
−

δx−tρtΛt i.e., numerical solutions of Eq. (8) for all t.
τ∑
x=t

Cx(R̂t + bx)−1 = ρtFτ−tΛt. (8)

Here sums start at t as they include only time points that
contain information about Rt. Expectation-maximisation
algorithms, such as the deconvolution approaches out-
lined in [10], are viable means of computing these MLEs
or equivalents. Note that the nowcasting methods used
to correct for OBNR delays do not help here [12] and
that for both OBNR and NEVR delays the cumulative
probability terms must be aggregated to match chosen
time units (e.g., if empirical delay distributions are given
in days but t is in weeks then Fx sums over 7x days).

Reliability measures for surveillance data

Having derived the FI for each instantaneous repro-
duction number, we provide a measure of the total in-
formation that Cτ1 provides about Rτ1 or the transformed
Rτ1 . As detailed in the Methods, this total information,
T(Cτ1 ), relates inversely to the smallest joint uncertainty
around unbiased estimates of all our parameters [34]. As
larger T(Cτ1 ) implies reduced overall uncertainty, this is
a rigorous measure of the statistical reliability of noisy
data sources for inferring pathogen transmissibility. Use
of this or related metrics for quantifying the information
in noisy epidemic data is novel (as far as we can tell).

We first consider the OBNR delay case under arbitrar-
ily varying (VARR) reporting rates. Since the FI matrix
under OBNR delays is diagonal, with each element given
by Eq. (5), we can adapt Eq. (18) to derive Eq. (9).

T(Cτ1 ) =
τ∏
t=1

√
FC(Rt) =

τ∏
t=1

√
ρtFτ−tΛt. (9)

Here we have applied the Rt = 2
√
Rt transformation to

show that the total information in this noisy stream can
be obtained without knowing Rt. In the absence of this

transform we would have
∏τ
t=1

√
ρtFτ−tΛtR

−1
t .

Since Cτ1 is a distortion of the true infection incidence
Iτ1 we normalise Eq. (9) by Eq. (18) to develop a new
reliability metric, η(Cτ1 ) := T(Cτ1 )T(Iτ1 )−1. This is
given in Eq. (10) and valid under both Rt and Rt.

0 ≤ η(Cτ1 ) =
τ∏
t=1

√
ρtFτ−t ≤ 1. (10)

We can relate this reliability measure to a fixed, effective
reporting fraction, θ(Cτ1 ), which causes an equivalent
information loss. Applying Eq. (10), we get η(Cτ1 ) =√
θ(Cτ1 )τ , which yields Eq. (11). Here G(.) indicates

the geometric mean of its arguments over 1 ≤ t ≤ τ .

θ(Cτ1 ) =
τ∏
t=1

τ
√
ρtFτ−t = G(ρt)G(Fτ−t). (11)

Eq. (11) is a central result of this work. It states that
the total information content of a noisy epidemic curve
is independently modulated by the geometric mean of
its reporting fractions, G(ρt), and that of its cumulative
delay probabilities, G(Fτ−t). Moreover, Eq. (11) pro-
vides a framework for gaining analytic insights into the
separate influences of both noise sources from different
surveillance data and for ranking the overall quality of
those diverse data. For example, we immediately see that
G(.) is bounded by the smallest and largest noise term
across t. Importantly, Eq. (11) has no dependence on Λt,
which is generally unknown and sensitive to difficult-to-
infer changes in the generation time distribution [35].
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Eq. (11) applies to OBNR delays exactly and upper
bounds the reliability of data streams with NEVR delays
(see previous section). Tractable results for NEVR delays
are not possible and necessitate numerical computation
of Hessian matrices of − logP(Cτ1 |Rτ1) (we outline the
log-likelihoods and other equations for a τ = 3 example
in the Appendix). However, we find that the Eq. (11)
upper bound is tight for two elementary settings. The
first is under a constant or deterministic delay of d i.e.,
δx=d = 1. Eq. (1) reduces to Ct ∼ Pois(ρt−dΛt−dRt−d).
As each Ct only informs on Rt−d OBNR and NEVR
delays are the same and corrected by truncation. Degen-
erate delays such as these can serve as useful elements
for constructing complex distributions [36].

The second occurs when transmissibility is constant
or stable i.e., Rt = R for all t. This applies to infer-
ring the basic reproduction number (R0) during initial
phases of an outbreak [1]. We can sum Eq. (5) to get
FC(R) =

∑τ
t=1 ρtFτ−tΛtR

−1 for OBNR delays. We can
calculate the FI for NEVR delays from Eq. (6), which
admits a derivative ∂`(R)

∂R =
∑τ

t=1CtR
−1−Fτ−tρtΛt and

hence a FI and MLE that are precisely equal to those for
OBNR delays. This proves a convergence in the impact
of two fundamentally different delay noise sources and
emphasises that noise has to be contextualised with the
complexity of the signal to be inferred. Simpler signals,
such as a stationary R that remains robust to the shifts
and reordering of Iτ1 due to delays, may be notably less
susceptible to fluctuations in noise probabilities.

Ranking noise sources by their information loss

The metric proposed in Eq. (11) provides an original
and general framework for scoring proxies of incidence
(e.g., epidemic case curves, death counts, hospitalisations
and others) using only their noise probabilities and with-
out the need for simulations. We explore the implications
of Eq. (11) both for understanding noise and ranking
those proxies. The geometric mean decomposition allows
us to separately dissect the influences of under-reporting
and delays. We start by applying experimental design
theory [37, 38], to characterise the best and worst noise
types for inferring effective reproduction numbers.

We consider G(ρt), the geometric mean of the report-
ing probabilities across time. If we assume the average
sampling fraction ρ̄ = 1

τ

∑τ
t=1 ρt is fixed (e.g., by some

overall surveillance capacity) then we immediately know
from design theory that ρ̄ = arg maxρG(ρt). This means
that of all the possible distributions of sampling fractions
fitting that constraint, ρ, CONR or constant reporting
with probability ρ̄ is the most informative [39]. This
result is new but supports earlier studies recognising that

CONR is preferred to VARR, although they investigate
estimator bias and not information loss [9, 21].

