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Large-scale genome-wide association studies
(GWAS) have identified multiple disease-associated
genetic variations across different psychiatric dis-
orders raising the question of how these genetic
variants relate to the corresponding pharmacological
treatments. Here we investigated whether functional
information from a range of open bioinformatics
datasets can elucidate the relationship between
GWAS-identified genetic variation and the genes
targeted by current drugs for psychiatric disor-
ders. We introduce a novel measure of weighted
similarity between gene targets for pharmacological
treatments and GWAS risk variants for psychiatric
disorders according to SNP position, gene distance
on the protein interaction network (PPI), brain
eQTL, and gene expression pattern across the brain.
Focusing on four psychiatric disorders—ADHD,
bipolar disorder, schizophrenia, and major de-
pressive disorder—we assess relationships between
the gene targets of drug treatments and GWAS
hits across these weighted similarity metrics. Our
results indicate that while incorporating information
derived from functional bioinformatics data, such
as the PPI network and spatial gene expression,
revealed links for bipolar disorder, the overall
correspondence between treatment targets and
GWAS-implicated genes in psychiatric disorders
rarely exceeds null expectations. This relatively low
degree of correspondence across modalities suggests
that the genetic mechanisms driving the risk for
psychiatric disorders may be distinct from the
pathophysiological mechanisms used for targeting
symptom manifestations through pharmacological
treatments and that novel approaches for under-
standing and treating psychiatric disorders may be
required.
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Introduction
Advances in genotyping technologies and statistical
bioinformatics over the last decade have led to the rapid
growth of genome wide association studies (GWASs)
across a broad range of complex diseases (1, 2). Like
most complex traits, psychiatric disorders are influenced
by a large number of genetic variants, each contribut-
ing only a small fraction of the overall genetic liability

(3, 4). Large international collaborative efforts increased
the sample sizes of GWASs to boost power for identifying
robust associations, yielding multiple disease-associated
genetic variations related to biologically relevant genes
involved in neuronal development, neurotransmission,
and plasticity (5–12).
One of the original core goals of GWAS was to inform
the development of pharmacological treatments (13), un-
der the assumption that if select genes are important
in driving risk for a disorder, treatments that influ-
ence the function of these genes should mitigate risk
and/or alleviate symptom expression. Current drugs for
psychiatric disorders, however, were developed indepen-
dently from these genomic findings, and it remains un-
clear whether the mechanisms of action in alleviating
their symptoms relate to the genetic variation identified
through GWAS. Despite advances in uncovering the ge-
netic architecture of psychiatric disorders, the direct ap-
plication of GWAS findings in developing novel pharma-
cological treatments remains challenging (14–17). More-
over, some psychiatric disorders—such as autism spec-
trum disorder, attention deficit hyperactivity disorder
(ADHD), and schizophrenia (18)—are regarded as neu-
rodevelopmental conditions. In these cases, risk genes
may influence brain development in ways that create
a vulnerability to illness, but these processes may be
temporally separated, and distinct from the pathophys-
iological mechanisms that influence symptom onset and
severity, and which may be more proximal and effective
treatment targets. Thus, if GWAS findings implicate
pathways that are targeted by existing pharmacological
treatments, we can conclude that genetic mechanisms
of disease risk are closely related to the mechanisms
underlying their symptomatology. On the other hand,
a lack of correspondence between GWAS findings and
drug targets could imply either a mismatch between ge-
netic risk mechanisms and required interventions, or the
fact that the relationship between genetic liability and
disease pathophysiology is more complex and involves
additional biological mechanisms.
Understanding the alignment between GWAS findings
and treatments is of critical importance in psychiatry,
given that the design of current drugs is mainly based
on neurochemical hypotheses developed in the mid-20th
century, which lack supporting evidence from genetic
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studies (19). In fact, whereas most pharmacological
treatments in psychiatry work by modulating neuro-
transmission (20–22), GWAS studies of psychiatric dis-
orders generally implicate genes involved in develop-
ment, synaptic regulation, and plasticity (5, 7, 9). This
apparent discrepancy has been proposed as a potential
explanation for the relatively low efficacy of current psy-
chiatric treatments (22–27), suggesting that the genetic
mechanisms leading to the vulnerability to the disor-
der might differ from the pathophysiological mechanisms
that influence symptom onset and severity.
Converging evidence across complex disorders supports
the overall relevance of genetic data in understanding
and developing pharmacological treatments. For in-
stance, drugs with genetic support move further along
the development pipeline and are more likely to be clin-
ically successful albeit the absolute size of the effect
is relatively small (28, 29). Moreover, genes that are
less tolerant to mutations are more likely to be drug
targets (28). GWAS-identified genes are also enriched
in gene targets for drugs (30) and demonstrate en-
richment for relevant treatment-related gene categories
such as antipsychotics relating to schizophrenia genes
(31, 32) and antidepressants, anxiolytics, and antipsy-
chotics linked to major depression genes (33). How-
ever, only a very small fraction of current drug targets
for complex disorders can be identified through GWAS
studies (16, 17, 28, 34–36), indicating that the exact
correspondence between GWAS findings and pharmaco-
logical treatments is limited. For instance, Finan et al.
(17) demonstrated that unique GWAS associations map
to treatment target genes based on SNP position, but
the vast majority of those associations were discordant,
meaning that treatment indication and genetic associa-
tions did not match. Even a relatively liberal approach
based on pathway analysis indicated that GWAS genes
for only 97 out of 182 diseases were enriched in pathways
with at least one drug target (37). Most strikingly, only
29 of these 97 diseases (30%) were enriched for drug tar-
gets for the same disorder and none of those associations
were identified based on GWAS alone (37).
Whereas the correspondence between GWAS findings
and the respective treatment targets across a range
of disorders is relatively low, incorporating functional
information about gene action can provide a bridge
between them. The main examples of integrating
functional information to link pharmacological treat-
ments and GWAS, however, come from studies of non-
psychiatric disorders. Integrating immune-related anno-
tations together with functional genomics, such as in-
teractions through chromatin conformation and mod-
ulation of gene expression through eQTLs, recovered
experimentally and clinically verified drug targets for
immune traits and has been used to prioritize other
biologically relevant genes that are not currently used
as treatment targets (38). Network-based approaches
quantifying functional links between genes or their prod-

