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Key Points 

Question: Do genes targeted by current treatments for psychiatric disorders match GWAS-

identified genetic variation and what bioinformatic data modalities can inform these 

associations?  

Findings: Information derived from functional bioinformatics data in the form of PPI network 

revealed links for bipolar disorder, however for most psychiatric disorders, the correspondence 

between GWAS-implicated genes and treatment targets did not exceed null expectations. 

Meaning: GWAS-identified genetic variation driving the risk for psychiatric disorders may be 

distinct from the pathophysiological mechanisms influencing symptom onset and severity that 

are targeted by pharmacological treatments.  
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Abstract 
 
Importance: Large-scale genome-wide association studies (GWASs) are expected to inform 

the development of pharmacological treatments, however the mechanisms of correspondence 

between the genetic liability identified through GWASs and disease pathophysiology are not 

well understood.  

Objective: To investigate whether functional information from a range of open bioinformatics 

datasets can elucidate the relationship between GWAS-identified genetic variation and the 

genes targeted by current treatments for psychiatric disorders. 

Design, Setting, Participants, and Exposures: Relationships between GWAS-identified 

genetic variation and pharmacological treatment targets were assessed across four psychiatric 

disorders—ADHD, bipolar disorder, schizophrenia, and major depressive disorder. Using a 

candidate set of 2232 genes that are listed as targets for all approved treatments in the 

DrugBank database each gene was independently assigned two scores for each disorder – one 

based on its involvement as a treatment target, and the other based on the mapping between 

GWAS-implicated SNPs and genes according to one of four bioinformatic data modalities: 

SNP position, gene distance on the protein interaction network (PPI), brain eQTL, and gene 

expression patterns across the brain.  

Main Outcomes and Measures: Gene scores for pharmacological treatments and GWAS-

implicated genes were compared using a novel measure of weighted similarity applying a 

stringent null hypothesis-testing framework that quantified the specificity of the match by 

comparing identified associations for a particular disorder to a randomly selected set of 

treatments.  

Results: Incorporating information derived from functional bioinformatics data in the form of 

PPI network revealed links for bipolar disorder (pperm = 0.0001), however, the overall 

correspondence between treatment targets and GWAS-implicated genes in psychiatric 

disorders rarely exceeded null expectations. Exploratory analysis assessing the overlap 

between the GWAS-identified genetic architecture and treatment targets across disorders 

identified that most disorder pairs and mapping methods did not show a significant 

correspondence.  

Conclusions and Relevance: The relatively low degree of correspondence across modalities 

suggests that the genetic architecture driving the risk for psychiatric disorders may be distinct 

from the pathophysiological mechanisms used for targeting symptom manifestations through 
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pharmacological treatments and that novel approaches for understanding and treating 

psychiatric disorders may be required. 
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Introduction 

One of the core goals of genome-wide association studies (GWASs) is to inform the 

development of pharmacological treatments,1 under the assumption that if select genes are 

important in driving risk for a disorder, treatments that influence the function of these genes 

should mitigate risk and/or alleviate symptom expression. Current drugs for psychiatric 

disorders, however, were developed independently from these genomic findings, and it remains 

unclear whether the mechanisms of action for symptom reduction relate to GWAS identified 

genetic variation. In fact, whereas most pharmacological treatments in psychiatry work by 

modulating neurotransmission,2–4 psychiatric GWAS studies generally implicate genes 

involved in neurodevelopment, synaptic regulation, and plasticity.5–7 This apparent discrepancy 

may be a potential explanation for the relatively low efficacy of current psychiatric 

treatments,4,8–12 suggesting that genetic liability for the disorder might differ from the 

pathophysiological mechanisms that influence symptom onset and severity. 

 

Converging evidence across complex disorders supports the overall relevance of genetic data 

in understanding and developing pharmacological treatments.13–15 For instance, drugs with 

genetic support move further along the development pipeline and are more likely to be 

clinically successful albeit the absolute size of the effect is relatively small.16,17 Moreover, genes 

that are less tolerant to mutations are more likely to be drug targets.16 GWAS-identified genes 

are also enriched in gene targets for drugs18 and demonstrate enrichment for relevant treatment-

related gene categories such as antipsychotics relating to schizophrenia genes19,20 and 

antidepressants, anxiolytics, and antipsychotics linked to major depression genes.21 However, 

only a very small fraction of current drug targets for complex disorders can be identified 

through GWAS studies,16,22–27 indicating that the exact correspondence between GWAS 

findings and pharmacological treatments is limited.  

