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Abstract

Objectives: Spondyloarthritis (SpA) is a group of immune-mediated diseases highly
concomitant with non-musculoskeletal inflammatory disorders, such as acute anterior uveitis
(AAU) and Crohn’s disease (CD). The gut microbiome represents a promising avenue to
elucidate shared and distinct underlying pathophysiology.

Method: We performed 16S rRNA sequencing on stool samples of 277 patients (72 CD, 103
AAU, and 102 SpA) included in the German Spondyloarthritis Inception Cohort (GESPIC)
and 62 back pain controls without any inflammatory disorder. Discriminatory statistical
methods were used to disentangle microbial disease signals from one another and a wide
range of potential confounders. Patients were naïve to or had not received treatment with
biological disease-modifying anti-rheumatic drugs for at least three months before
enrollment, providing a better approximation of a true baseline disease signal.

Results: We identified a shared, immune-mediated disease signal represented by low
abundances of Lachnospiraceae taxa relative to controls, most notably Fusicatenibacter,
which partially mediated higher serum CRP levels and was most abundant in controls
receiving NSAID monotherapy. Patients with SpA drove an enrichment of Collinsella, while
HLA-B27+ individuals displayed enriched Faecalibacterium. CD patients had higher
abundances of a Ruminococcus taxon, and previous csDMARD therapy was associated with
increased Akkermansia.

Conclusion: Our work supports the existence of a common gut dysbiosis in SpA and related
inflammatory pathologies. We reveal shared and disease-specific microbial associations and
potential mediators of disease activity. Validation studies are needed to clarify the role of
Fusicatenibacter in gut-joint inflammation, and metagenomic resolution is needed to
understand the relationship between Faecalibacterium commensals and HLA-B27.

Keywords
Gut microbiome, HLA-B27, Spondyloarthritis, Crohn’s Disease, Uveitis, Immune-mediated
inflammatory disease
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Introduction

The human gut microbiome is a largely symbiotic, complex ecosystem of microorganisms
residing on the intestinal mucosal surface. Bacterial microbiome members, mainly of the
Firmicutes and Bacteroidetes phyla, have been more widely studied than viral or fungal
members, and confer many beneficial metabolic and immunological functions upon the
host1. A dysbiotic microbiota composition is broadly defined as an imbalance between
symbionts and pathobionts which reduces the resistance and resilience of the microbial gut
ecosystem2. In a persistent dysbiotic state, physiological conditions such as epithelial barrier
integrity may become compromised and increase intestinal permeability. This “leaky gut”
phenomenon is thought to drive the inflammation characteristic of several immune-mediated
diseases3.
Spondyloarthritis (SpA) refers to one such group of immune-mediated inflammatory diseases
with a complex clinical spectrum in genetically-susceptible individuals. An estimated 50-75%
of all SpA patients and as many as 90% of radiographic axial SpA patients carry the human
leukocyte antigen (HLA)-B27 gene, making the association one of the strongest ever
reported between an HLA allele and a disease4. The clinical SpA features include
inflammation of the axial skeleton and extra-musculoskeletal manifestations such as
psoriasis, acute anterior uveitis (AAU), and inflammatory bowel diseases (IBD), both Crohn’s
disease (CD) and ulcerative colitis (UC)5. Up to 45% of SpA patients present with one or
more extra-musculoskeletal manifestations in the course of their disease (around 33% with
AAU and up to 15% with IBD), and around 20% of IBD patients and 40% of AAU patients
eventually develop SpA6–8.
These diseases have a well-documented epidemiological association, but the underlying
pathophysiological mechanisms are not yet fully understood despite decades of research. It
was postulated more than 30 years ago that reactive arthritis (in the SpA disease family and
sharing the genetic link to HLA-B27) could be triggered by antecedent gastrointestinal
infection, after bacterial lipopolysaccharides were isolated from synovial fluid9. Also more
than 25 years ago it was demonstrated that HLA-B27 transgenic rats, which spontaneously
develop IBD and SpA pathologies, did not develop disease in a germ-free environment10.
Subsequent gastrointestinal colonization with a few commensals was sufficient to trigger
arthritis and colitis11, suggesting a causal role of the microbiome in (shared) pathogenesis.
Despite the high co-occurrence of these diseases, most human microbiome studies have
focused on bacterial alterations in SpA, CD, and AAU individually without exploring their
concomitance. Cross-disease comparisons and meta-analyses have revealed that nearly
half of microbial associations observed across diverse pathologies may not be specific, but
rather part of a shared, more general disease signal12,13. Furthermore, it is increasingly clear
that medication regimens exert a profound impact on microbiome composition14–18, and that
studies which fail to account for treatment and disease concomitance are very likely to suffer
from confounding and spurious associations with disease states. In our study, we aimed to
characterize a robust shared microbiota among SpA, AAU, and CD for the first time in a
large human cohort, and to further resolve relevant phenotypic and covariate associations
therein.
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Methods

Patient and public involvement
Neither patients nor the public were involved in the design, conduct, reporting, or
dissemination plans of our research.