ucts can also be used to investigate indirect associations
between genes (39). For instance, GWAS-implicated
genes and drug target genes have been found to couple
through a protein functional interaction network that
combines information from curated biological pathways,
protein–protein interaction (PPI) networks, and gene co-
expression, among others (34). That is, GWAS genes
for a disorder tend to exhibit stronger functional in-
teractions with each other and with treatment target
genes, indicating the relative similarity of their biolog-
ical function. Extensive investigations of the genetics
of type 2 diabetes (40) and rheumatoid arthritis (41)
also support the use of functional gene information, in-
cluding interactions within the PPI network, in identi-
fying associated drug targets as well as potential can-
didates for drug repositioning. Together, these findings
suggest that, although the overall correspondence be-
tween the genetic origins of complex disorders and their
treatment targets is relatively low, incorporating func-
tional information has the potential to identify these
links (34, 38, 40, 41), motivate new treatments (38) and
prioritize existing treatments for repositioning (38, 42)
[for a review see (43)]. Attempts to extend these func-
tional genomics approaches to psychiatric disorders have
been mainly limited to the analyses of transcriptomic
data, with only a handful of studies identifying corre-
spondence between GWAS and treatment targets at the
level of individual genes (42, 44). Therefore, the util-
ity of functional information derived from bioinformatic
datasets to provide the link between the GWAS findings
and corresponding treatments for psychiatric disorders
remains unclear.

Here we introduce a novel method to evaluate the rela-
tionships between genes implicated in GWAS for psychi-
atric disorders and their pharmacological treatments ac-
cording to several bioinformatics datasets. This allows
us to determine the degree to which different sources
of functional genomic information facilitate links be-
tween GWAS findings and drug targets; identify which
functional data provide the most accurate correspon-
dence; and assess whether treatments for phenotypically
and genetically similar disorders show correspondence to
their respective GWASs. To evaluate these associations
we introduce a strong null hypothesis-testing framework
that compares identified associations for a particular dis-
order treatments to a randomly selected set of treat-
ments, therefore quantifying the specificity of the match.
We show that, for most psychiatric disorders, the corre-
spondence between GWAS-implicated genes and treat-
ment targets does not exceed null expectation, suggest-
ing that treatments for psychiatric disorders may oper-
ate via distinct pathways in alleviating symptoms, rel-
ative to the genetic causes identified using GWAS. In-
corporating functional information derived from inde-
pendent databases, such as protein–protein interaction
networks, can uncover stronger links for some disorders,
demonstrating the potential of exploiting publicly avail-
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able datasets to help understand the mechanisms under-
lying current treatments.

Results
Our main analysis focused on four psychiatric disorders:
ADHD, schizophrenia, bipolar disorder, and major de-
pressive disorder. We additionally used type 2 diabetes
(T2D) as a non-psychiatric benchmark for comparison,
as it has a well-known pathogenesis and effective treat-
ments (45). First, we present a brief introduction to our
method, followed by an investigation of different bioin-
formatic data modalities in identifying associations be-
tween GWAS-implicated genes and treatment targets for
a given disorder. We then extend the analysis to ex-
plore whether treatments for some psychiatric disorders
demonstrate associations with GWAS-implicated genes
in phenotypically and genetically similar disorders and
assess how data-processing choices influence the corre-
spondence between GWAS and treatment targets.

Method Overview. To assess the correspondence be-
tween GWAS-implicated genes and drug targets, we con-
sidered a candidate set of 2155 genes that are listed as
targets for all approved treatments for all disorders in
the DrugBank database (46) [see Online methods]. For
each disorder we manually curated a list of pharmaco-
logical treatments which included 14 drugs for ADHD,
29 for schizophrenia, 22 for bipolar disorder, 48 for ma-
jor depressive disorder, and 45 for diabetes. Each drug
had a corresponding set of gene targets based on the
DrugBank database (version 5.1.7) (46), ranging from
63 gene targets (for ADHD) to 126 targets (for major
depressive disorder) from the total candidate set of 2155
genes [see Online methods]. We then independently as-
signed each gene two scores for each disorder—one based
on its involvement as a drug target for the disorder (as
depicted in Fig. 1a), and the other based on the mapping
between GWAS-implicated SNPs and genes according to
one of four bioinformatic data modalities (as depicted in
Figs. 1b–e).
First, each gene was scored according to the specificity of
each drug, where genes targeted by high specificity drugs
were assigned proportionally higher values [see Online
methods]. Gene weights across all drugs for a disorder
were then summed, producing a single treatment-based
score vector, sdrug, that independently measured the in-
volvement of each gene as a treatment target for that
disorder (Fig. 1a). As a result, genes that are targeted
by more drugs with high specificity were assigned higher
values compared to genes that are targets for fewer
drugs or drugs with low specificity [see Online meth-
ods]. Genes that do not act as targets for that disorder
were assigned a score of zero and consequently did not
contribute to the similarity between GWAS-implicated
genes and treatment targets.
The GWAS-based score, denoted sGWAS, quantified a
gene’s correspondence to variants implicated in a given

GWAS, where similarity was defined with respect to
one of four definitions: (i) the base-pair distance from
the SNP on the DNA; (ii) its topological proximity to
the GWAS-implicated genes in the PPI network; (iii)
its brain eQTLs; and (iv) its spatial pattern of gene
expression across the brain (47) (Fig. 1b-e). Each of
these methods captures a distinct biological mechanism
through which SNPs identified in a GWAS might in-
fluence genes. For instance, the simplest approach was
based on mapping SNPs to their corresponding genes
according to their DNA position, such that genes with
the highest number of significant SNPs get higher scores
(Fig. 1b) [see Online methods]. This method relies on
the assumption that SNPs located within protein-coding
regions of a gene can potentially affect that gene by
changing its functional products whereas SNPs in non-
coding regions or in linkage disequilibrium (LD) with a
particular gene can be involved in its regulatory mech-
anisms (48, 49). Proteins encoded by specific genes ex-
ert their function through interactions with one another,
therefore, indirect relationships between genes can be
identified using functional information such as PPI net-
works (39). In this case, we also investigated the direct
neighbors of those 2155 genes in the PPI network and
calculated the proportion of these neighbors that were
implicated in a GWAS (Fig. 1c) [see Online methods].
As a result, we could quantify the degree to which a
particular gene is associated with the GWAS-implicated
genes through functional interactions. SNPs that influ-
ence the expression of one or more genes are referred
to as expression quantitative trait loci (eQTL) and can
be located in close proximity or at a distance from that
gene. Therefore, evaluating the extent to which GWAS-
identified SNPs act as eQTLs in brain tissue allows quan-
tification of the functional impact of these SNPs on the
genes of interest (Fig. 1d) [see Online methods]. Con-
sidering that psychiatric disorders are associated with
altered gene expression in the brain (50), and assuming
that spatial gene-expression patterns are related to the
mechanism of drug action (51), we also incorporated spa-
tial gene-expression data derived from the Allen Human
Brain Atlas (AHBA) (47). Each gene was scored accord-
ing its spatial expression similarity to GWAS-implicated
genes, giving higher scores to genes whose expression
patterns were more strongly correlated to genes identi-
fied through GWAS (Fig. 1e) [see Online methods].