Accordingly, we also discover that the worst sampling
distribution is maximally variable. This involves setting
ρt ≈ 1 for some time subset S such that

∑
t∈S ρt = τ ρ̄

with all other ρt ≈ 0 (we use approximate signs as we
assume non-zero sampling probabilities). Relaxing this
constraint, Eq. (11) presents a framework for comparing
different reporting protocols. We demonstrate these ideas
in Fig. 2, where ρt ∼ Beta(a, b) i.e., each reporting
fraction is a sample from a Beta distribution. Reporting
protocols differ in (a, b) choices. We select 104 ρt sam-
ples each from 2000 distributions with 10−1 ≤ b ≤ 102

and a computed to fulfil the mean constraint ρ̄. Variations
in the resulting θ(Cτ1 ) metrics indicate the influence of
reporting fraction uncertainties under this mean.

Panel A of Fig. 2 shows that θ(Cτ1 ) generally increases
with the mean reporting probability ρ̄. However, this im-
provement can be denatured by the variance, var(ρt), of
the reporting scheme (inset where each colour indicates
the various schemes with a given ρ̄). The CONR scheme
is outlined with a grey line (dashed) and, as derived, is
the most informative. Panel B confirms our theoretical
intuition on how var(ρt) reduces total information with
the extreme (worst) sampling scheme outlined above
in blue and the most stable protocol in red. There are
many ways to construct ρt protocols. We chose Beta
distributions because they can express diverse reporting
probability shapes using only two parameters.

Similarly we investigate reporting delays via G(Fτ−t),
the geometric mean of the cumulative delay or latency
distribution across time. Applying a mean delay con-
straint δ̄ =

∑
x≥0 xδx =

∑τ
t=1(1−Fτ−t) (e.g., reflecting

operational limits on the speed of case notification), we
adapt experimental design principles. As we effectively
maximise a FI determinant (see derivation of Eq. (11))
our results are termed D-optimal [39]. These suggest that
maxδ G(Fτ−t) is achieved by cumulative distributions
with the most uniform shape. These possess the largest δ0

within this constraint. Delay distributions with significant
dispersion (e.g., heavy tails) attain this optima while
fixed delays (where δx≈δ̄ = 1 and 0 otherwise) lead to
the largest information loss under this constraint.

This may seem counter-intuitive as deterministic de-
lays best preserve information outside of that delay and
can be treated by truncating the observed epidemic time
series e.g., for a fixed weekly lag we can ignore the
last week of data. However, this causes a bottleneck. No
information is available for that truncated week elimi-
nating any possibility of timely inference (and making
epidemic control difficult [40]). In contrast, a maximally
dispersed delay distribution slightly lags the majority of
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Fig. 2: The information loss in under-reporting. We
investigate the effective information metric (θ(Cτ1 )) for
variable reporting strategies (VARR) with reporting frac-
tion ρt drawn from various Beta distributions. Panel A
shows that while θ(Cτ1 ) depends on the mean reporting
probability (ρ̄), large fluctuations in the total information
can emerge from the level of variability, controlled here
by the Beta distribution shape. This follows from the
overlap of the coloured curves, which compute θ(Cτ1 ) at
fixed ρ̄. The grey line (dashed) is the optimal constant
reporting (CONR) protocol. Our metric decreases with
the variance of the protocol (var(ρt)) as seen in the inset
with matching colours for each ρ̄. Panel B illustrates the
Beta sampling distributions and their resulting variance
and metric scores (inset). The most variable reporting
strategy (blue) is the worst protocol for a given ρ̄.

cases, achieving the mean constraint with large latencies
on a few cases. This ensures that, overall, we gain more
actionable information about the time series.

We illustrate this point (and relax the mean constraint)
in Fig. 3, where we verify the usefulness of Eq. (11) as
a framework for comparing the information loss induced
by delay distributions of various shapes and forms. We
model δ as NB(k, δ̄

δ̄+k
) with k describing the dispersion

of the delay. Panel A demonstrates how our θ(Cτ1 ) metric

varies with k (30 values taken between 10−1 and 102)
at various fixed mean constraints (3 ≤ δ̄ ≤ 30, each
given as a separate colour). In line with the theory, we
find that decreasing k (increasing dispersion of the delay
distribution) improves information at any given δ̄.

The importance of both the shape and mean of re-
porting delays is indicated in the inset as well as by the
number of distributions (seen as intersects of the dashed
black line) that result in the same θ(Cτ1 ). Panel B plots
corresponding cumulative delay probability distributions,
validating our assertion from design theory that the best
delays (blue, with metric in inset) are dispersed, forcing
Fτ−t high very early on (maximise δ0 and leading to
the most uniform shape), while the worst ones are more
deterministic (red, larger k). These curves are for OBNR
delays and upper bound the performance expected from
NEVR delays except for the settings described in the
previous section where both types coincide.

Comparing different epidemic data streams

Our metric (Eq. (11)) not only allows the comparison
of different under-reporting schemes and reporting delay
protocols (see above section) but also provides a com-
mon score for assessing the reliability or informativeness
of diverse data streams for inferring Rτ1 . The best stream,
from this information theoretic viewpoint, maximises the
product of the geometric means G(.) of the cumula-
tive delay probabilities Fτ−t and reporting fractions ρt.
Many common surveillance data types used for inferring
pathogen transmissibility have been modelled within the
framework of Eq. (1) and therefore admit related θ(.)
metrics. Examples include time series of deaths, hos-
pitalisations, the prevalence of infections and incidence
proxies generated from viral surveys of wastewater.

We detail death count data in the next section but note
that its model, given in Eq. (2), is a simple extension
of Eq. (1). Hospitalisations may be described similarly
with the ifr term replaced by the proportion of infections
hospitalised and the intrinsic delay distribution defining
the lag from infection to hospital admission [1]. The
infection prevalence conforms to Eq. (1) because it can
be represented as a convolution of the infections with a
duration of infectiousness distribution, which essentially
contributes a reporting delay [41]. Viral surveys also fit
Eq. (1). They offer a downsampled proxy of incidence,
which is delayed by a shedding load distribution defining
the lag before infections are detected in wastewater [42].
Consequently, our metrics are widely applicable.