Patient inclusion criteria
The German Spondyloarthritis Inception Cohort (GESPIC) is an ongoing prospective cohort
initiated to study the course and long-term outcomes of SpA across its whole spectrum of
clinical presentation, including but not limited to gut microbiome composition. In this study
we cross-sectionally analyzed only the baseline data. Serum, stool, and peripheral blood
mononuclear cell (PBMC) samples, demographic information, and clinical characteristics
were collected.
Since September 2015, patients have been recruited in three different arms depending on
their main condition: 1) established radiographic axSpA: patients were required to fulfill the
modified New York criteria and be eligible to start biological disease-modifying anti-rheumatic
drug (bDMARD) therapy, by presenting high disease activity (BASDAI ≥ 4 and/or ASDAS ≥
2.1) despite previous treatment with nonsteroidal anti-inflammatory drugs; 2) Crohn’s
disease19: patients were classified according to the Montreal classification including location
and behavior of CD, and had been recently diagnosed; 3) acute anterior uveitis20: patients
with non-infectious AAU diagnosed by an ophthalmologist. CD and AAU patients were
enrolled regardless of musculoskeletal symptoms and an experienced rheumatologist was
responsible for the final diagnosis of SpA / no SpA for patients included in these cohorts.
All cohorts were approved by the ethical committee (Charité-Universitätsmedizin Berlin,
Berlin, Germany). All patients enrolled were at least 18 years of age and gave their written
informed consent. Patients included in this analysis were naïve to or had not received
treatment with bDMARDs for at least three months before the enrollment in the study, nor
had they received systemic antibiotics for at least one month prior to their baseline stool
sample. There were no other restrictions concerning therapy.
Control individuals were selected from the Optiref study21, which consisted of patients with
chronic back pain who went through a standardized rheumatologic examination where the
diagnosis of SpA was ruled out. Individuals with CD, AAU or psoriasis were excluded from
the control group.

16S rRNA amplicon sequencing
After storage at -80°C, fecal samples were defrosted on ice. Aliquots of fecal material (1ml)
resuspended in RNALater were centrifuged and washed once with water to remove excess
fixative and salt. Then, DNA was isolated using the ZymoBIOMICS DNA Miniprep Kit (Zymo
Research) according to the manufacturer's instructions. Bead Beating was performed four
times for 5 minutes each. Amplification of the V4 region (F515/R806) of the 16S rRNA gene
was performed according to previously described protocols22 across two separate
experiments. Briefly, 25 ng of DNA were used per PCR reaction (30 µl). The PCR
amplification was performed using Q5 polymerase (NEB Biolabs). The PCR conditions
consisted of initial denaturation for 30s at 98°C, followed by 25 cycles (10s at 98°C, 20s at
55°C, and 20s at 72°C). Each sample was amplified in triplicates and subsequently pooled.
After normalization PCR amplicons were sequenced on an Illumina MiSeq platform (PE300).
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Taxonomic profiling and preprocessing
Computational analysis was carried out in R (v4.0.3). Demultiplexed reads were analyzed
using the DADA2 pipeline (v1.25.2) and taxonomic assignment was based on the SILVA
rRNA database (v138.1) at 80% bootstrapped confidence. A total of 2118 unique bacterial
ASVs were identified across 435 samples, annotated at the genus- or family-level. The
DECIPHER package was used for multiple sequence alignment and the phangorn package
was used to build a phylogenetic tree. Samples failing to meet inclusion criteria, lacking
important clinical metadata, or not passing quality control (i.e. library sizes <5000 and >38K
total raw reads) were excluded from further analysis (SFig. 1A), resulting in 339 samples.
Libraries were rarefied to 5000 reads to account for variability in sequencing depth, resulting
in 2066 ASVs present in at least one sample. The phyloseq::tax_glom() function was
implemented in a custom manner that binned ASVs at the lowest taxonomic annotation
available, either genus (70% of ASVs) or family (remaining 30%), and separately according
to phyla (100% of ASVs). After total-sum scaling (TSS) normalization, three datasets: (i)
ASV relative abundances, (ii) genus- or family-level relative abundances, and (iii)
phylum-level relative abundances, which could be further processed (i.e. filtered) as needed.

