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Abstract  

Anosmia is common in COVID-19 patients, lasting for weeks or months following recovery. The 

biological mechanism underlying olfactory deficiency in COVID-19 does not involve direct damage to 

nasal olfactory neurons, which do not express the proteins required for SARS-CoV-2 infection. A recent 

study suggested that anosmia results from downregulation of olfactory receptors. We hypothesized that 

anosmia in COVID-19 may also reflect SARS-CoV-2 infection-driven elevated expression of regulator of 

G protein signaling 2 (RGS2), a key regulator odorant receptor, thereby silencing their signaling.  

To test our hypothesis, we analyzed gene expression of nasopharyngeal swabs from SARS-CoV-2 

positive patients and non-infected controls (two published RNA-sequencing datasets, 580 individuals). 

Our analysis found upregulated RGS2 expression in SARS-CoV-2 positive patients (FC=14.5, 

Padj=1.69e-05 and FC=2.4; Padj=0.001, per dataset). Additionally, RGS2 expression was strongly 

correlated with PTGS2, IL1B, CXCL8, NAMPT and other inflammation markers with substantial 

upregulation in early infection. These observations suggest that upregulated expression of RGS2 may 

underlie anosmia in COVID-19 patients. As a regulator of numerous G-protein coupled receptors, RGS2 

may drive further neurological symptoms of COVID-19. Studies are required for clarifying the cellular 

mechanisms by which SARS-CoV-2 infection drives the upregulation of RGS2 and other genes 

implicated in inflammation.  Insights on these pathways may assist in understanding anosmia and 

additional neurological symptoms reported in COVID-19 patients. 

 

Keywords; Anosmia, COVID-19, SARS-CoV-2, RGS2, NAMPT, PTGS2, CXCL8, RNA-sequencing, 

nasopharyngeal epithelial cells. 
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Introduction 

Deficiency or complete loss of smell (anosmia) is common in COVID-19, affecting a substantial number 

of patients and sometimes lasting for weeks or months following recovery (1,2). Anosmia in COVID-19 

patients was suggested as predictor for post-COVID-19 fatigue syndrome (“long COVID”; 3) and 

observed as a comorbidity with persistent post-COVID inflammation (4). The biological pathways 

underlying olfactory deficiency in COVID-19 remain unclear. Albeit SARS-CoV-2 may enter the brain 

(5,6), it does not seem to be capable of infecting olfactory neurons (7). It was recently shown that SARS-

CoV-2 infection causes downregulation of olfactory receptors in olfactory neurons, which may explain 

COVID-19 related anosmia (8). We hypothesize that the olfactory dysfunction in COVID-19 may 

additionally reflect an infection-driven upregulation of RGS2 (regulator of G protein signaling 2), a key 

regulator of nasal cavity G protein-coupled odorant receptors, whose signaling is diminished by the RGS2 

protein (9). RGS2 is known to be co-expressed with odorant receptors, and injection of RGS2 antibody 

into olfactory neurons was shown to enhance calcium currents in olfactory neurons stimulated with 

odorants (10). Here, we present findings from analysis of RNA-sequencing data from nasopharyngeal 

samples, which show higher RGS2 mRNA levels in COVID-19 patients. While the biological pathways 

upregulating RGS2 mRNA in SARS-CoV-2 positive nasal tissues remain to be established, we present 

evidence that this is a consequence of the acute inflammation caused early in the span of infection. We 

present additional evidence for a correlation for higher RGS2 expression in populations with increased 

risk of COVID-19-induced anosmia. 
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Methods 

We analyzed RNA-sequencing data from two NCBI Gene Expression Omnibus (GEO) database: 

GSE163151 (11) and GSE152075 (12) to comparing the expression of RGS2 in SARS-CoV-2 positive 

and negative nasopharyngeal epithelial cells. For this analysis we applied a generalized linear model 

under the standard DESeq2 method (13). Significant findings were reported for Padj<0.05. Additionally, 

Spearman correlation was calculated between genes for identifying genes with significant correlations 

with RGS2 expression levels. Enrichment analysis was performed using Gene Ontology enRIchment 

anaLysis and visuaLizAtion tool (Gorilla) (14). Figures were plotted using GraphPad Prism version 9.3.1 

for Windows, GraphPad Software, La Jolla, CA, USA. 

 

Results 

We observed a 14.5-fold increase of RGS2 mRNA expression in nasopharyngeal swabs of COVID-19 

patients, compared with controls in both datasets (FDR=1.7e-05; Figure 1A and FC=2.4; Padj=0.001693; 

Figure 1B). The expression of RGS2 correlated with multiple, genes many of which were associated with 

the immune signaling and inflammation observed in COVID-19. CXCL8 (C-X-C motif chemokine ligand 

8), which codes for interleukin-8, had the strongest correlation with RGS2 (R=0.91, P<3e-16 and R=0.83, 

P<3-16; Figure 2), followed by PTGS2 (R=0.89, P<2.2e-16; R=0.8; P<2.2e-16; Figure 3),  NAMPT 

(R=0.85, P<2.2e-16; R=0.79; P<2.2e-16; Figure 4) and ILB1 (R=0.79, P<2.2e-16; R=0.71; P<2.2e-16; 

Figure 5) 

The set of genes most correlated with RGS2 expression (P<2e-16; Table 1) was significantly enriched for 

cellular response to interleukin-8, neutrophil aggregation and G protein-coupled receptor activity. 
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Discussion 

We detected significant upregulation of RGS2 mRNA expression in SARS-CoV-2 positive 

nasopharyngeal swabs, confirmed by two independent NCBI GEO datasets (Figure 1).  RGS2 (regulator 

of G protein signaling 2) is recognized as the key regulator odorant receptor signaling (9).  Moreover, 

RGS2 is co-expressed with nasal odorant receptors, and odorant receptor-mediated calcium currents were 

enhanced by injection of RGS2 antibody into olfactory neurons (10). Our findings therefore suggest that 

the elevated RGS2 expression in SARS-CoV-2 positive nasopharyngeal cells is implicated in the common 

anosmia or reduced olfaction observed in many COVID-19 patients.  