While in this study we focus on developing methodol-
ogy for estimating and contrasting the information from
the above surveillance data we find that our metric is also
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Fig. 3: The information loss from delays. We compute
the information metric (θ(Cτ1 )) for various delay distri-
butions, which are negative binomial (NB) with some
dispersion k. Panel A examines how mean delay (δ̄) and
k influence the information loss, showing that various
combinations can result in the same loss (intersections
of the coloured curves, each representing a different δ̄,
with the dashed black line). Further, the inset illustrates
the variations in our metric at a given mean (matching
colours) due to the shape of the delay distribution. Panel
B confirms this relationship and indicates that the most
dispersed distributions (smallest k, blue, with largest start
to cumulative delay distribution Fτ−t) preserve the most
information as compared to more deterministic delays
(red, largest k). The insets verify this point.

important for defining the complexity of a noisy renewal
epidemic model. Specifically, we re-derive Eq. (11) as a
key term of its description length (L). Description length
theory evaluates the complexity of a model from how
succinctly it describes its data (e.g., in bits) [34, 43]. This
measure accounts for model structure and data quality
and admits the approximation LC ≈ −`(R̂τ1)+ p

2 log m
2π+

log
∫

det
[

1
mFC(Rτ1)

]
dRτ1 . Here the first term indicates

model fit by assessing the log-likelihood at our MLEs
R̂τ1 . The second term includes data quality through the

number of parameters (p) and data size (m). The final
term defines how model structure shapes complexity with
the integral across the parameter space of Rτ1 .

This formulation was adapted for renewal model se-
lection problems in [44] assuming perfect reporting. We
extend this and show that our proposed total information
T(Cτ1 ) plays a central role. Given some epidemic curve
Cτ1 we can rewrite the previous integral as −p

2 logm+

log
∏τ
t=1

∫ √
FC(Rt) dRt and observe that m = p = τ .

It is known that under a robust transform such as Rt =
2
√
Rt this integral is conserved [34, 38]. Consequently,∫ √
FC(Rt) dRt =

√
FC(Rt)

∫ 2
√
Rmax

0 1 dRt with Rmax

as some maximum value that every Rt can take. Com-
bining these expressions we obtain Eq. (12), highlighting
the importance of our total information metric.

LC ≈ −`(R̂τ1) +
τ

2
log

2Rmax

π
+ logT(Cτ1 ). (12)

If we have two potential data sources for inferring Rτ1
then we should select the one with the smaller LC value.
Since the middle term in Eq. (12) remains unchanged in
this comparison, the key points when comparing model
complexity relate to the level of fit to the data and the
total Fisher information of the model given that data
[43]. Using ∆ to indicate differences this comparison
may be formulated as ∆LC ≈ −∆`(R̂τ1)+∆ logT(Cτ1 ).
The second term can be rewritten as ∆ log η(Cτ1 ) (see
Eq. (10)). This signifies that these metrics play a central
role when comparing different data streams.

Are COVID-19 deaths or cases more informative?

In the above sections we developed a framework for
comparing the information within diverse but noisy data
streams. We now apply these results to better understand
the relative reliabilities of two popular sources of infor-
mation about transmissibility Rτ1 ; the time series of new
cases Cτ1 and of new death counts Dτ

1 . Both data streams
have been extensively used across the ongoing COVID-
19 pandemic to better characterise pathogen spread [1].
Known issues stemming from fluctuations in the ascer-
tainment of COVID-19 cases [18, 19] have motivated
some studies to assert Dτ

1 as the more informative and
hence trustworthy data for estimating Rτ1 [2, 20].

These works have reasonably assumed that deaths are
more likely to be reliably ascertained. Case reporting can
be substantially biased by testing policy inconsistencies
and behavioural changes (e.g., symptom based healthcare
seeking). In contrast, given their severity, deaths should
be less likely to be under-ascertained [1]. However, no
analysis, as far as we are aware, has explicitly tested this
assumption. Here we make some progress towards better
comprehending the relative merits of both data streams.
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We start by computing ratios of our metric in Eq. (11)
for both Cτ1 and Dτ

1 via Eq. (1) and Eq. (2).
This results in θ(Cτ1 ) = G(ρt)G(Fτ−t) for cases and,

by analogy, θ(Dτ
1) = G(σtifrt)G(Hτ−t) for deaths. In

the same way that ρt defines the proportion of infections
reported as cases, the product σtifrt defines the propor-
tion of infections that are reported as deaths. This follows
as ifrt is the fraction of infections that engender deaths
and σt is the proportion of those deaths that are reported.
While Fτ−t is the cumulative probability of reporting
delays up to τ−t time units, Hτ−t :=

∑τ−t
x=0 γx describes

the cumulative probability of delays from infection to
death up to τ − t time units in duration.

Using shorthand Cτ1 < Dτ
1 for when θ(Cτ1 ) ≥ θ(Dτ

1)
i.e., < indicates greater than or equals with respect to
total information, we obtain Eq. (13). We rearrange terms
to get reporting fractions and delays on different sides
by decomposing the geometric mean of a product into
products of the geometric means in each term.

Cτ1 < Dτ
1 : G

(
ρt

σtifrt

)
≥ G

(
Hτ−t
Fτ−t

)
. (13)

Eq. (13) states that cases are more informative when the
geometric mean of the case to death reporting fractions is
at least as large as that of the death and case cumulative
delays. Studies preferring death data effectively claim
that the variation in case reporting probabilities ρt (which
we proved in a previous section always decreases the ge-
ometric mean for a given mean constraint) is sufficiently
strong to mask the influences of the infection fatality
ratio (ifrt), the death reporting probability (σt) and any
expected variations in those quantities.