Alpha and beta diversity analysis and enterotyping
The phyloseq::estimate_richness() function was applied to raw sample counts in order to
calculate the Shannon entropy as a measure of alpha diversity (within-sample variation). To
assess beta diversity (between-sample taxonomic variation), the vegan::vegdist() function
was applied to rarefied ASV profiles (after TSS normalization) to calculate pairwise
Bray-Curtis dissimilarity matrices and the stats::cmdscale() function was used to perform a
principal coordinates ordination analysis (PCoA). The DirichletMultinomial R package was
used to enterotype samples from rarefied counts binned at the genus- or family-level,
according to the procedure from Holmes, Harris, and Quince23.

Differential abundance analysis
ASVs not present in more than 5% of samples or displaying mean relative abundances less
than 1e-05 across all samples were filtered out, resulting in n=442 ASVs and n=123 binned
higher-level taxa (annotated at either genus- or family-level, see Supplementary Table 1)
for univariate statistical testing and confounder analysis. To examine a potential shared
disease signature, all n=277 disease samples (“GESPIC”) were pooled and compared to the
controls in an integrated differential abundance and association testing procedure. Samples
were also grouped according to phenotype and phenotypes with n>40 samples per group
(i.e. SpA-only, CD-only, AAU-only, SpA+AAU) were subjected to this procedure to resolve
phenotype-specific associations. The phyloseq and ggtree packages were used to visualize
the phylogenetic information of ASVs.
Custom linear models were built for all n=565 taxa using the lm function in base R with the
formula relative_abundance ~ disease_status * sequencing_experiment to account for
(un)known technical variation. Model parameters were extracted, tested for significance
using the default Wald method, adjusted for multiple testing (Benjamini-Hochberg
procedure), and bootstrapped to obtain 95% confidence intervals using the
parameters::model_parameters() function. As a robustness check, all taxa were tested for
significant differential abundance using a blocked Wilcoxon permutation test
(coin::wilcox_test() function with the formula relative_abundance ~ disease_status |
sequencing_experiment), and raw P values were adjusted for multiple testing.
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Confounder and mediation analysis
Keeping the same sets of taxa and phenotypic groups described above, non-parametric
effect sizes (Cliff’s delta and the Spearman correlation) were calculated for each possible
pairing of taxonomic and clinical features (see Supplementary Table 2 for a complete list),
then tested for significance independent of a disease signal using blocked Wilcoxon or
Spearman tests from the coin package (formula relative_abundance ~ covariate |
disease_status), and adjusted for multiple testing (Benjamini-Hochberg procedure).
The mdt_simple() function from the JSmediation package was used as described in Yzerbyt
et al.24 to test specific causal mediation hypotheses. This approach used linear regression to
estimate the paths (a, b, c, and c’) along a possible causal pathway involving three variables.
The joint significance of these paths was assessed to determine if mediation was present,
and if so what the direct and indirect contributions within the pathway were. To lower the
burden of multiple testing, only configurations with significantly disease-associated taxa (as
in Fig. 2) and covariates emerging from the above testing were considered.
Further linear models were built with variables tracking current and prior medication intake
(see Supplementary Table 3, detailed therapies in Table 1 were not used) to estimate the
impact of specific drug therapies on taxon abundances. Instead of using the case-control
groupings above, samples were first grouped according to disease phenotype (groups with
<40 samples were not analyzed), such that disease status was not a factor, and the formula
relative_abundance ~ intake_status * sequencing_experiment was used to test specific
disease-drug differential abundance hypotheses (e.g. conventional synthetic (cs)DMARD
use, which was only relevant in CD patients). In the group of all patients examining previous
antibiotic use, the formula relative_abundance ~ disease_status * sequencing_experiment +
intake_status was used; in the control subset examining NSAID use, simple models
(relative_abundance ~ intake_status) were used as no other factors were relevant.
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Results

Clinical presentation of SpA, AAU, and CD cohorts
Demographic and clinical characteristics of our 277 patients (72 CD, 103 AAU, and 102
axSpA patients) and 62 back pain controls are detailed in Table 1. More than half of the AAU
cohort and one fifth of the CD cohort presented with predominantly axial SpA, with just five
cases from the CD and three from the AAU cohorts diagnosed as exclusively peripheral
SpA. A large majority of AAU and axSpA cohort patients carried HLA-B27 while less than
10% of individuals in the CD and control groups did (Table 1 and SFig. 1B). Over 90% of all
patients were naïve to biologic disease-modifying anti-rheumatic drugs (bDMARDs, or
biologics). In terms of disease activity, only patients in the SpA cohort showed clearly high
systemic inflammatory activity, with mean CRP levels of 14.0mg/l and Ankylosing Spondylitis
Disease Activity Score (ASDAS) of 3.5±0.8. Patients in the CD cohort had relatively inactive
disease with a mean Harvey-Bradshaw Index (HBI) of 3.3±3.9, and patients in the AAU
cohort had mean CRP levels of 4.1mg/l, although 45 (43.7%) had an active episode of
anterior uveitis at the time of enrollment.

