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Abstract
Background: Hypertension is a major risk factor for cardiovascular disease (CVD) which

often escapes the diagnosis or should be confirmed by several office visits. The electrocardiogram

(ECG) is one of the most widely used diagnostic tools and could be of paramount importance in

patients’ initial evaluation.

Methods: We used machine learning (ML) techniques based features derived from the

electrocardiogram for detecting hypertension in a population without CVD. We enrolled 1091

subjects who were classified into hypertensive and normotensive group. We trained a random

forest (RF), to predict the existence of hypertension in patients based only on a few basic

clinical parameters and ECG-derived features. We also calculated Shapley additive explanations

(SHAP), a sophisticated feature importance analysis, to interpret each feature’s role in the

random forest’s predictions.

Results: Our RF model was able to distinguish hypertensive from normotensive patients

with accuracy 84.2 %, specificity 66.7%, sensitivity 91.4%, and area under the receiver-operating

curve 0.86. Age, body mass index (BMI), BMI-adjusted Cornell criteria (BMI multiplied by

RaVL+SV3), R wave amplitude in aVL, and BMI-modified Sokolow-Lyon voltage (BMI divided

by SV1+RV5), were the most important anthropometric and ECG-derived features in terms of

the success of our model.

Conclusions: Our ML algorithm is effective in the detection of hypertension in patients using

ECG-derived and basic anthropometric criteria. Our findings open new horizon in the detection

of many undiagnosed hypertensive individuals who have an increased cardiovascular disease risk.

Key words: electrocardiogram, hypertension, machine learning.
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Hypertension is one of the most significant risk factors for cardiovascular disease (CVD)

and a major cause of premature mortality and rising health care costs [1]. It is a leading

modifiable cause in 54% of stroke cases and 47% of ischemic heart disease incidences

worldwide [2]. The global prevalence of hypertensive heart disease, having risen steadily

over the last decades, is expected to continue to rise due to population growth and

aging [3]. Unfortunately, control rates among people with hypertension are very poor,

approximately 23% for women and 18% for men, with a large number of hypertensives

not properly identified [4].

Unawareness of hypertension is an important contributing factor to the inadequate

control of the disease and absence of appropriate antihypertension treatments. Population

screening programs have shown that more than 50% of hypertensives were unaware

they had hypertension [5,6]. Despite the progress in blood pressure (BP) measurement

techniques, a substantial proportion of hypertensive patients is not identified as such, and

are thus incorrectly diagnosed and managed [7]. Although current practices, with the use

of ambulatory and home BP measurements, have become more powerful in detecting

the ‘real’ hypertensive population by discarding the white-coat effect and discovering

masked hypertension, still a large proportion of patients escape diagnosis. Considering

the importance of this disease for public health, exploring novel tools that potentially

minimize the unawareness and increase the diagnostic performance of hypertension in

daily clinical practice seems of vital importance.

The application of machine learning (ML) algorithms in the management of data

is transforming the landscape of various scientific fields, including Cardiology. The

fast-growing number of applications of ML/data analysis in healthcare allows

identification of diseases even in early stages and prognostication of clinical outcome,

thereby increasing the efficacy of treatment options. Artificial Intelligence (AI) techniques

have the potential to radically change the way we practice cardiovascular medicine,

providing new tools to interpret data and make aid in clinical decisions [8–12]. While still

a new player in Cardiology, ML has already made its mark in clinical diagnostics and

research and continues to evolve rapidly [13–16]. AI offers opportunities to physicians

not only to make more accurate and prompt diagnoses, but also to identify hidden

opportunities in improving patient management and avoiding unnecessary spending [17].
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The ECG is of paramount importance in the initial evaluation of a patient suspected to

have a cardiovascular pathology [10,12]. In this paper we are attempting to detect whether

a person is hypertensive using features from the ECG, as well as basic anthropometric

features such as age, sex, and body mass index (BMI). We use digital interpretation of

ECGs via computational methods and ML applications.

METHODS

Study population

We performed a prospective study involving two Cardiology centers from November

2019 to October 2021. We enrolled 1091 study subjects, with and without essential

hypertension, and no indications of CVD. Hypertensive patients were recruited from the

outpatient clinics of the respective centers. Normotensive healthy individuals were referred

either for the investigation of atypical chest pain or for the modification of risk factors for

cardiovascular disease such as hyperlipidemia. The diagnosis of hypertension was based

on the recommendations of the European Society of Hypertension/European Society of

Cardiology [18]; essential hypertension was defined as office BP of > 140/90 mmHg or more,

measured in three consecutive visits, or in one visit when the diagnosis was confirmed by

out of office measurements. In addition, out of office measurements were performed to

exclude masked or white coat hypertension .