After scoring genes both according to their involvement
in current treatments for a disorder (sdrug) and to their
implication by GWAS (sGWAS), we developed a method
to assess the correspondence between the the two sets
of scores (and hence between the GWAS-implicated
genes for a disorder and the genes targeted by currently
approved pharmaceutical treatments for it). We first
normalized each of the score vectors across genes and
calculated the inner product between these two unit-
normalized vectors, resulting in a weighted similarity
score, ρ. As a result, only genes that were assigned non-
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Fig. 1. We assess relationships between drug targets and GWAS by scoring genes based on: (i) their involvement in approved pharmaceutical treatments; and
(ii) GWAS, for a given psychiatric disorder. (a) The analysis is based on a set of for all clinically approved treatments. For each disorder, each of 2155 target genes derived
from the DrugBank database (46) are assigned scores corresponding to their role as a target across drugs approved for use in treating that disorder. A gene is scored based
on its specificity for each drug by assigning a value of w = 1/L, where L is the total number of targets for that drug. The total score for a gene is quantified as a sum
of scores across drugs. For each disorder, the same set of 2155 genes is also scored based on their similarity to variants implicated in corresponding GWASs using four
main methods for mapping SNPs to genes: (b) SNP position, where the SNPs are mapped to genes based on their position on the DNA and the gene score consequently
proportional to the cumulative effect size of all SNPs mapped to that gene; (c) PPI network, where genes are scored based on the proportion of their direct neighbors that are
implicated in GWAS (as mapped based on SNP position); (d) brain eQTL, where genes are scored based on the cumulative impact of GWAS-identified SNPs on influencing
their expression; (e) regional gene-expression similarity calculated from the Allen Human Brain Atlas (AHBA) (47). First, for each pair of genes in the AHBA, the similarity
of their spatial gene-expression profiles is quantified using a measure of gene–gene coexpression. Then, GWAS-implicated genes are identified based on SNP position and
for each of 2155 target genes, coexpression value distributions are compared between GWAS-implicated and all other genes. As a result, a gene receives a high score if its
coexpression with GWAS-implicated genes is, on average, higher than its coexpression with all other genes.

zero scores for both sdrug and sGWAS contributed to this
similarity score.
In contrast to previously used approaches that have ap-
plied relatively lenient significance testing (e.g. com-
paring a set of GWAS-implicated genes to all available
genes) (17, 28, 34, 41), here we evaluated the signifi-
cance of a given weighted similarity score, ρemp, using
a permutation test comparing it to an ensemble of 5000
null values, ρrand, generated by independently selecting
a set of random drugs (while preserving the number of
drugs associated with the disorder) [see Online meth-
ods]. As a result, a significant association indicates that
GWAS-implicated genes match treatment targets for a
selected disorder over and above that is expected by a
random set of currently approved drugs as defined in the
DrugBank database.

Correspondence between GWAS-implicated genes
and treatment targets. We first investigated whether
current treatments for a given psychiatric disorder have
gene targets that are more similar to their corresponding
GWAS than a random set of drugs for each of the four

mapping methods separately (Fig. 1b–e). Figure 2 sum-
marizes the results for all four scoring methods, where
the degree of correspondence between sdrug and sGWAS

for each disorder is quantified using a p-value computed
as a permutation test from our random-drug null model
[see Online methods], plotted as − log10(p).
Here we find that mapping GWAS results to genes via
the PPI network identified a significant correspondence
for both diabetes (pperm = 0.003) and bipolar disorder
(pperm = 0.008) (Fig. 2b, permutation test against ran-
domly selected drugs, statistically significant following
Bonferroni correction for n = 5 tests), but no associ-
ations for schizophrenia, ADHD, or major depression.
To shed light on the potential reasons why bipolar dis-
order was the only psychiatric disorder that displayed
an GWAS–drug association, we performed a gene ontol-
ogy (GO) enrichment analysis on both treatment and
GWAS-based scores. It indicated that treatment tar-
gets for all four psychiatric disorders are consistently
enriched for GO categories related to synaptic signal-
ing ([refer to the supplementary files]). In contrast,
the number of synaptic signaling-related categories for
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Fig. 2. Bipolar disorder and diabetes demonstrate correspondence between treatment targets and genes implicated in GWAS data for each disorder. For a given
disorder and mapping method, circles represent the significance of the association between the gene scores obtained from a set of drugs, sdrug, and GWAS data, sGWAS,
computed as a permutation test relative to random drugs and plotted as − log10(p) [see Online methods]. Subplots correspond to the four GWAS mapping methods: (a)
SNP position, (b) PPI network, (c) Brain eQTL, (d) Gene-expression similarity (cf. Figs 1b–e). Higher − log10(p) values indicate a stronger correspondence between GWAS
and drug targets for a given disorder than expected from random treatments. Circles are colored by the disorder they represent (as labeled). Horizontal lines represent
p-value thresholds: dark gray line – p = 0.01 (significant at α = 0.05 after Bonferroni correction for five disorders); light gray line – p = 0.05.