Proponents of using death data to infer Rτ1 recognise
that the infection to death delay (with cumulative distri-
bution Hτ−t) is appreciably larger in mean than that of
corresponding reporting lags from infection (Fτ−t) and
therefore unsuitable for real time estimation (where this
extra lag denatures recent information as we showed in
earlier sections). We allow for all of these adjustments.
We assume that the infection fatality ratio is constant at
ifr (maximising G(ifrt)) and that death ascertainment is
perfect (σt = 1). Even for purely retrospective estimation
with correction for delays we expect G

(
Hτ−t
Fτ−t

)
≤ 1. We

set this to 1, maximising the informativeness of Dτ
1 .

Combining these assumptions we reduce Eq. (13) into
Eq. (14). This presents a sufficient condition for case data
to be more reliable than the death time series.

Cτ1 < Dτ
1 : G(ρt)ρ̄∈[0.07,0.38] ≥ ifr ≈ 0.01. (14)

Here we choose a relatively large ifr for COVID-19 of
1% [45]. Case reporting fraction estimates range from
about 7% to 38% [18], which we apply to constrain ρ̄,

the average ρt. Inputting these estimates, we examine
possible ρt sampling distributions under the Beta(a, b)
formulation from earlier sections. Our main results are
in Fig. 4. We take 104 samples of ρt from each of 2000
distributions parametrised over 10−1 ≤ b ≤ 102 with a
set to satisfy our mean ρ̄ reporting constraints.

Fig. 4: Epidemic case data may be more informative
than death counts. Using metrics (θ(Cτ1 )) we compare
the information in case curves Cτ1 and death counts Dτ

1

under assumptions that lead to Eq. (14). We examine
various reporting strategies parametrised as Beta distri-
butions with means ρ̄ from 0.07 to 0.38 [18] and compare
the resulting θ(Cτ1 ) against the equivalent from deaths
(which reduces to just the infection fatality ratio, ifr).
Panel A shows that many such distributions for sampled
cases (each colour considers a fixed ρ̄) still contain more
information than available from deaths (proportion of
vertical lines above the black dashed threshold, plotted
inset). Panel B plots those distributions at the ends of the
empirical ρ̄ range with red indicating when Cτ1 is more
reliable. Substantial fluctuations in Cτ1 reporting can still
preserve more information than might be found in Dτ

1 .

Panel A plots our metric against those constraints (a
different colour for each ρ̄) and the ifr threshold (black
dashed). Whenever θ(Cτ1 ) ≥ ifr we find that case data
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are more reliable. This appears to occur for many possi-
ble combinations of ρt. The inset charts the proportion of
Beta distributions that cross that threshold. This varies
from about 45% at ρ̄ = 0.07 to 90% at ρ̄ = 0.38.
While these figures will differ depending on how likely
a given level of variability is, they offer robust evidence
that death counts are not necessarily more reliable. Even
when deaths are perfectly ascertained (σt = 1) the small
ifr term in Dτ

1 means that 99% of the original incidence
data is lost, contributing appreciable uncertainty.

These points are reinforced by the design choices
we have made, which inflate the relative information in
the death time series. In reality σt < 1, ifr < 0.01,
neither is constant [45, 46] and the uncertainty we
include around ρ̄t is wider than that inferred in [18].
Our results are therefore resilient to uncertainties in
noise source estimates. Panel B displays the distributions
of our sampling fractions with red (blue) indicating
which shapes provide more (less) information than death
data (see Eq. (14)). Our results also hold for both real
time and retrospective analyses as we ignored the noise
induced by the additional delays that death data contain
(relative to case reports) when we maximised G

(
Hτ−t
Fτ−t

)
.

Consequently, death data cannot be assumed, without
rigorous and context-specific examination, to be gener-
ally more epidemiologically meaningful. For example,
while Dτ

1 is unlikely to be more reliable in well-mixed
populations, it may be in high-risk settings (e.g., care
homes) where the local ifr is notably larger. Vaccines
and improved healthcare, which substantially reduce ifr
values in most contexts, will make death time series less
informative about Rτ1 . However, pathogens such as Ebola
virus, which induce large ifr parameters, might result in
death data that are more reliable than their case counts.
We explore these points and demonstrate the practical
applicability of our metrics in the next section.

Practical applications of information metrics

Our metrics provide an interpretable, simulation ag-
nostic and easily computable approach to quantifying
the relative reliability of different epidemic time series.
Because θ(.) is independent of usually unknown Rt and
Λt terms it is robust to generation time misspecification
and only requires estimates of noise terms for its calcu-
lation (hence no epidemic curve simulations are needed).
Moreover, it depends purely on the geometric means of
noise variables, which can be decomposed such that the
influence of any noise source is clearly interpreted from
the magnitude of its specific mean (see Eq. (11)).

These properties make θ(.) practically useful and we
illustrate the benefits of our methodology using COVID-

19 and EVD examples. In contrast to Fig. 4 where we
maximised the information in deaths and minimised that
from cases to bolster our rejection of the assertion that
death data are definitively more informative, here we
focus on inputting empirical noise distributions derived
from real data. When distributions are unavailable we
describe noise uncertainties via maximum entropy dis-
tributions based on what estimates are available (e.g.,
these are geometric, Geo, if a mean is given and uniform,
Unif , over 95% credible intervals).

For COVID-19 we once again examine if death data
are more reliable. From Eq. (13) we conclude Cτ1 < Dτ

1

if G(ρt)
G(σt)G(ifrt)

≥ G(Hτ−t)
F0

. This follows as F0 = δ0 =

minG(Fτ−t) and ensures (if we are using NEVR delays)
that we do not take ratios of upper bounds as G(Hτ−t)
already bounds the information in the infection-to-death
delay. If delays are OBNR then Eq. (13) will be exact.
We model ρt ∼ Unif(0.06, 0.08) [18], δx ∼ Geo( 1

1+10.8)

[47], σt ∼ Unif( 1
1.34 ,

1
1.29) [46], ifrt ∼ Unif(0.53

100 ,
0.82
100 )

[45], γx ∼ NB( 1
1+1.1 ,

21
21+ 1

1+1.1

) [48] and sample from

these distributions 104 times. We compute the terms in
the inequality above and represent the relative informa-
tion as log θ(Cτ1 )− log θ(Dτ

1) for easy visualisation.