A physical examination and routine laboratory tests were performed for all subjects before

inclusion. All patients underwent a routine echocardiography study. Height and weight

were measured during the same visit as the ECG acquisition, and the individuals were

classified using the World Health Organization (WHO) classification of BMI. We also

calculated the percentage of body fat (BF) of the patients as defined by the formulae:

[adult males] BF(%) = 1.20 · BMI + 0.23 · age - 10.8 - 5.4, and [adult females] BF(%) =

1.20 · BMI + 0.23 · age - 5.4 [19].

Patients with any of the following characteristics were excluded: tachy- or

bradyarrhythmia; permanent atrial fibrillation, RBBB, LBBB or other conduction
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abnormalities on ECG, coronary artery disease; moderate or severe valvular heart

disease, cardiomyopathy, cerebrovascular, liver or renal disease; history of acute coronary

syndrome or myocarditis; ejection fraction < 55%; history of drug or alcohol abuse; any

chronic inflammatory or other infectious disease during the last 6 months; thyroid gland

disease; pregnant or lactating women. Vascular or neoplastic conditions were also ruled

out vascular or neoplastic conditions were ruled out by a careful examination of the

history and routine laboratory tests.

Functional tests for myocardial ischemia, coronary computed tomography angiography

or invasive coronary angiography were performed according to physician’s judgement, in

order to exclude coronary artery disease. The study was conducted in accordance with the

Declaration of Helsinki, the protocol was approved by the Hospital Ethics Committee, and

patients gave written informed consent to their participation in the study.

All numerical plots in this paper were created directly from the data, without alteration,

using Python’s plotting library matplotlib.

Electrocardiography

A 12-lead ECG in resting position with 10 seconds duration was performed in each

subject using a digital 6-Channel machine (Biocare iE 6, Shenzhen, P.R. China) and

was stored in a digital file with the eXtensive Markup Language format (XML). The

sampling rate was 1000Hz. Automated measurements of wave/complex duration and wave

amplitude, calculated by Biocare’s software, were extracted from the digital files. These

measurements were based on representative complexes (corresponding to individual heart

beats) of 1 second duration, which, according to the manufacturer, were calculated by

breaking the 10 seconds signal into ten 1-second signals and averaging those into one. The

final beat signals were verified, and adjusted where needed. The process was performed

for each lead separately; the measurements involving time durations are averages over all

leads, whereas the amplitude values are lead specific.
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ML modeling for classification

ML classification assigns a patient into two or more categories based on features used as

training input to the model. Our models were trained to discriminate whether a patient

is hypertensive or not, based on a number of anthropometric and ECG-derived features.

We trained a logistic regression model (LR) and a k-nearest neighbor classifier (k-NN), as

baselines to compare with our preferred model, the Random Forest classifier (RF).

LR estimates the (log odds) probability of a case belonging to a group/class which is

expressed as a linear weighted sum of the features with which the model was trained. The

k-NN method is a simple ML technique that does not make any statistical assumptions

about the data and assigns a case to a group based on its proximity to other cases. Using

cross-validation we derived that the best performing k was 5 (Appendix A).

A RF is a method of machine learning, an ensemble of decision trees [21]. Each decision

tree performs a series of binary decisions (splits) by selecting a subgroup of the input

features (such as age, body fat, BMI), effectively trying out different feature order and

feature combinations. A RF builds a large collection of de-correlated trees, and then

averages their votes for the predicted class [22]. RFs are good predictors even with smaller

datasets due to a technique called bootstrap aggregating (bagging). Bagging trains

multiple trees on overlapping, randomly selected subset of the data, and makes the

final decision based on the votes of the different trees. For modeling the RF we used

RandomForest classifier from scikit-learn [23]. We optimized the model hyperparameters

by minimizing the RF’s built-in out-of-bag error estimate which is almost identical to that

obtained by N-fold cross-validation [22]. This technique enables RFs to be trained and

cross-validated in one pass. A RF is capable of handling non-linear interactions as well as

correlations among features.