GWAS-implicated genes based on the PPI mapping
was very low for all disorders with the exception of
bipolar disorder, where 7 of the top 20 categories in-
volve G protein-coupled receptor signaling pathways and
other signaling-related processes. These results suggest
that the correspondence between treatment targets and
GWAS-implicated genes for bipolar disorder is likely to
occur due to the functional role of GWAS-implicated
genes rather than the unique targets of bipolar disorder
drugs.
For regional gene-expression-based mapping, the cor-
respondence between drug targets and GWAS genes
also significantly exceeded null expectation for bipo-
lar disorder (Fig. 2d, pperm = 0.006, statistically signif-
icant following Bonferroni correction for n = 5 tests),
but no associations were observed for any other dis-
order. Positional mapping (Fig. 2a) indicated a rela-
tively strong (pperm < 0.05), but non-significant corre-
spondence (pperm > 0.01) for both diabetes and bipo-
lar disorder. Associations for brain eQTL-based map-
ping did not exceed null expectation for any disorder
(Fig. 2c), indicating that the direct effect of SNPs on the
cortical gene expression was not informative for match-
ing GWAS variants to current treatment targets.
Our proposed method, which scores individual genes in-
dependently and then assesses the similarity in these
scores, allows us to quantify the contribution of indi-
vidual genes to the correspondence between GWAS and
treatment-based scores, and thus delineate which genes
drive the associations between the two sets of scores.
The contribution of each gene to the similarity score, ρ,
was quantified by comparing the inner product of sdrug

i
and sGWAS

i in real data to the distribution of inner prod-

uct values derived from a null model [see Online meth-
ods]. As a result, genes are assigned p-values by the
extent to which they contribute to the similarity score,
ρ relative to the null expectation. To understand the
functional roles of the most strongly implicated genes,
we next investigated the associations identified for bipo-
lar disorder and diabetes via PPI. We found that genes
with the strongest involvement for bipolar disorder play
roles in neurotransmission (ADRA2C, CKS1B, GRIA3,
GSK3B, HTR5A, HTR6, HTR7, pcorr < 2.3× 10−5,
Bonferroni correction for n= 2155 tests), whereas genes
implicated in diabetes were predominantly involved in
glucose metabolism and insulin secretion (e.g., DPP4,
GLP1R, pcorr < 2.3× 10−5, Bonferroni correction for
n= 2155 tests) [see Online methods, Supplementary Ta-
ble S1]. The fact that we identified genes with distinct
and specific functional roles for both disorders was par-
tially predetermined by their treatment targets (as genes
are scored based on the combined weight across both
measures). However, these genes contributed to the sim-
ilarity between GWAS and treatment targets over and
above the expectation based on the null model indicat-
ing their specific contribution.
We next performed an exploratory analysis aiming to as-
sess whether treatments for some psychiatric disorders
overlap with the GWAS-identified genetic architecture
of phenotypically and genetically similar disorders. To
achieve this, we expanded the comparison to all pairwise
combinations of GWAS and treatment scores. We found
that, except for the previously identified associations for
bipolar disorder and diabetes (Figs. S1b (IV,V), d (IV)),
most other disorder pairs and mapping methods did not
show a significant correspondence after correcting for
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multiple comparisons. The strongest associations were
identified for bipolar disorder, major depression, and
schizophrenia. Treatment targets for bipolar disorder
were linked to genes implicated in both major depression
(pperm < 0.01) and schizophrenia (0.01 < pperm < 0.05)
(Figs S1a (II, III), b (II, III)), whereas treatment tar-
gets for schizophrenia were related to major depression
GWAS genes (0.01<pperm < 0.05) (Fig. S1a). Although
not statistically significant, these cross-disorder associa-
tions are consistent with the well-described similarities
in phenotypic manifestations and genetic architectures
of schizophrenia, bipolar disorder, and major depression
(52).

The impact of data-processing choices. The analyses
presented above were based on a selected set of GWAS-
to-gene scoring methods. To better understand the
specificity of these results, and identify whether dif-
ferent data-processing choices could improve the corre-
spondence between GWAS and current treatment tar-
gets, we explored other approaches for GWAS-to-drug
target mapping. Specifically, we investigated five types
of changes. First, we examined the effect of represent-
ing the PPI network at varying densities, by differently
thresholding the pairwise confidence scores of protein–
protein interactions: from 0 (the network includes all
possible interactions), to 400 (where weakest interac-
tions are not included), to 600 (used above), to 900 (only
the interactions with the strongest evidence are kept)
[see Online methods]. Second, we investigated the effect
of scoring genes based on the total number of interacting
neighbors that are implicated in the GWAS (rather than
normalizing by the number of neighbors and computing
a proportion of neighbors, as above) [see Online meth-
ods]. Third, in addition to selecting the initial set of
genes for regional gene expression and PPI-based anal-
yses using SNP position-based mapping (‘PPI position’,
‘AHBA position’), we also performed these analyses us-
ing the initial set of genes based on brain eQTL mapping
for these methods (‘PPI eQTL brain’, ‘AHBA eQTL’).
Fourth, we expanded brain-based eQTLs above to in-
clude other tissues such as blood, liver, and pancreas
(hypothesizing that these might boost associations with
T2D). Fifth, we introduced a novel mapping method
based on long-range chromatin interactions (Hi-c) (53)
in human brain tissues across two developmental time
points, allowing us to identify developmentally specific
genes [see Online methods]. These modifications re-
sulted in a total of 27 methods of mapping from GWAS
SNPs to gene scores: via SNP position (1 measure), PPI
network (16 measures), eQTL (4 measures), chromatin
interactions (4 measures), and spatial transcriptomics (2
measures).
As shown in Fig. S2, gene scores derived from differ-
ent mapping methods showed varying levels of similarity.
For example, PPI-based measures were generally more
similar to each other than to Hi-c or eQTL-based scores,
whereas regional gene expression was not similar to other