CD
n = 72

AAU
n =103

axSpA
n = 102

Controls
n = 62 P value

Age in years, mean ± SD 37.4 ± 12.7 42.8 ± 13.1 36.9 ± 10.6 38.4 ± 10.4 0.003§

Male sex, n (%) 34 (47.2) 48 (46.6) 65 (63.7) 26 (41.9) 0.015
HLA-B27 positive, n (%) 6 (8.3) 81 (78.6) 89 (87.3) 5 (8.1) <0.001
BMI in kg/m2, mean ± SD 24.4 ± 4.6 24.7 ± 5.7 25.1 ± 4.2 25.9 ± 5.0 0.153§

Smoking status: current smoker, n (%) 24 (33.3) 22 (21.4) 38 (37.3) 11 (17.7) 0.02
Alcohol intake, g/day, mean ± SD 3.6 ± 6.3 2.1 ± 3.6 2.1 ± 4.2 - 0.14#

SpA, n (%) 12 (16.7) 55 (53.4) 102 (100) 0 <0.001
Uveitis ever, n (%) 11 (15.3) 103 (100) 22 (21.6) 0 <0.001
Psoriasis ever, n (%) 4 (5.6) 10 (9.7) 17 (16.7) 0 0.002
Crohn’s disease ever, n (%) 72 (100) 1 (1.0) 7 (6.9) 0 <0.001
CRP mg/l, mean ± SD 11.0 ± 26.9 4.1 ± 7.3 14.0 ± 18.7 1.2 ± 1.8 <0.001§

Current NSAID treatment, n (%) 18 (25.0) 36 (35.0) 98 (96.1) 39 (62.9) <0.001
Current PPI treatment, n (%) 6 (8.3) - 40 (39.2) - -
Current systemic corticosteroid
treatment, n (%) 26 (36.1) 17 (16.5) 5 (4.9) 0 <0.001#

Current csDMARD treatment, n (%) 33 (45.8) 6 (5.8) 3 (2.9) - <0.001#

Sulfasalazine, n (%) 1 (1.4) 1 (1.0) 2 (2.0) - <0.001#

Methotrexate, n (%) 0 5 (4.9) 1 (1.0) - <0.001#

Mesalazine, n (%) 10 (13.9) 0 0 - <0.001#

Azathioprine, n (%) 21 (29.2) 0 0 - <0.001#

Naive to csDMARD treatment, n (%) 23 (31.9) 90 (88.2) 98 (95.1) - <0.001#

Current bDMARD treatment, n (%) 0 0 0 - -
Naive to bDMARD treatment, n (%) 70 (97.2) 95 (92.2) 81 (79.4) - <0.001#

Table 1: Clinical baseline characteristics for each cohort (CD, axSpA and AAU) and controls. Calculated P values
represent chi-square or Kruskal-Wallis (denoted with §) tests between all n=4 groups or disease cohorts only
(denoted with #). AAU, anterior acute uveitis; (ax)SpA, (axial) spondyloarthritis; CD, Crohn’s disease; HLA-B27,
human leukocyte antigen B27; BMI, body mass index; CRP, C-reactive protein; DMARD, disease-modifying
antirheumatic drug; bDMARD, biological DMARD; csDMARD, conventional/synthetic DMARD; NSAID,
non-steroidal anti-inflammatory drug; PPI, proton pump inhibitor; SD, standard deviation.

High-level variation and taxonomic diversity of gut microbiota
We performed 16S rRNA sequencing and taxonomically profiled a total of 339 stool samples
(277 patients and 62 disease-negative back pain controls). At the phylum level our disease
cohorts were dominated by Firmicutes, followed by Bacteroidota, Actinobacteriota and
Proteobacteria (SFig. 2A, 2B). At the genus level, we observed substantially more variation
between individuals in all cohorts, with Bacteroides, Prevotella, and Faecalibacterium
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comprising the dominant genera in each cohort (SFig. 2A, 2C). Notably, back pain controls
and patients from the axSpA and AAU cohorts had more Prevotella-dominant individuals on
average than did the CD cohort, which had the highest proportion of Bacteroides-dominant
individuals (SFig. 2B, 2C). Patients with CD phenotypes had the lowest alpha diversities
(Fig. 1A, 1C), but beta diversity did not appear to correlate with disease phenotype (Fig. 1B)
or technical variation due to the sequencing experiment (Fig. 1D).