Feature engineering

We calculated additional ECG waveform measurements with custom Python [24] code on

the 1 second representative beat produced by the electrocardiograph. Starting from the
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automated measurements provided by the machine, we calculated areas under curves,

slopes, and heights of waveforms. Electrocardiographic terms are consistent with AMA

Manual of Style (2019, 11th edition) [25].

We chose to include ECG measurements adjusted for BMI based on studies showing that

larger body mass decreases the amplitude of the R and S waves in specific leads due

to the electrical currents traveling longer distances. The most important ECG-derived

features were: the BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV3); [26]

the BMI-modified Sokolow-Lyon voltage (BMI divided by SV1+RV5); [12] and R wave

amplitude in aVL.

Feature selection

Initially we had 60 features in our dataset (Table S1). Some pairs of features exhibited

high correlation, as calculated by Spearman’s rank correlation test; highly correlated

features contribute the same amount of information and including both of them in a

RF model might not affect performance, but it will divide, thus lessen, each feature’s

predictive significance. We chose a cut-off of 0.90% correlation for removal. In our Python

code we used the spearmanr function from the scipy.stats Python package. We choose the

Spearman test because of the possibility of non-linear relationships among the data and

then calculated the Rank-Sum statistic and ranked the features according to their p-value.

This feature selection is part of pre-processing.

Visualization

Embedding high-dimensional data into 2 dimensions allows us to visualize them in a way

that gives useful insights on what differentiates study participants with a condition from

those without. We performed visualization as part of our feature selection, before running

any models, to inspect the features that seemed to best discriminate hypertensive from

normotensive participants. A useful such method is t-distributed Stochastic Neighbor

Embedding (t-SNE), a variation of Stochastic Neighbor Embedding [27] (Appendix B).
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Datasets

The dataset was randomly partitioned into a train set of 872 (80%), used directly to learn

the parameters of the model, and a test set of 219 (20%), consisting of a part of the data

the model had not seen before and was used exclusively for final performance evaluation

of the models. Stratification for sex and history of hypertension, during the partition,

ensured the two sets contained the same proportions of these two features. The ratio of

hypertensive to normotensive patients in the total dataset was about 2, which did not,

in our view, necessitate the use of techniques for imbalanced datasets. For validation

while training the RF we used the model’s internal out-of-bag (oob) set. All reported

performance results are on the test set. Feature importance graphs are also on the test

set, as, using the train set inflates the importance of some features which might not be as

important in predicting the outcome. We also made sure that data from the same patient

was not included in both the train and test set.

Feature Importance

We explored feature importance in the highest performing model which was the RF.

Explaining predictions from tree models is always desired and is particularly important in

medical applications, where the patterns uncovered by a model are often more important

than the model’s prediction performance [28]. Scikit-learn’s tree ensemble implementation

allows for the computing of measures of feature importance. These measures aspire

to provide insight into which features drive the model’s prediction. Mean Decrease in

Impurity (MDI), an approach popular among medical researchers, calculates each feature

importance as the sum over the number of splits (across all trees). It was shown that

the impurity-based feature importance can inflate the role of numerical features and bias

the contribution of categorical, low cardinality ones [29]. Furthermore, these significances

are computed on training set statistics and therefore do not reflect the usefulness of the

feature in predictions that generalize to the test set. A better method is Permutation

Importance which randomly shuffles a feature and calculates the error after running

the model; if the error increased, then that feature is deemed important. We go one
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step further and calculate a recent feature importance metric called Shapley Additive

explanations (SHAP), a game theoretic approach to explain the output of any machine

learning model. SHAP connects optimal credit allocation with local explanations using

the classic Shapley values from game theory and their related extensions [28,30]. Visualizing

feature importance using SHAP values is thought to be more accurate for global and local

feature importance (importance calculated on each feature instead of all of them). SHAP

values have already been used in medical papers [31].

RESULTS

After careful screening 2156 healthy individuals, we enrolled 1091 consecutive subjects

(Figure 1). Of our participants, 617 (56.55%) were female, 474 (43.45%) were male,

and 712 (65.26%) were hypertensive. Overall, the mean age was 59.34±11.25 years old;

60.32±10.87 for females, and 58.07±11.61 for males. Based on BMI, 505 (46.29%) of them

were obese, 417 (38.0%) were overweight, and 169 (15.0%) were within normal range.

Compared with the normotensive group, the hypertensive group was older, had higher

BMI, and tended to have slightly more female participation. The comparative statistics

for a range of anthropometric and ECG features between hypertensive and normotensive

population are shown in Table 1.