mapping methods (Fig. S2). Similarly to the previ-
ous analyses, the correspondence between gene scores
obtained from current treatments, sdrug, and GWAS,
sGWAS for each mapping method and disorder was quan-
tified with a p-value (relative to an ensemble of random-
drug nulls as above, while adjusting for 27 measures us-
ing Bonferroni correction), and shown in Fig. 3. The de-
gree of correspondence between GWAS-implicated genes
and treatment targets was markedly variable across dis-
orders and mapping methods. For instance, none of the
individual mapping methods yielded significant matches
for ADHD, major depressive disorder, or schizophrenia
(Fig. 3a-c), whereas bipolar disorder and diabetes ex-
hibited a significant correspondence for several of PPI-
based measures (Fig. 3d,e). Moreover, PPI-based mea-
sures using different confidence thresholds (‘PPI position
th900’ and ‘PPI position th0’) outperformed the origi-
nal measure (‘PPI position th600’, Fig. 3d,e). Consis-
tent with the initial findings, gene scores assigned from
the PPI network were generally the most informative
about treatment targets for both bipolar disorder and
diabetes, suggesting that indirect interactions through
gene products might be involved in the mechanism of
pharmacological treatments.
In addition to investigating each method in isolation,
we evaluated whether different mapping methods can
provide complementary information, resulting in an in-
creased correspondence to treatment targets. To this
end, we computed a single score using all 27 available
measures as their linear combination by fitting a linear
model using all available scores. The null model was
also adjusted to incorporate the linear regression across
all measures in each iteration to account for this opti-
mization step. The results are shown in Fig. 3 using red
circles. For ADHD, major depressive disorder, and dia-
betes, the combined score did not outperform individual
measures, but provided a statistically significant corre-
spondence for bipolar disorder (pperm = 4× 10−4, Bon-
ferroni correction for 27 measures), and an improvement
relative to all other measures for schizophrenia (pperm =
0.003, slightly above the Bonferroni-corrected threshold,
p= 0.002). Whereas our results are mixed, the example
of schizophrenia demonstrates that complementary in-
formation from multiple bioinformatic sources can some-
times be combined to substantially improve the corre-
spondence between GWAS and treatment targets.
To test the robustness of our general findings, we re-
peated the analysis using a different set of GWAS
summary statistics data for all psychiatric disorders
(5, 7, 9, 11). In this replication, we obtained results
that were consistent with the initial findings (Fig. S4,
Fig. S5, Fig. S6). To assess if our findings are specific to
psychiatric disorders, we also evaluated the correspon-
dence between treatment targets and genes implicated
by GWAS for several non-psychiatric diseases such as
heart failure, rheumatoid arthritis, and inflammatory
bowl disease. We found that, in most cases, individ-
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Combined measures AHBAChromatin interactioneQTLPercent of PPI neighbors Number of PPI neighborsSNP position
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a | ADHD b | Major depression c | Schizophrenia d | Bipolar disorder e | Diabetes

Fig. 3. PPI-based mapping methods show the strongest correspondence between treatment targets and genes implicated in a GWAS for bipolar disorder and
diabetes. Circles represent the significance of the association between the treatment-based score, sdrug, and GWAS-based score, sGWAS, for a selected disorder. The
significance is quantified using a permutation-based p-value comparing the empirical GWAS-treatment matching score ρ to a set of 5000 matching scores generated using
a selection of random drugs [see Online methods]. The position of the circle corresponds to − log10(p) where higher values indicate more significant association. Subplots
correspond to different disorders: (a) ADHD, (b) major depression, (c) schizophrenia, (d) bipolar disorder and (e) diabetes. Colors indicate different types of mapping
methods: SNP position (dark green); spatial transcriptomic similarity (gray); chromatin interaction, Hi-c (pink); PPI network quantified as the proportion of neighbors (light
blue); PPI network quantified as the total number of neighbors (dark blue); and eQTL (light green); linear combination of all measures (red). Horizontal lines represent the
degree of statistical significance: light gray line – pperm = 8.3 × 10−3 (Bonferroni correction for six types of measures, this threshold provides guidance for the expected
significance level considering that groups of measures derived from the same type of mapping method show a degree of similarity); dark gray line – pperm = 1.9 × 10−3

(Bonferroni correction for 27 measures); black line – pperm = 3.7 × 10−4 (Bonferroni correction for 27 measures and 5 disorders, this threshold provides guidance for
a highly conservative correction assuming independence among all mapping methods and disorders). Permutation-based approach estimates a p-value with a minimum
resolution of 2 × 10−4 (corresponding to 1/5000). If the estimated p-value is lower, we conservatively place it at 2 × 10−4.

ual mapping methods as well as the combined score did
not provide significant correspondence between GWAS-
implicated genes and treatment targets, suggesting poor
overall correspondence for these non-psychiatric disor-
ders (Fig. S3).

Discussion

Large-scale GWAS have led to significant developments
in understanding the genetics of complex disorders, in-
cluding a range of psychiatric conditions (5–12, 54).
However, as current pharmacological treatments for psy-
chiatric disorders were developed independently from
these genomic findings, we aimed to investigate whether
the mechanisms of action of these treatments relate
to the disorder-associated genetic variation identified
through GWAS. Under the general assumption that the
genetic mechanisms driving the risk for a disorder are
also implicated in its symptom expression and conse-
quently can be used in pharmacological interventions,
one of the main goals of GWAS research was to inform
potential gene targets. However, the possibility that
risk genes for psychiatric disorders may act by creat-
ing vulnerability to illness during development through
pathways that are distinct from the pathophysiological
mechanisms influencing symptom onset and severity is
commonly overlooked. To test this, we introduced a
new method for assessing the correspondence between
genetic variation implicated in GWAS for complex disor-
ders and their pharmacological treatment targets using
a range of different types of biological information.