Figure 1: CD phenotypes display lowest alpha diversity and beta diversity is correlated with the ratio of
Prevotella:Bacteroides. The Shannon entropy was selected to capture the alpha diversity and pairwise
Bray-Curtis dissimilarities were used for a principal coordinates ordination analysis (PCoA) to evaluate beta
diversity (see Methods). A) Alpha diversity grouped by primary cohort. B) Beta diversity, samples colored
according to phenotype. C) Alpha diversity grouped by phenotype. D) Beta diversity, samples colored according
to sequencing experiment with the spatial means of each group depicted (squares). E) Alpha diversity grouped
by phenotype and enterotype (see Methods and SFig. 2). F) Beta diversity, samples colored according to the
Prevotella-to-Bacteroides ratio25 which correlated with the first projected ordination axis (Pearson’s r = -0.8,
P<0.001), accounting for up to 10% of between-sample variation and indicating an inverse relationship between
these taxa. AAU, acute anterior uveitis; CD, Crohn’s disease; (ax)SpA, (axial) spondyloarthritis.

Taxonomic associations with immune-mediated inflammatory disease states
To uncover taxa potentially mediating the concomitance of SpA, CD, and AAU, we
performed a differential abundance analysis with disease-negative controls. We observed
significantly lower mean relative abundances of several Firmicutes in the disease group as a
whole, mainly from ASVs belonging to the Lachnospiraceae family (Fig. 2A). Of these,
Fusicatenibacter [ASV12], Anaerostipes [ASV21], and Blautia [ASV30] were among the most
prevalent. One ASV from the Christensenellaceae family (a health-associated26 taxon with
known heritability27) displayed the strongest overall depletion in the GESPIC group relative to
the control group; when all seven ASVs in our data belonging to this family were binned, the
magnitude of the depletion increased (Fig. 2B). Similar behavior was observed for
Fusicatenibacter, Marvinbryantia, and Erysipelotrichaceae ASVs, but not for Bacteroides,
Blautia, or Lachnospiraceae ASVs, which were, in contrast, not significantly differentially
abundant at higher taxonomic levels. GESPIC patients also had significantly higher
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abundances of Collinsella and Flavonifractor, both of which tracked closely with single ASVs
and were ultimately found to be driven by the SpA and CD phenotypes, respectively (Fig.
2C).

Figure 2: Immune-mediated disease phenotypes share a depletion of Lachnospiraceae taxa and an
SpA-driven enrichment in Collinsella. Disease groups consisted of patients without concomitant disease
unless explicitly stated (e.g. SpA+AAU); GESPIC refers to the group of all n=277 patients. Linear models were
built for ASVs (n=442) and their genus- or family-level taxonomic bins (n=123), containing an interaction term to
account for technical variation (see Methods). A) Phylogenetic relationships, regression coefficients, and
prevalence of ASVs significantly associated with one or more disease states. Bolded taxa had an adjusted
q<0.05 and an absolute coefficient estimate >0.001 (corresponding to a mean differential abundance between
disease and control groups of .1%). The x-axis broadly represents evolutionary distance based on the 16S V4
amplicons. B) Regression coefficients for the bolded taxa in A, plus any bins which were significantly differentially
abundant, colored by genus or family with 95% bootstrapped confidence intervals shown. Bolded taxa were
significant using a blocked Wilcoxon test at a q<0.05 cutoff. C) Venn diagram containing the bolded taxa from B,
summarizing the most robust associations. ASV, amplicon sequence variant; GESPIC, German Spondyloarthritis
Inception Cohort; CD, Crohn’s disease; SpA, spondyloarthritis; AAU, acute anterior uveitis.

In addition to Collinsella, the SpA group was enriched in several Lachnospiraceae ASVs,
Subdoligranulum [ASV505], and Holdemanella [ASV121] (Fig. 2A), few of which were
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significant when binned (Fig. 2B). Similarly, the CD group was strongly enriched in a
Ruminococcus ASV and strongly depleted in a Blautia ASV (Fig. 2A), neither of which were
significant at their respective genus levels (Fig. 2B). In contrast, Phascolarctobacterium and
Lachnoclostridium reached significance when binned, but not at the ASV level (in the SpA
and CD groups, respectively). There were no ASVs or higher-level taxa significantly
associated with the AAU phenotype and only two weakly enriched Lachnospiraceae ASVs in
the SpA+AAU phenotype; however, adjusted mean differential abundances for these groups
mostly followed the pattern of the other case-control comparisons (Fig. 2A). Taken together,
our findings broadly reflect the known taxonomic diversity of the Lachnospiraceae family28,29

at the clinical level, and reveal shared and disease-specific taxonomic signatures ranging
from ASV to family resolution.