We performed clustering with various subsets of the anthropometric and ECG features

using t-SNE. In Figure 2 each point is a participant characterized by the following set of

features: age, BF, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV3), R wave

amplitude in aVL (R_aVL), and BMI-modified Sokolow-Lyon voltage (BMI divided by

SV1+RV5). This particular subset of features seems to separate hypertensive patients on

the upper left corner, from normotensive patients which were in the rest of the plot.

Based on the discriminatory ability of these features, we depict the distributions of BMI,

R wave amplitude in aVL, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV3),

and age, between normotensive and hypertensive individuals in four separate plots (Figure

3). In each plot, we separate the distributions for male and female individuals. We notice

that the distributions for BMI, age, and BMI adjusted Cornell criteria, are shifted towards
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larger values for hypertensive than normotensive participants.

In classifying hypertensive vs. normotensive, our LR model achieved an accuracy of 77%,

while the kNN classifier (k = 5) with 6 features, an accuracy of 78.8%. Our RF model’s

accuracy was 84.2 %, specificity was equal to 66.7%, sensitivity was 91.4%, and the area

under the receiver operating characteristic curve (AUC/ROC) was 0.86. All results for our

models are in Table 2 . Feature importance calculated by SHAP is shown in Figure 4 A.

Dependence on BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV3) is shown

in Figure 4 B. The horizontal dashed line represents the cut-off between having a negative

effect on being hypertensive (below the line) and a positive one (above the line). On the

x-axis we see that participants with a value above 37 mV · kgr/m2 (approximately) have a

positive chance of being hypertensive . These values were calculated by SHAP on the RF

model.

DISCUSSION

To our knowledge, this is the first clinical study that exploits the promising potential

of ML algorithms for the efficient and cost-effective opportunistic screening of arterial

hypertension. We found specific basic clinical and ECG features that can be applied for

point-of care detection of hypertensive population who will benefit from further evaluation

and treatment. In our study, age, BF, BMI-adjusted Cornell criteria (BMI multiplied

by RaVL+SV3), R wave amplitude in aVL (R_aVL), and BMI-modified Sokolow-Lyon

voltage (BMI divided by SV1+RV5), seemed to separate hypertensive patients from

normotensive (Figures 3 and 4A). It is remarkable that using just these features our

model can detect hypertension with a good accuracy.

Our findings are very significant given that hypertension is a major public health issue
[1]. Although, hypertension is a leading preventable risk factor for premature death and

disability worldwide, the proportion of awareness and treatment remains poor [5,6,18,32].

We showed that with familiar and easily obtainable clinical tools may enhance the

diagnostic efficacy and improve the detection of hypertension.

The unawareness of hypertension which is an important contributing factor for the
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inadequate control of the disease and often the diagnosis of hypertension is challenging

and demanding even in the office. BP measurements are not always optimally performed

in the routine clinical practice or even skipped altogether. Most importantly, a modest

elevation in BP demands a confirmation of at least two occasions while the exclusion of

clinical entities such as white coat effect or masked hypertension depends on out-of-office

measurements [18,32]. The increase the diagnostic performance of hypertension in daily

clinical practice and the instantly derived screening at points-of care are significant for the

management of the escalating burden of hypertension.

The applications of artificial intelligence on ECG are evolving rapidly with tremendous

future implications on cardiovascular medicine [10,11,33–35]. ECG signals and patterns

largely unrecognizable to human eye interpretation can be detected by machine learning

algorithms making the ECG a more powerful, non-invasive clinical tool.

Our study design has several strengths. First, the participants were carefully selected

and did not have CVD since it largely eliminates other clinical parameters that could

mislead our model. In this way, we improve the quality of input data and avoid various

pitfalls that could arise due to the large diversity of pathological conditions that formed

the basis for the training process. Second, our data were collected prospectively across

real-world clinical settings and by many operators. There are limited data in the literature

that attempt to associate BP level with ECG signals interpreted through ML algorithms
[36–38]. However, the existing knowledge has derived from limited number of ECG-data

acquired from previous datasets and Physionet databases.

We present and ECG-based ML algorithm that can identify the existence of arterial

hypertension by using easily obtained clinical data and ECG features in the clinical

setting. This novel approach has the potential to serve as a cost-effective screening tool,

empower clinicians to detect hypertensive participants and eliminate the effects of white

coat and masked hypertension in the routine clinical practice. Deep learning opens up

new opportunities in health care quality and advancing personalized medicine at a low

cost. Our model contributes to the development of human-centered and autonomous

technologies and can optimize patient-management.