In line with previous findings (16, 17, 28, 34–37), we
found that the overall degree of correspondence between
GWAS-implicated genes for psychiatric disorders and
their respective treatment targets across different map-
ping methods is low; only bipolar disorder exhibited
a significant associations, that were detectable when
incorporating functional information derived from the
PPI network and, at a lower significance threshold, spa-
tial gene expression. Importantly, these results were
not strongly dependent on the size of the correspond-
ing GWASs used in the analyses (Fig. S4, Fig. S5,
Fig. S6), indicating that the lack of the associations
does not simply result from insufficient power to iden-
tify relevant genetic variants. Considering the com-
prehensive nature of our analyses that investigated a
range of different data modalities—including informa-
tion derived from PPI network, eQTLs, chromatin inter-
actions, and spatial transcriptomics—our findings sug-
gest that genes giving rise to disease pathophysiology
might differ from the systems that are currently tar-
geted by their pharmacological treatments. This no-
tion is also supported by the fact that a large fraction
of genes identified through GWASs relate to neurode-
velopmental processes such as presynaptic and neuron
differentiation, neuronal morphogenesis and projection
(9), neuronal development and synapse formation (7, 8),
as well as synaptic plasticity (5, 10), whereas targets
for pharmacological treatments mostly involve genes for
synaptic signaling indicating a likely disconnect between
the genetic risk for the disorders and the genetic mecha-
nisms targeted by pharmacological treatments. Our re-
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sults demonstrate that, among different data-processing
options, PPI network-based mapping methods consis-
tently yielded the strongest GWAS–drug associations
(Fig. 3d,e), supporting the idea that the concordance be-
tween GWAS and pharmacological treatments is likely
to involve interactions between the corresponding gene
products (34, 40, 41).
Besides investigating the concordance between GWAS
and treatment targets for individual disorders, our ap-
proach also allowed us to directly test cross-disorder
correspondence—namely, whether treatment targets for
one disorder match genes implicated in the GWAS of
others. The suggestive associations identified between
treatments for bipolar disorder and genes implicated in
both major depression and schizophrenia are consistent
with the general profile of bipolar disorder treatments as
they target some of the overlapping symptoms between
these disorders, such as depressive moods and psychotic
episodes. Similarity in the genetic architecture between
bipolar disorder, major depression, and schizophrenia,
quantified through the genetic correlation (52) as well as
common biological pathways (55), is in line with the ob-
served coupling between GWAS and treatment targets.
Although not statistically significant (after accounting
for multiple testing), these findings are in line with the
results from a drug repurposing study by So et al. (42)
indicating that repurposing candidates for bipolar dis-
order included a number of antipsychotics and antide-
pressants, whereas antipsychotics were commonly found
among top hits for major depression.
In contrast to previous studies which mainly evaluated
significance with respect to gene set and pathway en-
richment (28, 31–33, 56), or compare the identified cor-
respondences to what could be expected using all avail-
able genes (15, 17, 34), our approach introduces a more
appropriate null model for evaluating associations based
on other available treatments. In other words, instead
of asking whether the correspondence between GWAS-
identified genes and treatment targets exceeds the ex-
pectation compared to the rest of the genome, our ap-
proach addresses the specificity of those associations in
the context of all available treatments by quantifying if
the GWAS-implicated genes for a given disorder match
its treatments targets to a higher extent than other
drugs. Therefore, even if some SNPs relate to genes
that serve as treatment targets for relevant drugs, that
does not necessarily correspond to a significant associa-
tion in the context of all available treatments. Based on
this null model, GWAS-implicated genes for a particular
disorder are expected to demonstrate a specific coupling
with corresponding treatments that exceed the associa-
tions with treatments for unrelated disorders. Our pro-
posed method also offers an advantage of tailoring the
null model based on a research question by expanding
or restricting the range of treatment categories used in
generating the null distribution, ρrand. For instance,
when focusing on psychiatric disorders, we can restrict

the null model to psychiatric treatments or adjust their
categories based on other criteria (Fig. S7). The key
advantage of such a modification is the ability to refine
the testing based on the relevance of selected drugs to
evaluate and interpret the correspondence with respect
to a plausible candidate set of treatments.
Our methods for identifying GWAS-implicated genes
and evaluating the correspondence to treatment tar-
gets can be easily used to investigate other complex
disorders and to uncover potential cross-disorder asso-
ciations. Moreover, ranking individual genes based on
their contribution to cross-disorder coupling could pro-
vide the means for prioritizing genes as potential treat-
ment targets for selected disorders. With improvements
in quantifying eQTLs, as well as the development of
spatially comprehensive time-resolved and cell-specific
gene-expression atlases, these methods could be used to
investigate a range of complex disorders and uncover the
links between the genetic variation influencing the liabil-
ity for a disorder and pathophysiology.

Online methods
We first describe the selection of potential treatment
targets, outline the scoring methods for both treatment
and GWAS-based measures, and define the methods for
computing similarity between those scores and evalu-
ating the statistical significance. Code for reproduc-
ing all analyses described here is available at https:
//github.com/AurinaBMH/GWAS_drugs.

A. Target selection. The list of genes used in all analy-
ses is based on the combined set of all approved treat-
ment targets from the DrugBank database https://go.
drugbank.com/, version 5.1.7, downloaded on the 3rd of
August 2020. We selected all unique target genes anno-
tated to the human species, resulting in a set, G, contain-
ing 2155 genes. Each gene in G is then assigned a score,
g based on different independent criteria in relation to
pharmacological treatments or GWASs. Scores assigned
to all genes in G can be represented as a score vector, si
(i = 1,2, ..., |G|). Below we describe procedures for gen-
erating an si according to treatment and GWAS-based
scoring.

B. Treatment-based scoring. Our main analyses focus
on four psychiatric disorders: ADHD, schizophrenia,
major depression, and bipolar disorder. We use type 2
diabetes (referred as diabetes through the manuscript)
as a benchmark for comparison, as a non-psychiatric
disease that has a relatively well-known pathogenesis
and effective treatments. Gene targets for each drug
were assigned based on the DrugBank database (ver-
sion 5.1.7). The curated list of pharmacological treat-
ments for those disorders includes: ADHD (14 drugs
with 63 unique gene targets); schizophrenia (29 drugs,
78 gene targets); major depression (48 drugs, 126 gene
targets); bipolar disorder (22 drugs, 110 gene targets);
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C GWAS-based scoring

diabetes (45 drugs, 103 gene targets). Later, we ex-
tend the analysis to other non-psychiatric conditions
such as heart failure (46 drugs, 114 gene targets),
rheumatoid arthritis (58 drugs, 111 gene targets) and
inflammatory bowl disease (26 drugs, 40 gene targets).
Treatments for different conditions of interest were se-
lected by searching www.drugbank.ca (accessed Septem-
ber 3, 2020). Specifically, drugs for each indication were
searched in the DrugBank database using the follow-
ing search terms: ‘heart failure’ (for heart failure); ‘di-
abetes’ (for type 2 diabetes) excluding ‘type I diabetes’
and ‘diabetes insipidus’; ‘schizophrenia’ (for schizophre-
nia); ‘bipolar’ (for bipolar disorder) excluding ‘bipolar
depression’; ‘major depression’ (for major depression);
‘attention deficit’ (for ADHD); ‘Crohn’s’ and ‘ulcerative
colitis’ (for inflammatory bowel disease); and ‘rheuma-
toid arthritis’ (for rheumatoid arthritis).
Using this information, we constructed a score vector,
sdrug
i , for each disorder across 2155 genes that quanti-
fies the involvement of each gene as a treatment target
for that disorder. To ensure that each drug was weighted
equally, genes were scored with respect to the total num-
ber of targets for that drug: if a drug has L target genes,
then the score for each gene is incremented by an amount
1/L. As a result, if a drug is very specific and has only a
few targets, each of those target genes will be assigned a
relatively high score compared to a less specific drug tar-
geting multiple genes. The total treatment-based score,
si, for gene i, is then computed as the sum of weights
across all drugs. Genes with higher scores, si, for a given
disorder are those for which more drugs target them with
high specificity; conversely, scores are minimal (0), for
genes that are not targeted by any drugs used for treat-
ing a given disorder.