Impact of drug therapies in GESPIC patient microbiota
To clarify the disease-associated microbiota signals, we examined a wide range of
clinically-relevant factors. We found no significant associations between any taxa and age,
sex, or BMI, indicating our disease signals were unlikely to be confounded or mediated by
demographic factors. Medication intake has been found to explain more variation in
microbiome composition than disease status alone16,17 and is therefore an important factor to
consider in association studies. In contrast to much of the literature30–33, no individuals in our
study were taking bDMARDs at the time of sampling and a vast majority were naive to any
biologic therapies, allowing us a better approximation of a true baseline disease signal.
However, 70% (including back pain controls) were taking at least one glucocorticoid,
csDMARD, or NSAID, and 22% were taking two concurrently (Supplementary Table 3).
As >95% of our SpA patients were taking NSAIDs, we could not examine the disease signal
independent of this effect; however, 60% of our control group was taking NSAID
monotherapy, which was associated with 1-2% more Fusicatenibacter [ASV12] and
Subdoligranulum [ASV16] on average (Fig. 3A). Interestingly, these two genera specifically
were found to predict good response to csDMARDs in rheumatoid arthritis patients34. 38% of
our SpA-only patients were additionally receiving proton pump inhibitors, which was
associated with an increase in Phascolarctobacterium (Fig. 3B), likely confounding that
signal (Fig. 2B). No other disease-associated taxa appeared to be sensitive to the drugs we
were able to test.
Nearly half our CD-only patients were on a form of csDMARD therapy at the time of
sampling, which was associated with significantly less Prevotellaceae (Fig. 3B). When
comparing csDMARD-naive CD patients to those that were currently or had previously
received treatment, we found that treated individuals had increased Phascolarctobacterium
and Akkermansia (Fig. 3B). Although species-level identification from amplicon data is a
contentious practice we avoided here, it is worth noting that these individuals also had about
1% more of a Ruminococcus taxon [ASV17] identified as R. gnavus28,35, enriched in our CD
patients and elsewhere (using metagenomic data) in treatment-resistant UC patients36, as
well as SpA patients with concomitant CD33.
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Figure 3: Fusicatenibacter is enriched in NSAID monotherapy, and Akkermansia is enriched in CD
patients previously treated with csDMARDs. A) Linear regression coefficients for disease-associated taxa
(Fig. 2B), estimating the differential abundance between medicated and unmedicated patients, either while
adjusting for disease status and/or technical variation (two leftmost columns, see Methods), or resulting from a
comparison within a specific subset of patients (specified underneath). Bolded taxa were most robustly
associated with CD, SpA, or the shared signal (Fig. 2C). We had information tracking previous antibiotic use (>1
month and <3 months before sampling) for all individuals in our study. B) Regression coefficients from the same
analyses in A, for any taxa with an absolute coefficient estimate >0.01 (corresponding to a mean difference
between medicated and unmedicated groups of 1%), colored by genus or family with 95% bootstrapped
confidence intervals shown. C) Alpha diversity among all n=262 patients for which information on current intake
for all three drug therapies was available. ATB, antibiotic.