Our study has some limitations. We could not control for every possible lifestyle factor,
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and there is possibility of residual confounding. Nonetheless, our results are clear and

mainly due to the fact that our population is carefully chosen and does not have other

CVD that could influence ECG features.

We did not include blood pressure levels in our analysis because the measurements were

not performed at the same time with the ECG and the measurements may suffer from

the white coat effect. We did not perform coronary angiogram in all participants, and

this may bias the outcomes. However, we believe that this bias is small since participants

underwent a meticulous work out to exclude coronary artery disease while performing

coronary angiogram in low probability participants would be unethical.

The definition of hypertension was in accordance with the ESC/ESH guidelines for

hypertension [18] instead of the ACC/AHA guidelines [39]. This might have an impact on

our results.

PERSPECTIVES

We have showed that from basic clinical data and the use of ECG, we can identify

participants with arterial hypertension. Our method offers an innovative strategy to

improve health care management and personalized care at lower cost in hypertensive

individuals, a population who has a high risk for CVD. ML techniques have the potential

to radically change the way we practice CVD offering us novel tools to interpret data and

make clinical decisions. They can also improve diagnostic performance due to the increase

of the volume and complexity of the data interpreted, unlocking clinically and imaging

relevant information. The capability to detect a hypertensive individual immediately

and efficiently only by using a simple tool as the ECG creates great potential in the

management of hypertension.
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NOVELTY AND SIGNIFICANCE

What is New?

1. ML algorithm can efficiently identify individuals with arterial hypertension in a

population without cardiovascular disease by combining clinical and ECG-extracted

features.

2. BMI adjusted Cornell criteria, R wave height in aVL lead, BMI divided by the

Sokolow-Lyon voltage were the most significant ECG features.

What is Relevant?

We used machine learning (ML) techniques and found a combination of anthropometric

and ECG features that enable the detection of arterial hypertension.

Clinical/Pathophysiological Implications

ML can enhance significantly physicians’ diagnostic performance of hypertension, increase

patients’ awareness and as a result improve the management of the disease.

Sources of funding:

No financial support was received for this study.

Disclosures:

The authors have no conflicts of interest or competing interests to declare with relation to

the present manuscript.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.14.22275082doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.14.22275082


13

Supplemental Material

Appendix A and B

Table S1
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TABLE 1: Characteristics and Comparative Statistics for Hypertensive and
Normotensive Study Participants.

Feature HTN NT p value

Mean Std Range Mean Std Range

Age, years 62.5 10.5 30.0 - 80.00 53.4 10.2 30.0 - 80.00 < 0.001

Body mass index, kgr/m2 31.4 5.4 18.8 - 56.64 28.1 5.2 17.6 - 48.87 < 0.001

BMI-adjusted Cornell, mV · kgr/m2 45.1 18.5 4.3 - 128.12 34.4 16.2 3.1 - 118.90 < 0.001

Body fat (1.2·BMI+0.23·age-10.8·female-5.4) 41.6 9.0 18.9 - 75.45 36.6 8.1 17.3 - 67.04 < 0.001

R amplitude in aVL, mV 0.6 0.3 0.0 - 1.91 0.5 0.3 0.0 - 1.61 < 0.001

Area under R wave in I, ms · mV 9.3 3.9 0.8 - 33.36 7.8 3.3 0.8 - 21.10 < 0.001

QRS axis front, degrees◦ 13.6 32.4 -77.0 - 188.00 26.2 30.6 -82.0 - 88.00 < 0.001

Corrected QT interval, ms 423.7 24.6 337.0 - 500.00 415.0 22.3 364.0 - 506.00 < 0.001

P wave duration, ms 114.6 15.5 0.0 - 196.00 111.7 10.8 75.0 - 149.00 < 0.001

PR interval duration, ms 167.0 27.4 0.0 - 277.00 159.2 21.1 112.0 - 235.00 < 0.001

QT interval duration, ms 397.9 31.7 290.0 - 501.00 387.6 28.8 312.0 - 496.00 < 0.001

R amplitude in III, mV 0.2 0.2 0.0 - 1.37 0.3 0.3 0.0 - 1.74 < 0.001

Planar frontal QRS-T angle, degrees◦ 37.0 35.3 0.0 - 178.00 26.2 25.3 0.0 - 168.00 < 0.001