C. GWAS-based scoring. For each disorder GWAS
[ADHD (8), schizophrenia (6), major depression (10),
bipolar disorder (54), diabetes (57), heart failure (58),
rheumatoid arthritis (41), and inflammatory bowl dis-
ease (59)], we constructed a score vector, sGWAS

i , across
2155 genes that quantified the similarity of each gene
to variants identified in each GWAS. The similarity was
defined based on four main bioinformatic datasets in-
cluding SNP position on the DNA, protein interaction
network (PPI), brain eQTL, and regional gene expres-
sion across the brain as quantified using Allen Human
Brain Atlas (AHBA) (47). Later, we expand GWAS-
based mapping methods to include non-brain eQTLs,
brain chromatin interaction profiles (Hi-c) and explored
the effects of different data-processing options.

C.1. SNP position-based GWAS scoring. For a given dis-
order’s GWAS, each SNP was mapped to a corre-
sponding gene, based on its position on the DNA us-
ing MAGMA software package (https://ctg.cncr.nl/
software/magma) (60). Corresponding annotation file
MAGMAdefault.genes.annot and reference panel (1000
Genomes European ancestry) for linkage disequilib-

rium (LD) calculation were downloaded from https:
//github.com/thewonlab/H-MAGMA. Gene analyses in
MAGMA are based on a multiple linear principal compo-
nents regression model where the gene p-values are com-
puted using an F -test. A score vector sGWAS−position

was constructed using − log10 transformed gene p-values
for each of 2155 genes sGWAS−position

i = − log10(Pi).
Therefore, genes with a more significant involvement in a
GWAS were assigned higher values. Genes that were ab-
sent from the MAGMA output were assigned a 0 score.

C.2. PPI-based GWAS scoring. We developed a gene-
scoring procedure to incorporate information derived
from the protein–protein interaction (PPI) network.
PPI data were downloaded from the STRING database
(version 11.0) on the 24th of June 2020 https:
//string-db.org/cgi/download.pl?sessionId=
a1fHJhN5R9Md&species_text=Homo+sapiens. Protein
interactions were quantified using confidence scores
ranging from 150 to 999, with higher values assigned to
interactions with stronger evidence. Applying different
thresholds to those confidence scores allows rendering
binary PPI networks where interactions exceeding a
selected threshold are considered present while others
are treated as absent. We selected a range of confidence
score thresholds—0, 400, 600 and 900—yielding four
binary PPI networks with varying densities. These
networks were transformed into PPI distance matrices
that capture the shortest path between all pairs of
nodes using distance_bin function from the Brain
Connectivity Toolbox (61). We then matched proteins
to their corresponding genes through biomaRt pack-
age in Bioconductor. The main analyses here are
performed using PPI distance matrix generated from
relatively high-confidence interactions (> 600) providing
a balance between sensitivity and specificity. Although
note that we investigate the effect of this threshold in
the impact of data-processing choices section.
The construction of PPI-based GWAS scores relied on
the selection of genes implicated in each GWAS. To
identify a list of genes for each GWAS, we controlled
the family-wise error at 0.05 using Bonferroni correc-
tion (by setting a gene p-value threshold equal to 0.05
divided by the number of identified genes in MAGMA
analysis). The number of identified genes for psychiatric
disorder GWASs ranged from 30 for ADHD to 479 genes
for schizophrenia.
Our PPI-based scoring method assigned each of 2155
target genes (gi) a score according to its vicinity to
GGWAS genes on the PPI network along paths of length
k. We started the analyses considering one-step paths,
k = 1 and for each of 2155 target genes identified all
genes that directly interact with gene gi (k= 1) resulting
in a gene set, Gint. A subset of these genes were then la-
beled as being implicated in GWAS, GGWAS ∈Gint. The
absolute number of overlapping genes for each target gi
(GGWAS ∈ Gint) is proportional to the total number of
its neighbors. Therefore, we scored each gene as the
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proportion of their interacting neighbors that are im-
plicated in GWAS: sGWAS−PPI

i = |GGWAS|/|Gint|. Re-
peating the process across all 2155 genes we constructed
the full score vector, sGWAS−PPI. Following this general
procedure, a score vector can be computed at any given
path-length, k (all genes within k steps on the PPI net-
work are included in Gint). Exploratory analyses indi-
cated that increasing k above 1 significantly reduces the
specificity of the results, therefore all PPI-based anal-
yses presented in this manuscript consider only 1-step
neighbors (k = 1).

C.3. eQTL-based GWAS scoring. Using eMAGMA we con-
structed eQTL-based gene scores (sGWAS−eQTL) quan-
tifying each of 2155 genes based on their involvement
in tissue-specific gene expression. eMAGMA is a val-
idated pipeline based on the original MAGMA soft-
ware that uses tissue-specific SNP-gene associations to
assign SNPs to genes based on their association with
gene expression. The SNP–gene associations are then
aggregated in a gene-based test, while adjusting for
linkage disequilibrium and correlated gene expression
(62). Our initial analyses were based on brain eQTL
information derived from the psychENCODE database
(63) and then expanded to other tissues including liver,
whole blood and pancreas with corresponding annota-
tion files derived from GTEx database (64) (version 8).
Similarly to position-based gene scoring, a score vector
sGWAS−eQTL was constructed using − log10 transformed
gene p-values for each of 2155 genes sGWAS−eQTL

i =
−log10(Pi). Genes that were absent from the eMAGMA
output were assigned a score of 0.