This leads to the top panel of Fig. 5. Despite our use
of the smallest reporting proportions from [18] we find
that death data are less reliable. For EVD, we test the
alternative hypothesis that case data are less reliable in
the bottom panel of Fig. 5. We decide Dτ

1 < Cτ1 if
G(ρt)

G(σt)G(ifrt)
≥ H0 as we know H0 = γ0 = minG(Hτ−t)

and maxG(Fτ−t) = 1. We let σt = 1 (no estimates were
easily available) and model ρt ∼ Unif(0.33, 0.83) [16],
ifrt ∼ Unif(0.69, 0.73) [49] and γx ∼ NB(1.5, 21.4

21.4+1.5)
(roughly from [49]). The negative values of log θ(Cτ1 )−
log θ(Dτ

1) in Fig. 5 suggest EVD death data as the more
informative source. However, this can change if σt � 1
as the difference is not as strong as for COVID-19.

While we tried to keep estimates as realistic as possi-
ble the point of Fig. 5 is to demonstrate how our metrics
may be practically applied given noise estimates. Sam-
pling from appropriate distributions means we can prop-
agate the uncertainty on those estimates into our metrics.
We provide open source code for modifying this template
analysis to include any user-defined distributions in https:
//github.com/kpzoo/information-in-epidemic-curves. As
high-resolution outbreak data collection initiatives such
as global.health [50] and REACT [7] progress, enhancing
surveillance and our quantification of noise sources, we
expect our framework to grow in practical utility.
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Fig. 5: The relative information in case and death
data for Ebola virus disease (EVD) and COVID-19
case studies. We compute information metrics θ(.) for
case (Cτ1 ) and death (Dτ

1 ) time series using empirically
derived under-reporting and delay noise distributions for
COVID-19 (top panel) and EVD (bottom panel). See the
main text for specific distributions used, which account
for the uncertainty in noise estimates (in the absence
of knowledge of this uncertainty maximum entropy
distributions are applied). We take 104 samples from
each distribution and compute the logarithmic difference
in the values of our metrics. We find that death data are
likely less reliable for COVID-19 (positive values) but
more reliable for EVD (negative values).

DISCUSSION

Public health policymaking is becoming progressively
data-driven. Key infectious disease parameters [6] such
as instantaneous reproduction numbers and growth rates,
fitted to heterogeneous outbreak data sources (e.g., case,
death and hospitalisation incidence curves), are increas-
ingly contributing to the evidence base for understanding
pathogen spread, projecting epidemic burden and design-
ing effective interventions [4, 6, 51]. However, the valid-
ity and value of such parameters depends substantially
on the quality of the available surveillance data [1, 7].
Although many studies have made important advances in
underscoring and correcting errors in these data [12, 30]
no research (to our knowledge) has yet aimed to directly
and generally quantify epidemic data quality.

Here we have made some progress towards this aim.
We applied Fisher information and experimental design
principles to derive a novel framework for quantifying
the information within common outbreak data when in-
ferring pathogen transmissibility. Our approach involved
finding the total information, T(.), available from epi-
demic curves corrupted by reporting delays and under-
reporting, which are predominant noise sources that limit

surveillance quality. By maximising T(.), we minimise
the overall uncertainty of our transmissibility estimates,
hence measuring the reliability of that data stream.

This approach yielded a new non-dimensional metric
θ(.) that allows analytic and generalisable insights into
how noisy surveillance data degrades estimate precision.
Using this metric we characterised the impact of different
types of delay and under-reporting schemes. We demon-
strated that under mean surveillance constraints, constant
under-reporting of cases minimises loss of information.
However, constant delays in reporting maximise this loss.
The first result bolsters conventional thinking [9], while
the second highlights the need for timely data [40].

Importantly, our metric provided insight into the nu-
ances of noise, elucidating how the mean and variability
of schemes both matter. For example, fluctuating report-
ing protocols with larger mean may outperform more sta-
ble ones at lower mean. Exploiting this and the flexibility
of our framework, which can describe the noise in cases,
death counts, hospitalisations, infection prevalence and
wastewater virus surveys, we demonstrated how diverse
data sources might be ranked. Specifically, we critiqued
a common assertion about death and case data.

Because the reporting of cases can vary significantly
when tracking acute diseases such as COVID-19, various
studies have assumed death data to be more reliable [1].
Using our metrics, we presented one of the first qualifica-
tions of this claim. We found that the infection fatality
ratio (ifr) acts as a reporting fraction with very small
mean. Only the most severely varying case reporting
protocols can cause larger information loss, suggesting
that in many instances this assertion may not hold. Note
that this analysis does not even consider the additional
advantages that case data bring in terms of timeliness.

However, there may be other crucial reasons for pre-
ferring to estimate pathogen spread from death data. For
example, if extremely little is known about the level of
reporting (very limited surveillance capacity might cause
insurmountable case reporting fraction uncertainties) or
if a death-based reproduction number is itself of specific
interest as a severity indicator [20]. Our framework can
also help inform these discussions by improving the pre-
cision of our reasoning about noise. This is exemplified
by our EVD analysis, where we could show that the large
ifr of the disease translated into death counts being the
better data, provided their under-reporting is not large.

As hospitalisation curves generally interpolate among
the types of noise in case and death data, this might
be the best a priori choice of data for inferring trans-
missibility. Some studies also propose to circumvent
these ranking issues by concurrently analysing multiple
data streams [31, 51]. This then opens questions about
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how each data stream should be weighed in the ensuing
estimates. Our framework may also help by quantifying
the most informative parts of each contributing stream.
A common way of deriving consensus weighs individual
estimates by their inverse variance [52]. As the Fisher
information defines the best possible inverse variance of
estimates, our metrics naturally apply.