Area under R wave in aVF, ms · mV 3.9 3.6 0.0 - 25.39 4.8 3.7 0.0 - 23.51 < 0.001

Area under R wave in III, ms · mV 1.9 2.4 0.0 - 21.05 2.7 3.0 0.0 - 19.12 < 0.001

BMI-adjusted Sokolow-Lyon voltage, mV 2.6 0.6 0.2 - 5.66 2.4 0.6 1.0 - 4.73 < 0.001

BMI-modified Sokolow-Lyon voltage, kgr/(m2 · mV ) 17.5 7.7 4.9 - 96.88 15.5 5.9 5.8 - 41.94 < 0.001

Sum of QRS areas in all leads, ms · mV 291.2 78.0 118.4 - 734.18 272.3 78.3 133.9 - 942.10 < 0.001

S amplitude in V_5, mV 0.4 0.3 0.0 - 1.46 0.3 0.2 0.0 - 1.60 < 0.001

T amplitude in V_5, mV 0.3 0.2 -0.7 - 1.02 0.3 0.2 -0.5 - 0.82 < 0.001

S wave amplitude in V_3, mV 0.9 0.4 0.0 - 2.84 0.8 0.4 0.0 - 3.15 < 0.001

QRS complex duration ms 92.6 11.0 62.0 - 153.00 90.6 11.2 55.0 - 147.00 0.0015

P amplitude in II, mV 0.1 0.0 0.0 - 0.28 0.1 0.0 0.0 - 0.41 0.003

J point deflection in V_5, mV -0.0 0.0 -0.1 - 0.14 -0.0 0.0 -0.1 - 0.13 0.0041

Q wave duration, ms 10.5 8.1 0.0 - 36.00 11.9 8.6 0.0 - 48.00 0.006

P axis in frontal plane, degrees◦ 46.6 22.5 -59.0 - 116.00 50.3 26.5 -61.0 - 268.00 0.0065

T wave duration, ms 204.0 42.3 43.0 - 345.00 200.8 32.6 77.0 - 312.00 0.041

BMI: body mass index, HTN: participants with hypertension, NT: participants with normal blood pressure.
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Randomized and split in train and test 
datasets with care not to include 
duplicates in both datasets

                                                                 

Train dataset 
(used for training the models)

 N = 872 (80%)

Test dataset 
(used only for evaluating the models)

 N = 219 (20%)

Included in the study 
N = 1091

Not meeting eligibility criteria/ 
Refused to participate 

                                               N = 1013
Excluded for technical reasons
• electrocardiograph signal too noisy
• digital file lost 

                                                    N = 52

Accessed for eligibility 
N = 2156

FIGURE 1: Study selection process. Study flowchart from initial hospital evaluation until
data inclusion in the machine learning models.
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FIGURE 2: Study subject clustering using t-distributed Stochastic Neighbor
Embedding (t-SNE). NT signifies the normotensive participants and HTN the hypertensive.
The axes of the 2-dimensional space are given in arbitrary units.
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A B

DC

FIGURE 3: Feature distribution comparison. These box plots show the distributions
of body mass index (BMI) (A), R wave amplitude in aVL (B) , BMI-adjusted Cornell
criteria (BMI multiplied by RaVL+SV3) (C) , and age (D) , between normotensive (NT)
and hypertensive (HTN) individuals. Scatterplots (dots) of the data were superimposed for a
more detailed visualization of the distributions. Each plot is also subdivided in male and female
participants.
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FIGURE 4: Results in detecting hypertension by the Random Forest. (A) Feature
importances calculated on the test set using Shapley Additive explanations (SHAP). Features
are body mass index (BMI), BMI-modified Sokolow-Lyon voltage (BMI divided by SV1+RV5),
and BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV3). Body fat (BF) is defined
by the formulae: [adult males] BF(%) = 1.20 · BMI + 0.23 · age - 10.8 - 5.4, and [adult females]
BF(%) = 1.20 · BMI + 0.23 · age - 5.4. Sex is binary male/female (M/F). (B) Effect of BMI
adjusted Cornell criteria on the risk of being hypertensive. Each dot in the plot is a participant
whose BMI adjusted Cornell value is indicated on the x-axis. The values on the y-axis effectively
indicate the effect of each participant’s set of features in characterizing them as hypertensive.
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