 

Whereas the correspondence between GWAS findings and the respective treatment targets 

across a range of disorders is relatively low, incorporating functional information about gene 

action can provide a bridge between them. The main examples of integrating functional 

information to link pharmacological treatments and GWAS, however, come from studies of 

non-psychiatric disorders using connections in the protein interaction networks, Mendelian 

randomization approach, interactions through chromatin conformation, modulation of gene 

expression through eQTLs, or utilising the inverse relationship between the genetically-
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regulated and drug-induced expression signatures.13–15,28–31 Attempts to extend these functional 

genomics approaches to psychiatric disorders have been mainly limited to the analyses of 

transcriptomic data with the main focus on identifying potentially actionable treatment 

targets.32–35 Therefore, the utility of functional information derived from bioinformatic datasets 

to provide the link between the GWAS findings and corresponding treatments for psychiatric 

disorders remains unclear. 

 

Here we introduce a novel method to evaluate the relationships between genes implicated in 

GWAS for psychiatric disorders and their pharmacological treatments according to several 

bioinformatics modalities using a stringent null hypothesis-testing framework. This allows us 

to determine the degree to which different sources of functional genomic information facilitate 

links between GWAS findings and drug targets; identify which functional data provide the 

most accurate correspondence; and assess whether treatments for phenotypically and 

genetically similar disorders show correspondence to their respective GWASs.  

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2024. ; https://doi.org/10.1101/2022.05.11.22274981doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.11.22274981
http://creativecommons.org/licenses/by/4.0/


 7 

Method 

 

Data availability statement 

Data used in this manuscript are publicly available. Raw data files required for this project are 

hosted on a Figshare repository: https://doi.org/10.6084/m9.figshare.25356919. Full 

description of these datasets, code, and instructions for reproducibility are available at 

https://github.com/AurinaBMH/GWAS_drugs.  

 

Target selection 

Main analyses focused on four psychiatric disorders: ADHD, schizophrenia, bipolar disorder, 

and major depressive disorder. We additionally used type 2 diabetes (T2D) as a non-psychiatric 

benchmark for comparison.36 To assess the correspondence between GWAS-implicated genes 

and drug targets, we curated a set of 2232 genes  listed as targets for all approved treatments 

for all disorders in the DrugBank database37 [see details in eMethods 1 in Supplement 1]. For 

each disorder we selected a list of approved pharmacological treatments which included 14 

drugs for ADHD, 29 for schizophrenia, 22 for bipolar disorder, 48 for major depressive 

disorder, and 45 for diabetes. Each treatment had a corresponding set of gene targets based 

DrugBank 37 (version 5.1.11), ranging from 63 gene targets (for ADHD) to 139 targets (for 

major depressive disorder) from the total set of 2232 [see details in eMethods 1 in Supplement 

1]. We independently assigned each gene two scores for each disorder – one based on its 

involvement as a drug target for the disorder (as depicted in Fig. 1a), and the other based on 

the mapping between GWAS-implicated SNPs and genes according to one of four 

bioinformatic data modalities (as depicted in Fig.1 b-e).  

 

Treatment-based scoring 

Each gene was scored according to the specificity of each drug, where genes targeted by high-

specificity drugs were assigned proportionally higher values [see eMethods 2 in Supplement 

1]. Gene weights across all drugs for a disorder were then summed, producing a single 

treatment-based score vector, sdrug, that independently measured the involvement of each gene 

as a treatment target for that disorder (Fig.1 a). As a result, genes that are targeted by more 

drugs with high specificity were assigned higher values compared to genes that are targets for 

fewer drugs or drugs with low specificity [see eMethods 2 in Supplement 1]. Genes that do not 
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act as targets for that disorder were assigned a score of zero and consequently did not contribute 

to the similarity between GWAS-implicated genes and treatment targets.  

 

GWAS-based scoring 

The GWAS-based score, denoted sGWAS, quantified a gene's correspondence to GWAS 

identified variants, where similarity was defined with respect to one of four definitions 

(Fig. 1 b-e) that capture a distinct biological mechanism through which SNPs identified in a 

GWAS might influence genes: (i) the base-pair distance from the SNP on the DNA where 

genes with the highest number of significant SNPs get higher scores (Fig. 1 b); (ii) its 

topological proximity to the GWAS-implicated genes in the PPI network where we 

investigated the direct neighbours of those 2232 genes in the PPI network and calculated the 

proportion of these neighbours that were implicated in a GWAS (Fig. 1 c); (iii) its brain eQTLs 

quantifying the extent to which GWAS-identified SNPs act as eQTLs in brain tissue (Fig. 1 d); 

and (iv) its spatial pattern of gene expression across the brain38, where higher scores are 

assigned to genes whose expression patterns were more strongly correlated to genes identified 

through GWAS (Fig.1 e) [for all details see eMethods 3 in Supplement 1].  