Mediation of inflammation and disease activity by HLA-B27 and microbiota
Other clinically-relevant covariates included the presence or absence of the HLA-B27
antigen on immune cells, systemic inflammation (as measured by C-reactive protein, CRP),
and disease activity scores (Fig. 4A). Fusicatenibacter was the taxa most strongly
(negatively) correlated with CRP (Fig. 4B), and we estimated about 19% of the increase in
CRP observed in our GESPIC group to be mediated by [the relative lack of] this taxon (Fig.
4C). Several Subdoligranulum, Roseburia, Lachnospira, and Faecalibacterium ASVs as well
as the total (binned) Faecalibacterium abundance were significantly higher in HLA-B27+
individuals, whereas Escherichia-Shigella and Blautia [ASV83] abundances were
significantly lower in those individuals (Fig. 4D).
Since our disease phenotypes were significantly different in their CRP levels and expression
of HLA-B27 (Fig. 4A), we hypothesized that some of our shared disease-associated taxa or
HLA- and inflammation-associated taxa might serve as mediators. Regardless of group,
none of the taxa we considered (nor summary features such as taxonomic richness and
alpha diversity) were found to mediate the increase in CRP observed in HLA-B27+
individuals in our study (Fig. 4E). However, in the group of SpA-only patients and back pain
controls (who had higher BASDAI scores on average than patients from the CD or AAU
cohorts but few HLA-B27+ individuals), we found that Faecalibacterium [ASV4] mediated
about 20% of the (modestly) significantly increased disease activity in HLA-B27+ individuals
(Fig. 4F).
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Figure 4: Decreased Fusicatenibacter partially mediates increased CRP in patients with SpA or CD, and
increased Faecalibacterium partially mediates higher disease activity in HLA-B27+ SpA patients. A)
Summary of Table 1 highlighting clinical factors differentiating our phenotypes. B) Non-parametric effect sizes
and significance tests showing serum CRP correlations independent of disease status for all n=585 taxa across
all n=339 individuals in our study. C) Mediation analysis where c represents the total effect of disease presence
on serum CRP, and the sum of both direct (c’) and indirect (axb) paths, with the effect and significance of each
component (a, b, c, c’) illustrated (see Methods). When accounting for (decreased) Fusicatenibacter
abundances, serum CRP estimates were (significantly) further increased, from 6.7 mg/L to 8.28 mg/L in the
GESPIC group compared to controls. *q<0.1, **q<0.01, ***q<0.001. D) Similar to B, with HLA-B27. E) HLA-B27+
individuals (mostly SpA and AAU) had increased inflammation and disease activity. F) Mediation analysis where
c represents the total effect of HLA-B27 expression status on BASDAI scores and c’ the indirect effect accounting
for the enriched Faecalibacterium [ASV4] observed in HLA-B27+. BASDAI, Bath Ankylosing Spondylitis Activity
Index.

Pilot study of serum metabolites in immune-mediated pathologies
Lachnospiraceae taxa are among the main short-chain fatty acid (SCFA) producers in the
gut28,29, and dysbiosis also appears to be tightly correlated with the local balance between
Tregs and pro-inflammatory Th17 cells37, which respond to microbially-produced tryptophan
metabolites38. We performed a small, targeted pilot study to quantify these metabolites in the
serum (see Supplementary Methods), and observed higher circulating levels of SCFA in
GESPIC patients relative to controls, although not statistically significant (Fig. 5A). This was
surprising but consistent with work that correlated increased circulating SCFAs with gut
permeability and dysbiosis in diabetics39. No metabolites correlated with disease-associated
taxa, likely due to low statistical power. The kynurenine-to-tryptophan ratio (KYN/TRP,
proposed as a metric of immune activation40) was positively correlated with CRP in disease
groups (Fig. 5B), in line with a previous study which found anti-TNFα therapy in SpA to be
effective at reducing both clinical markers41. Serum serotonin concentration, found
elsewhere42 to stratify CD patients into disease activity categories better than both CRP and
KYN/TRP, was also strongly negatively correlated with BASDAI scores in individuals with
SpA (Fig. 5C).
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Figure 5: Serum serotonin and the kynurenine-to-tryptophan ratio correlate with disease activity scores
and systemic inflammation. A) Concentrations of circulating short-chain fatty acids (SCFAs, in μM/L), which
were not significantly associated with any disease but appeared higher in disease patients (if available, median of
the control group is shown as a dotted line). Some metabolites were below the limit of detection (<LOD),
especially propionate, and thus not used for statistical analysis (see Supplementary Methods). Marginal density
histograms include only valid measurements. B) Spearman correlations between systemic inflammation (CRP, in
mg/L) and the kynurenine-to-tryptophan ratio (KYN/TRP), which were positive in disease cohorts, but not the
control group (rho = -0.06). CRP values >5 mg/L (dotted line) implicate active disease. Both axes are square-root
transformed to aid visualization. C) Spearman correlations between BASDAI scores and serum serotonin
concentrations (in ng/ml). Overall Spearman correlation coefficients and P-values shown in B and C, blocked for
groups shown in the respective legends. KYN, kynurenine; TRP, tryptophan.