While our framework can enhance understanding and
quantification of surveillance noise, it has several limi-
tations. First, it depends on renewal model descriptions
of epidemics [27]. These models assume homogeneous
mixing and that the generation time distribution of the
disease is known. While the inclusion of more realistic
network-based mixing may not improve transmissibility
estimates [53] (and this extra complexity may occlude
insights), the generation time assumption may only be
ameliorated through the provision of updated, high qual-
ity line-list data [35, 50]. However, our relative metrics
in Eq. (10)-Eq. (11) and Eq. (13)-Eq. (14) are mostly
robust to generation time distribution misspecifications
(and even changes) as they do not depend on the total
infectiousness (Λt) terms (these cancel out).

Further, our analysis is contingent on having estimates
of the delays, under-ascertainment rates and other noise
sources within data streams. These may be unavailable or
themselves highly unreliable. If at least some information
on their uncertainties is available we can propagate these
into our metrics by replicating the Monte Carlo approach
underlying our case studies. If no estimates are available
then we cannot perform any analyses as Rt will not
be identifiable. However, our framework can still be of
use as a rigorous testbed for examining hypotheses on
potential noise sources without extensive simulation.

Recent initiatives have aimed at improving the resolu-
tion and completeness of outbreak data [7, 50]. Concur-
rently, estimating noise sources from both existing and
novel data streams is a growing research area [18, 54]. As
a result, we expect that our metrics will only increase in
practical utility and that concerns around the availability
of noise estimates will diminish. We also assumed that
the time scale t chosen ensures that Rt parameters are
independent. This may be invalid but in such instances
we can append non-diagonal terms to Fisher information
matrices or use our metric as an upper bound.

Last, we defined the reliability or informativeness of a
data stream in terms of minimising the joint uncertainty
of the entire sequence of reproduction numbers Rτ1 . This
is known as a D-optimal design [37]. However, we may
instead want to minimise the worst uncertainty among
the Rτ1 (which may better compensate known asymme-
tries in inferring transmissibility [55]). Our framework
can be reconfigured to tackle such problems by appealing

to other design laws. We can solve this specific problem
by deriving an E-optimal design, which maximises the
smallest eigenvalue of our Fisher information matrix.

METHODS

Renewal models and Fisher information theory

The renewal model [27, 36] is a popular approach
for describing how infections dynamically propagate
during the course of an epidemic. The number of new
infections at time t, It, depends on the instantaneous
reproduction number, Rt, which counts the new infec-
tions generated per infected individual (on average) and
the total infectiousness, Λt, which measures how many
past infections (up to time t−1) will effectively produce
new ones. This measurement weighs past infections by
the generation time distribution, w. We define ws as
the probability that it takes s time units for a primary
infection to generate a secondary one. The distribution
is then w = w∞1 := {w1, w2, . . . , w∞}.

The statistical relationship between these quantities is
commonly modelled as in Eq. (15) with Pois specifying
a Poisson distribution [21]. This relationship only strictly
holds if It is perfectly recorded both in size (no under-
reporting) and in time (no delays in reporting).

It ∼ Pois (ΛtRt) , Λt :=
t−1∑
x=1

wt−xIx. (15)

However, as infections are rarely observed, It is often
approximated by proxies such as reported cases and w
replaced with the serial interval distribution, describing
the times between the onset of symptoms of those cases.
Eq. (15) has been widely used to model transmission dy-
namics of many infectious diseases, including COVID-
19 [1], influenza [56] and Ebola virus disease [49].

A common and important problem in infectious dis-
ease epidemiology is the estimation of the latent variable
Rt from the incidence curve of infections or some more
easily observed proxy. If this time series persists during
1 ≤ t ≤ τ , with τ as the present, then we aim to infer
the vector of parameters Rτ1 := {Rt : 1 ≤ t ≤ τ} from
time series Iτ1 := {It : 1 ≤ t ≤ τ} or its proxy (see
Results for this more practical inference problem). We
assume that time is scaled in units such that Rt can be
expected to change (independently) at every t. This may
be weekly for COVID-19 or malaria [21, 57] but monthly
for rabies [58]. Note thatw and It must be aggregated, as
needed, to match these units. Related branching [59] and
moving-average models [60] feature similar aggregation.

Following the development in [44, 56], we solve this
inference problem by constructing the incidence log-
likelihood function `(Rτ1) = logP(Iτ1 |Rτ1) as in Eq. (16)
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with Kτ as some constant that does not depend on any
Rt. This involves combining Poisson likelihoods from
Eq. (15) across time units 1 ≤ t ≤ τ as in [21].

`(Rτ1) =
τ∑
t=1

It logRt − ΛtRt +Kτ . (16)

We compute the maximum likelihood estimate (MLE) of
Rt as R̂t, which is the maximal solution of ∂`(Rτ1 )

∂Rt
= 0.

From Eq. (16) this gives R̂t = ItΛ
−1
t [27]. Repeating

this for all t we obtain estimates of the complete vector
of transmissibility parameters Rτ1 underlying Iτ1 .

To quantify the precision (the inverse of the variance,
var) around these MLEs or any unbiased estimator of Rt
we calculate the Fisher information (FI) that Iτ1 contains
about Rt. This is FI(Rt) := E

[
−∂2`(Rτ1 )

∂R2
t

]
, where expec-

tation E[.] is taken across the data Iτ1 (hence the subscript
I). The FI defines the best (smallest) possible uncertainty
asymptotically achievable by any unbiased estimate, R̃t.
This follows from the Cramer-Rao bound [29], which
states that var(R̃t) ≥ FI(Rt)−1. The confidence intervals
around R̃t converge to R̃t± 1.96FI(Rt)−

1

2 . The FI also
links to the Shannon mutual information that Iτ1 contains
about Rt (these measures are bijective under Gaussian
approximations) [61, 62] and is pivotal to describing both
model identifiability and complexity [29, 34].

Using the Poisson renewal log-likelihood in Eq. (16)
we obtain the FI as the left equality in Eq. (17). Observe
that this depends on the unknown ‘true’ Rt.