Anosmia is notable for being among the earliest symptoms to arise following SARS-CoV-2 infection (1-

3, 15). RGS2 expression is upregulated already during the first hours following SARS-CoV-2 infection, 

along with other early response genes, such as PTGS2 (8,16). 

COVID-19 associated anosmia is significantly more prevalent in young females (17), which are the 

demographic group with the highest RGS2 blood expression (18) . Anosmia is most common among 

milder COVID-19 cases, which are also characterized as having  higher levels of blood RGS2 expression 

compared to more severe patients (17,18 ) . 

We hypothesize that COVID-19 associated anosmia is caused by the strong, acute nasal inflammation 

elicited by interferon in mild COVID-19 cases (19). We suggest that RGS2 upregulation is caused by 

inflammation of olfactory neurons, triggered via glial activation and IL-1-beta signaling, as previously 

observed in mouse models of intranasal lipopolysaccharide mediated inflammation (20). 

A recent study of SARS-CoV-2 infection in model animals suggested that anosmia results from 

disruption of nuclear architecture (8). This study further corroborates the indirect inflammation 

hypothesis, detecting significant nasal IL-1-beta and RGS2 upregulation in the first hours of infection (8).  

 

Another potential clue for the mechanism underlying COVID-19 associated anosmia could be derived 

from the recent emergence of the SARS-CoV-2 Omicron variant, which was accompanied by a drastic 
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reduction of anosmia cases among British COVID-19 patients from 52.7% during the Delta wave to 

16.7% during the Omicron wave (21). Consistent with our hypothesis, we postulate that the reduced 

immunogenicity of the Omicron variant leads to a significantly milder initial immune response (22) and 

in turn, milder induction of RGS2 expression and thus reduced risk of anosmia. The relation between 

early viral load and anosmia was previously observed (23,24). 

As a regulator of several G-protein coupled receptors, the elevated expression of RGS2 may drive further 

neurological symptoms observed in COVID-19 patients, sometimes lingering beyond negative SARS-

CoV-2 PCR test findings (25). The highly correlated expression of RGS2 with CXCL8, PTGS2, NAMPT, 

ILB1 and further inflammatory genes in COVID-19 positive nasopharyngeal swabs (Figures 1-5, Table 

1) suggests the involvement of a common regulator, which might explain the distinct classes of COVID-

19 symptoms. Changes in the expression of circulating or exosomal microRNAs in COVID-19 is one 

factor that might explain at least some of the observed gene expression alterations (26, 27). Further 

studies of COVID-19 animal models are required for clarifying the cellular mechanisms by which SARS-

CoV-2 infection drives this differential expression. Insights into the pathways driving anosmia in 

COVID-19 may improve our understanding of additional neurological indications reported in these 

patients (28).  
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Table 1. List of genes with expression levels correlations with RGS2 in nasopharyngeal swabs from 

SARS-CoV-2 positive and negative individuals. Genes in GSE163151 and GSE152075 found with 

mRNA expression correlated with RGS2 expression (with R>0.75 in at least of these GSE files) are listed 

by decreasing R values for GSE152075. All correlations had p<2.2e-16. See Methods for further 

information. 

 

Gene GSE163151 GSE152075 

CXCL8 0.9066 0.83 

PTGS2 0.8875 0.8043 

AQP9 0.8853 0.7913 

NAMPT 0.8467 0.79 

MXD1 0.7933 0.7795 

SRGN 0.855 0.7619 

NCF2 0.7731 0.7402 

BTG2 0.8292 0.7357 

MNDA 0.8557 0.7314 

RNF149 0.7677 0.7213 

ILB1 0.7938 0.714 
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Figure legends 

Figure 1 

Expression levels of RGS2 mRNA from RNA-sequencing of nasopharyngeal swabs of SARS-CoV-2 

positive patients and negative controls. (A) Dataset GSE163151: higher expression of RGS2 (FC= 14.5, 

padj=1.69e-5) in SARS-CoV-2 positive patients (138 samples) vs. negative controls (11 samples). (B) 

Dataset GSE152075: higher expression of RGS2 (FC= 2.4, padj=0.0017) in SARS-CoV-2 positive 

patients (377 samples) vs. negative controls (54 samples). Samples with over 3000 RGS2 counts (five and 

nine SARS-CoV-2 positive patients, respectively) are not shown due to scale limitations, but are included 

in the statistics. 

 

Figure 2 

Correlation between expression levels of RGS2 and CXCL8 from RNA-sequencing of 

nasopharyngeal swabs. Spearman correlations are shown for (A) Dataset GSE163151; (B) Dataset 

GSE152075.  

 

Figure 3 

Correlation between expression levels of RGS2 and PTGS2 from RNA-sequencing of 

nasopharyngeal swabs. Spearman correlations are shown for (A) Dataset GSE163151; (B) Dataset 

GSE152075.  

 

Figure 4 

Correlation between expression levels of RGS2 and NAMPT from RNA-sequencing of 

nasopharyngeal swabs. Spearman correlations are shown for (A) Dataset GSE163151; (B) Dataset 

GSE152075.  

 

Figure 5 

Correlation between expression levels of RGS2 and ILB1 from RNA-sequencing of nasopharyngeal 

swabs. Spearman correlations are shown for (A) Dataset GSE163151; (B) Dataset GSE152075.  
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