 

Gene-score similarity 

After scoring genes both according to their involvement in current disorder treatments (sdrug) 

and to their implication by GWAS (sGWAS), we developed a method to assess the 

correspondence between the two sets of scores. We first normalized each of the score vectors 

across genes and calculated the inner product between these two unit-normalized vectors, 

resulting in a weighted similarity score, r [see eMethods 4 in Supplement 1]. As a result, only 

genes that were assigned non-zero scores for both sdrug and sGWAS contributed to this similarity 

score.  

 

Evaluating significance based on random treatments 

In contrast to previously used approaches that have applied relatively lenient significance 

testing (e.g. comparing a set of GWAS-implicated genes to all available genes),16,22,23,39 we 

evaluated the significance of a given weighted similarity score, remp, using a permutation test 

comparing it to an ensemble of 5000 null values, rrand, generated by independently selecting a 

set of random drugs (while preserving the number of drugs associated with the disorder) [see 

eMethods 5 in Supplement 1]. As a result, a significant association indicates that GWAS-
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implicated genes match treatment targets for a selected disorder over and above what is 

expected by a random set of currently approved drugs as defined in the DrugBank database. 

 

 
Figure 1. Evaluating the relationships between drug targets and GWAS by scoring genes based on: (i) their 
involvement in approved pharmaceutical treatments; and (ii) GWAS, for a given psychiatric disorder. (a) 
The analysis is based on a set of all clinically approved treatments. For each disorder, each of 2232 target genes 
derived from the DrugBank database37 are assigned scores corresponding to their role as a target across drugs 
approved for use in treating that disorder. A gene is scored based on its specificity for each drug by assigning a 
value of w = 1/L, where L is the total number of targets for that drug. The total score for a gene is quantified as a 
sum of scores across drugs. For each disorder, the same set of 2232 genes is also scored based on their similarity 
to variants implicated in corresponding GWASs using four main methods for mapping SNPs to genes: (b) SNP 
position, where the SNPs are mapped to genes based on their position on the DNA and the gene score consequently 
proportional to the cumulative effect size of all SNPs mapped to that gene; (c) PPI network, where genes are 
scored based on the proportion of their direct neighbors that are implicated in GWAS (as mapped based on SNP 
position); (d) brain eQTL, where genes are scored based on the cumulative impact of GWAS-identified SNPs on 
influencing their expression; (e) regional gene-expression similarity calculated from the Allen Human Brain Atlas 
(AHBA).38 First, for each pair of genes in the AHBA, the similarity of their spatial gene-expression profiles is 
quantified using a measure of gene-gene coexpression. Then, GWAS-implicated genes are identified based on 
SNP position and for each of 2232 target genes, coexpression value distributions are compared between GWAS-
implicated and all other genes. As a result, a gene receives a high score if its coexpression with GWAS-implicated 
genes is, on average, higher than its coexpression with all other genes. 
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Results 

 

Correspondence between GWAS-implicated genes and treatment targets 

We first investigated whether current treatments for a given psychiatric disorder have gene 

targets that are more similar to their corresponding GWAS than a random set of drugs for each 

of the four mapping methods separately (Fig. 1 b-e). Mapping GWAS results to genes via the 

PPI network identified a significant correspondence for both diabetes (pperm = 0.0001) and 

bipolar disorder (pperm = 0.0001) (Fig. 2 b, permutation test against randomly selected drugs, 

statistically significant following Bonferroni correction for n = 5 tests, plotted as -log10(p) 

[see eMethods 5 in Supplement 1]), but no associations for schizophrenia, ADHD, or major 

depression.  