FI(Rt) = ΛtR
−1
t , FI(2

√
Rt) = Λt. (17)

This reflects the heteroscedasticity of Poisson models,
where the estimate mean and variance are co-dependent.
We construct a square root transform that uncouples this
dependence [44], yielding the right formula in Eq. (17).
We can evaluate FI(2

√
Rt) purely from Iτ1 . The result

follows from the Fisher information change of variables

formula FI(Rt) = FI(Rt)
(
∂Rt
∂Rt

)2
[29]. This transfor-

mation has several optimal statistical properties [38, 63]
and so we will commonly work with Rt := 2

√
Rt.

As we are interested in evaluating the informativeness
or reliability of the entire Iτ1 time series for inferring
transmission dynamics we require the total FI it provides
for all estimable reproduction numbers, Rτ1 . As we noted
above, the inverse of the square root of the FI for a single
Rt corresponds to an uncertainty (or confidence) inter-
val. Generalising this to multiple dimensions yields an
uncertainty ellipsoid with volume inversely proportional
to the square root of the determinant of the FI matrix
[34, 38]. This matrix has diagonals given by FI(Rt) and
off-diagonals defined as E[−∂2`(Rτ1 )

∂RtRs
] for 1 ≤ t, s ≤ τ .

Maximising this non-negative determinant, which we

denote the total information T(Iτ1 ) from the data Iτ1 ,
corresponds to what is known as a D-optimal design [37].
This design minimises the overall asymptotic uncertainty
around estimates of the vector Rτ1 . As the renewal model
in Eq. (15) treats every Rt as independent, off-diagonal
terms are 0 and T(Iτ1 ) is a product of the diagonal FI
terms. Transforming Rt → Rt we then obtain Eq. (18).

T(Iτ1 ) =
τ∏
t=1

√
FI(Rt) =

τ∏
t=1

√
Λt. (18)

If we work directly in Rt we get
∏τ
t=1 Λ

1

2

t R
− 1

2

t instead.
In two dimensions (i.e., τ = 2) our ellipsoid becomes an
ellipse and Eq. (18) intuitively means that its area is pro-
portional to a product of lengths FI(R1)−

1

2FI(R2)−
1

2 ,
which factors in the uncertainty from each estimate.

We will use this recipe of formulating a log-likelihood
for Rτ1 given some data source and then computing the
total information, T(.), it provides about these parame-
ters to quantify the reliability of case, death and other
Iτ1 proxies for inferring transmissibility. Comparing data
source quality will involve ratios of these total informa-
tion terms. Metrics such as Eq. (18) are valuable because
they measure the usable information within a time series
and also delimit the possible distributions that a model
can describe given that data (see [34, 64] for more on
these ideas, which emerge from information geometry).
Transforms like Rt = 2

√
Rt stabilise these metrics (i.e.,

maximise robustness) to unknown true values [38, 63].

Epidemic noise sources and surveillance models

We investigate two important and common sources of
noise, under-reporting and reporting delay, which limit
our ability to precisely monitor Iτ1 , the true time series
of new infections. We quantify how much information
is lost due to these noise processes by examining how
these imperfections degrade T(Iτ1 ), the total information
obtainable from Iτ1 under perfect (noiseless) surveillance
for estimating parameter vector Rτ1 (see Eq. (18)). Fig. 1
illustrates how these two main noise sources individually
alter the shape and size of incidence curves.

(i) Under-reporting or under-ascertainment. Practical
surveillance systems generally detect some fraction of
the true number of infections occurring at any given time
t. If this proportion is ρt ≤ 1 then the number of cases,
Ct, observed is generally modelled as Ct ∼ Bin (It, ρt)
[23, 57], where Bin indicates the binomial distribution.
The under-reported fraction is 1−ρt and so the reported
case count Ct ∼ Pois (ρtΛtRt). Reporting protocols are
defined by choices of ρt. Constant reporting (CONR) is
the simplest and most popular, assuming every ρt = ρ
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[21]. Variable reporting (VARR) describes general time-
varying protocols where every ρt can differ [28].

(ii) Reporting delays or latencies. There can be notable
lags between an infection and when it is reported [13].
If δ defines the distribution of these lags with δx as
the probability of a delay of x ≥ 0 time units, then
the new cases reported at t, Ct, sums infections actually
occurring at t but not delayed and those from previous
days that were delayed [10]. This is commonly mod-
elled as Ct ∼ Pois

(∑t−1
x=0 δxΛt−xRt−x

)
[20, 28] and

means that true incidence It splits over future times as
∼ Mult(It, δ), where Mult denotes multinomial [12].
The Ct time series is observed but not yet reported
(OBNR) if we later learn about the past It splits (right-
censoring), else we say data are never reported (NEVR).

We make some standard assumptions [8, 11, 21, 28]
in incorporating the above noise sources within renewal
model frameworks. We only consider stationary delay
distributions i.e., δ and any related distributions do not
vary with time, and we neglect co-dependencies between
reporting and transmissibility. Additionally, we assume
these distributions and all reporting or ascertainment
fractions i.e., ρt and related parameters, are inferred from
other data (e.g., contact tracing studies or line-lists) [12].
In the absence of these assumptions Rτ1 would be non-
identifiable and the inference problem ill-defined. In the
Results we examine how (i)-(ii) in combination limit the
information available about epidemic transmissibility.

CODE AVAILABILITY

All data and source code (Matlab v2021a) for repro-
ducing the analyses and figures in this manuscript, as
well as for applying the methodology we have developed
here are freely available at https://github.com/kpzoo/
information-in-epidemic-curves. We include a template
function (in Matlab and R) that can be easily modified to
compute our metrics with user-defined noise estimates.
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APPENDIX

Heterogeneous transmission noise models

For some infectious outbreaks the case (Eq. (1)) and
death (Eq. (2)) count time series might be overdispersed
[20] i.e., the mean-variance equality inherently assumed
by the Poisson renewal model may not be valid. This
can result when transmission is strongly influenced by
heterogeneities in contacts and infectiousness or when
incidence data are corrupted by additional intrinsic noise.
These effects are often modelled by generalising Eq. (15)
to a negative binomial (NB) form [2, 65], with dispersion
k and success probability p. This leads to the expression
below, with mean ΛtRt and second argument as p.