Discussion

CD, AAU and SpA share an established epidemiology, yet the pathophysiology underlying
their concomitance remains unclear. We analyzed a large human cohort comprising all three
diseases, and deeply explored the taxonomic composition of the gut microbiota with clinical
covariates and disease concomitance for the first time. Our results showed a shared
depletion of predominately Lachnospiraceae taxa, most notably Fusicatenibacter, which
partially mediated increased CRP, and was most abundant in controls receiving NSAID
monotherapy. SpA individuals had a robust enrichment of Collinsella relative to chronic back
pain controls, and HLA-B27+ individuals (regardless of disease phenotype) displayed
enriched Faecalibacterium.
It has been hypothesized elsewhere that HLA-B27 plays a causal role in SpA pathology43,
and that it shapes the gut microbiota composition4. Our causal mediation analysis revealed
that the increased Faecalibacterium [ASV4] we observed in HLA-B27+ patients partially
mediated the increased BASDAI in those same patients. This intriguing result implies that
this bacterium contributes to discomfort, pain, and fatigue perceived in SpA patients. This
seems to contradict its known anti-inflammatory role in inflammatory bowel diseases44, yet
aligns with similar HLA-B27 +/- microbiota comparisons in the SpA literature45 and our
finding that abundances of this taxon were positively correlated with BASDAI scores
(Spearman’s rho = 0.22, q = .009).
Although we did not observe a strong microbiota signal in our AAU-only patients, our results
suggest that AAU patients with concomitant SpA (92% HLA-B27+) are more similar to
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SpA-only patients than disease-negative controls (Fig. 2). Association studies seeking to link
the HLA-B27+ microbiota to an existing clinical understanding of these diseases20,46 should
prioritize inclusion of non-SpA HLA-B27+ groups for more precise, powered comparisons –
both from other diseases (i.e. AAU as we did here), and from disease-negative and
genetically similar individuals, as in Berland et al.33. Our control group mirrored the European
population and was mostly HLA-B27-, but had chronic back pain. Since half were receiving
NSAID monotherapy, we were able to estimate the impact of this treatment on individual
taxa and further strengthen our hypothesis that Fusicatenibacter is a key microbe mediating
host gut-joint inflammation. This genus has only one known species, F. saccharivorans
(identified as such in our data as ASV12), which alleviated colitis in a murine model and
induced anti-inflammatory IL-10 production in lamina propria cells from UC patients47. Blautia
emerged from our analyses as another genus likely to play a role in immune-mediated
inflammatory pathologies48,49, although one that should perhaps be characterized with more
genomic resolution than we had access to here28.
Restriction to amplicon sequencing data was a major limitation of our study, precluding
further characterization important for understanding potential disease pathomechanisms.
Yet, the ASVs analyzed here represent de novo sequences which more accurately capture
taxonomic diversity and are more reproducible than OTU-based approaches50. Furthermore,
the functional microbiota is intrinsically coupled to a set of discrete bacterial units (taxa) in an
ecological context51,52, and while some functional differences indeed correlate with
strain-level organisms or even nucleotides (as in probiotic therapies53 and bacterial SNPs54,
respectively), higher-level bacterial taxonomies are still clinically useful to stratify disease
patients and generate testable hypotheses in experimental or animal disease models.
For example, our SpA patients exhibited higher abundances of Collinsella (in line with
previous results55,56), a genus which has elsewhere been shown to reduce the expression of
enterocyte tight junction proteins in vitro (potentially contributing to gut leakage in vivo), as
well as increase the production of pro-inflammatory IL-17A and transcription factor NFkB146.
This is relevant in SpA, where an excessive activation of IL-17A drives an expansion of Th17
cells, which further perpetuates IL-17A production57 (and thereby contributes to chronic
inflammation). Similarly, colitis is associated with hyperproduction of Th17 cells, partly
resulting from dysregulated NFκ-B activation responsible for inflammatory T cell
differentiation58. Previous CD-focused work isolated a 15kDA microbial anti-inflammatory
molecule from F. prausnitzii able to inhibit NFκ-B signaling in vitro and alleviate colitis in
mice59; however, Faecalibacterium [ASV4] was not identified as this species in our data
(although others in Fig. 4D were). Like Blautia, Faecalibacterium taxa appear to require at
least metagenomic resolution to unravel their clinically-relevant properties60.
Here we presented the baseline cross-section of a prospective cohort examining SpA, CD,
and AAU. Taken together, our results suggest there is much more to be uncovered about the
immunomodulatory properties of certain bacteria in these epidemiologically-related
pathologies, especially at the molecular level, in order to eventually leverage the diagnostic
and therapeutic potential of the microbiome. Experimental work is needed to validate our
findings, and future studies would benefit from whole (meta-)genome sequencing and fecal
metabolite quantification (perhaps in parallel with serum), to better disentangle potential host
and microbial contributions to inflammatory disease states61. More end-to-end collaboration
between clinicians, experimentalists, and statisticians is needed to design studies which
integrate molecular -omics approaches to understanding disease mechanisms62–64 with
established diagnostic and treatment criteria, and biomarkers like fecal calprotectin and
serum zonulin65,66.
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Data Availability

Processed data tables mentioned in the supplemental file are hosted at
https://github.com/sxmorgan/gespic-public. All software and R package versions are denoted
in the renv.lock file also available in the repository.
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