C.4. Regional expression-based GWAS scoring. We devel-
oped a gene-scoring procedure based on high spatial res-
olution gene-expression data, that assigns a score for
each gene based on its spatial gene co-expression pat-
terns. The AHBA (47) provides high resolution whole-
brain gene expression data derived from six post-mortem
donor brains. First, genes implicated in GWAS were
selected using the same procedure as described for PPI-
based scoring. Here we included 15744 genes that passed
our quality-control criteria (65) across 180 regions of the
left cortical hemisphere. First, we calculated a gene–
gene coexpression matrix between each pair of 15744
genes that captures correlations in regional expression
profiles. High scores in the coexpression matrix indi-
cated that a pair of genes had similar spatial expression
patterns across the cortex. Gene scores, sGWAS−AHBA

i ,
for each of 2155 genes, gi, were then calculated by com-
paring each gene’s coexpression with genes implicated in
GWAS vs all other genes using z-scores from a Wilcoxon
rank-sum test. Therefore, high scores indicate that a
gene has stronger coexpression with GWAS-implicated
genes than other genes.

C.5. Hi-c-based GWAS scoring. H-MAGMA assigns non-
coding SNPs to their cognate genes based on long-range

chromatin interactions in human brain tissue across two
developmental epochs and two brain cell types mea-
sured by Hi-C (66). This technique identifies develop-
mentally specific and cell-specific neurobiologically rele-
vant genes. Using H-MAGMA software (66) (https://
github.com/thewonlab/H-MAGMA) we constructed four
chromatin interaction gene scores sGWAS−Hi−C based on
fetal brain, adult brain, neuronal, and astrocytic brain
Hi-C. Similarly to eQTL and position-based gene scor-
ing, a score vector sGWAS−Hi−C was constructed using
− log10 transformed gene p-values for each of 2155 genes,
as sGWAS−Hi−C

i =− log10(Pi).

D. Gene-score similarity. We aimed to evaluate the ex-
tent to which genes involved in pharmacological treat-
ments for psychiatric disorders match genes implicated
in their corresponding GWAS. To achieve this, we in-
dependently constructed two sets of scores quantify-
ing the involvement of each gene in: (i) pharmacologi-
cal treatments sdrug

i ; and (ii) GWAS sGWAS
i based on

different bioinformatic datasets (e.g. sGWAS−position,
sGWAS−PPI, sGWAS−eQTL, sGWAS−AHBA). The simi-
larity between two different score vectors was defined
using a similarity function ρ(sdrug,sGWAS). First, each
score vector was normalized as ŝ(x)

i = s
(x)
i /

∑
i s

(x)
i , such

that normalized score vectors define positive mass across
genes that sums to unity; hence both drug and GWAS-
based scores have equal contribution. We then defined
the weighted similarity score, ρ, as a simple inner prod-
uct between two unit vectors ρ= ŝdrug · ŝGWAS:

ρ=
∑
i

ŝdrug
i ŝGWAS

i . (1)

Gene-score vectors in gene space that point in the same
direction receive a maximal score, ρ= 1; those that are
orthogonal receive a minimal score, ρ= 0. For example,
if pharmacological treatments for a disorder target the
same genes that are implicated in GWAS, then the re-
sulting normalized score vectors, ŝdrug and ŝGWAS , will
place similar weight on similar genes and thus obtain a
high weighted similarity score, ρ.
The contribution of each gene to the similarity score ρ
was quantified by comparing the inner product of sdrug

i
and sGWAS

i in real data to the distribution of inner prod-
uct values derived using a null model [see Evaluating sig-
nificance based on random treatments]. The gene rank-
ing was based on the significance of p-values derived from
such permutation testing.

E. Evaluating significance based on random treat-
ments. We evaluated the statistical significance of our
results by estimating a p-value using a permutation
test comparing empirically derived weighted similarity
scores, ρemp, to an ensemble of 5000 null similarity scores
generated by selecting a set of random drugs, ρrand.
Specifically, for each disorder we repeatedly selected N
random drugs (where N is the number of drugs in the
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E Evaluating significance based on random treatments

curated list of pharmacological treatments for that dis-
order) from the total of 1900 drugs in the DrugBank
database and generated an ensemble of gene-score vec-
tors, ŝdrugrand. Random gene-score vectors where then nor-
malized and compared to the real ŝGWAS resulting in a
distribution of ρrand values used to derive p-values.
Under the assumption that treatments for psychiatric
disorders are likely to target different sets of genes com-
pared to drugs for non-psychiatric conditions, we also
tested the significance using a constrained set of treat-
ments relevant only to psychiatric disorders. In this case,
the random treatments were selected from a set of 82
drugs used to treat four psychiatric conditions inves-
tigated in our analysis, namely ADHD, schizophrenia,
major depression, and bipolar disorder. Each disorder
had a different number of available treatments, there-
fore, to avoid the over-sampling of drugs for disorders
that have more treatments, we selected drugs from a
probability distribution that gave an equal chance for
all disorder drugs to be selected. Specifically, for each
drug the probability of being selected was inversely pro-
portional to the total number of drugs for that disorder
(1/N). If a drug is used to treat more than one disor-
der, these scores were summed. Similarly to the general
case, we then generated an assembly of 5000 gene score
vectors based on random drug selection for each disorder
and used them to compute the distributions of ρrandpsych
values to derive p-values.

Gene-set enrichment analysis using over-representation
analysis. Over-representation analysis (ORA) exam-
ines if there are gene sets [e.g., annotated using Gene
Ontology (GO)] within a selected list of genes that are
statistically over-represented in that list. Here we used
ORA to investigate which GO categories are enriched in
treatment-based scores (sdrug) and PPI-based GWAS
scores (sgwas) for psychiatric disorders. Considering
that only the minority of all 2155 genes were assigned
a non-zero scores in both sdrug and sgwas, we applied a
threshold to retain all genes with non-zero scores while
using the remaining genes as a reference list. Functional
gene group analyses were performed using version 3.2
of ErmineJ software (67). Gene ontology annotations
were obtained from GEMMA (68) (https://gemma.
msl.ubc.ca/arrays/showArrayDesign.html?id=735)
as Generic_human_ncbiIds_noParents.an.txt.gz on
April 29, 2021. Gene Ontology terms and definitions
were automatically downloaded by ErmineJ on April
29, 2021 as go.obo (data version 2021-02-01) and can
be downloaded from http://release.geneontology.
org/2021-02-01/ontology/index.html. We per-
formed ORA on the thresholded treatment-based scores
(sdrug) and PPI-based GWAS scores (sdrug) for each
psychiatric disorder testing the biological process GO
categories with 5 to 100 genes available. The resulting
p-values were corrected across 3807 and 3753 GO
categories for sdrug and sgwas respectively, controlling
the false discovery rate (FDR) at 0.05 using the method

of Benjamini and Hochberg (69).
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