It ∼ NB
(
k, ΛtRt(k + ΛtRt)

−1
)
.

As we focus on the impact of the heterogeneity here,
we assume perfect reporting (reporting noise as in the
main text only affects the mean of this model). Taking
derivatives of the log-likelihood corresponding to the NB

model, `(Rt), we get ∂`(Rt)
∂Rt

= ItR
−1
t − (It + k)Λt(k +

ΛtRt)
−1. This gives the MLE R̂t = ItΛ

−1
t , which is the

same as for Eq. (15). Computing E[−∂2`(Rt)
∂R2

t
] yields the

FI that It contains about Rt below.

FI(Rt) = ΛtR
−1
t − Λt(Rt + kΛ−1

t )−1.

The first term above is the FI from Eq. (17). Heterogene-
ity therefore subtracts from its FI with a dispersion con-
trolled term. As k →∞ this disappears and NB→ Pois.

While we do not explicitly include heterogeneity in the
analyses of the main text, we do show, importantly, that
our results do not qualitatively change if overdispersion

is included. There we rank epidemic and death curves,
which have been corrupted by under-reporting and de-
lays, according to their Poisson FI. Curves with larger FI
are deemed more reliable sources of information about
Rt. If the delay and under-reporting noise do not alter
k (i.e., the level of transmission heterogeneity is stable),
then this Poisson FI ordering remains valid. We confirm
this in Fig. 6, demonstrating a monotonic relationship
between the FI from both models at fixed k. Our main
results are therefore moderately robust to heterogeneities.

Fig. 6: Overdispersion maintains Fisher information
based rankings. We plot the FI under a NB observation
model that models overdispersion or heterogeneities in
transmission, against the FI from the corresponding Pois-
son renewal model (with the same mean) at Rt = 1. For
various dispersion parameters, k (smaller k means more
heterogeneity), we find a monotonic ordering between
these two FI values. This suggests that the rankings of
data sources derived from their Poisson FI will likely also
remain preserved under these more complex NB models,
provided those data sources have similar k values.

Information if case source times are never reported

Eq. (5) allows us to compute the FI of under-reported
and delayed surveillance data. However, it assumes that
we eventually uncover the true time of infection of the
delayed cases. This is only valid for OBNR data [12], for
which we can separate Ct from Eq. (1) into components∑t

x=1 Pois(δt−xρxΛxRx) for every t. Here we compute
the FI for the more complex case of NEVR delays, in
which the source data of delayed cases are never reported
and hence this sum cannot be decomposed. Specifically,
we solve Eq. (6) for a three-dimensional example i.e.,
τ = 3 and prove that we obtain a triangular FI matrix
that has diagonal terms as in Eq. (7).
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We then compute the total information, T(Cτ1 ) for
never reported delays (the NEVR analogue to Eq. (9))
showing that it involves a product of those diagonal
terms. This allows us to assert Eq. (9) as an upper bound
and to prove convergence of these when the effective
reproduction numbers are constant i.e., Rt = R for all t.
The algorithms we apply serve for any τ by inductively
repeating the procedure here (for code see https://github.
com/kpzoo/information-in-epidemic-curves).

We start from Eq. (6) with α(t−x)x := δt−xρxΛx to
define the complete log-likelihood below.

`(R3
1) =

3∑
t=1

Ct log
t∑

x=1
α(t−x)xRx −

t∑
x=1

α(t−x)xRx.

Taking derivatives for R1 gives ∂`(R3
1)

∂R1
= C1

R1+b1
−δ0R1+

C2

R1+b2
− δ1R1 + C3

R1+b3
− δ2R1 with b1 = 0, b2 = α02

α11
R2

and b3 = α12

α21
R2+α03

α21
R3. This is repeated for all other Rt

and conforms to the description in the main text. When
solved and rearranged this gives the MLEs in Eq. (8).

We then calculate E[−∂2`(Rτ1 )
∂RtRx

] for every combination
of t and x with the expectation of any Ct following as
the mean in the Poisson model Eq. (1). This generates
the complete FI matrix, FC , below with β1 = α01R1,
β2 = α02R2 +α11R1 and β3 = α03R3 +α12R2 +α21R1.

FC =


α2

01

β1
+ α2

11

β2
+ α2

21

β3

α11α02

β2
+ α21α12

β3

α21α03

β3

α11α02

β2
+ α21α12

β3

α2
02

β2
+ α2

12

β3

α12α03

β3

α21α03

β3

α12α03

β3

α2
03

β3

 .
The total information that C3

1 contains about R3
1 is

already computable from the determinant of this matrix.
However, we can obtain a more illuminating form by
applying elementary column operations.

Such operations do not change the determinant. Using
col(x) for column x we successively apply col(2) →
col(2) − α12

α03
col(3), col(1) → col(1) − α21

α03
col(3) and

col(1) → col(1) − α11

α02
col(2), revealing the triangular

matrix below. This procedure of subtracting multiples of
the later columns from earlier ones can be repeated for
any τ to also extract analogous triangular forms.

FC =


α2

01

β1

α11α02

β2

α21α03

β3

0 α2
02

β2

α12α03

β3

0 0 α2
03

β3

 , T(C3
1 ) =

3∏
t=1

α0t√
βt
.

The total information T(C3
1 ) therefore depends on the

diagonals of this triangular matrix as shown above.
When written out this corresponds to a product of the

terms given in Eq. (7) for all t. Each term is smaller
than or equal to the corresponding term from an OBNR

delay, given in Eq. (5). We can therefore use the total
information in Eq. (9) to upper bound that available
from a time series with NEVR delays. Intriguingly, this
bound is sharp in some important instances. Specifically,
if transmissibility is constant so Rt = R for all t then
∂`(R)
∂R =

∑3
t=1CtR

−1 − F3−tρtΛt and consequently
FC(R) =

∑3
t=1 F3−tρtΛtR

−1. This is precisely the FI
obtained under an OBNR delay (by summing Eq. (5)).
The MLEs for both delay types are also equal.
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