 
Figure 2. Bipolar disorder and diabetes demonstrate correspondence between treatment targets and genes 
implicated in GWAS data for each disorder. For a given disorder and mapping method, circles represent the 
significance of the association between the gene scores obtained from a set of drugs, sdrug, and GWAS data, sGWAS, 
computed as a permutation test relative to a set of 5000 null scores generated from random drugs and plotted as -
log10(p) [see details in eMethods 5 in Supplement 1].  Subplots correspond to the four GWAS mapping methods: 
(a) SNP position, (b) PPI network, (c) Brain eQTL, (d) Gene-expression similarity (cf. Fig. 1 b-e). Higher -log10(p) 
values indicate a stronger correspondence between GWAS and drug targets for a given disorder than expected 
from random treatments. Circles are colored by the disorder they represent (as labeled). Horizontal lines represent 
p-value thresholds: dark gray line – p = 0.01 (significant at α= 0.05 after Bonferroni correction for five disorders); 
light gray line – p = 0.05. 

 

To shed light on the potential reasons why bipolar disorder was the only psychiatric disorder 

that displayed a GWAS-drug association, we performed a gene ontology (GO) enrichment 

analysis on both treatment and GWAS-based scores [see eMethods 6 in Supplement 1]. It 

indicated that treatment targets for all four psychiatric disorders are consistently enriched for 

GO categories related to synaptic signalling [see Supplement 2]. In contrast, the number of 

b | PPI network c | Brain eQTL d | AHBAa | SNP position
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synaptic signalling-related categories for GWAS-implicated genes based on the PPI mapping 

was very low for all disorders except for bipolar disorder, where 9 of the top 20 categories 

involved transmembrane transport and other synaptic transmission and plasticity-related 

processes. These results suggest that the correspondence between treatment targets and 

GWAS-implicated genes for bipolar disorder is likely to occur due to the functional role of 

GWAS-implicated genes rather than the unique targets of bipolar disorder drugs. 

 

For positional mapping the correspondence between drug targets and GWAS genes also 

significantly exceeded null expectation for diabetes (Fig. 2 a, pperm = 0.0056). Whereas bipolar 

disorder demonstrated a relatively strong (pperm < 0.05), but non-significant correspondence 

(pperm > 0.01) using both positional and regional gene-expression-based mapping (Fig. 2 a,d). 

Associations for brain eQTL-based mapping did not exceed null expectation for any disorder 

(Fig. 2 c). 

 

Our method also allows us to quantify the contribution of individual genes to the 

correspondence between GWAS and treatment-based scores, and thus delineate which genes 

drive the identified associations. The contribution of each gene to the similarity score, r, was 

quantified by comparing the inner product of 𝑠!
"#$% and 𝑠!&'() in real data to the distribution 

of inner product values derived from a null model [see eMethods 5 in Supplement 1]. To 

understand the functional roles of the most strongly implicated genes, we next investigated the 

associations identified for bipolar disorder and diabetes via PPI. We found that genes with the 

strongest involvement for bipolar disorder play roles in neurotransmission (ADRA2C, GRIA3, 

GSK3B, HTR5A, HTR6, HTR7, pcorr < 2.2 x 10-5, Bonferroni correction for n = 2232 tests), 

whereas genes implicated in diabetes were predominantly involved in insulin secretion and 

glucose metabolism (e.g., ABCC8, DPP4, GLP1R, pcorr < 2.2 ´ 10-5, Bonferroni correction for 

n = 2232 tests) [see eMethods 4 and eTable 1 in Supplement 1]. The fact that we identified 

genes with distinct and specific functional roles for both disorders was partially predetermined 

by their treatment targets, however, these genes contributed to the similarity between GWAS 

and treatment targets over and above the expectation based on the null model indicating their 

specific contribution.  

 

We next performed exploratory analyses to assess whether treatments for some psychiatric 

disorders overlap with the GWAS genes of phenotypically and genetically similar disorders, 
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expanding the comparison to all pairwise combinations of GWAS and treatment scores. Except 

for the previously identified associations for bipolar disorder and diabetes 

(eFigure 1 b (IV,V), d (IV)), most other disorder pairs and mapping methods did not show a 

significant correspondence after correcting for multiple comparisons. The strongest 

associations were identified for bipolar disorder, major depression, schizophrenia, and ADHD 

– treatment targets for bipolar disorder were linked to genes implicated in major depression 

(pperm < 0.01), ADHD (pperm < 0.01), and schizophrenia (0.01 < pperm < 0.05) 

(eFigure 1 a (II, III), b (I, II, III), d (II, IV)), whereas treatment targets for schizophrenia were 

related to major depression and ADHD GWAS genes 0.01 < pperm  < 0.05) 

(eFigure 1 a (II), b (I)). Although not statistically significant, these cross-disorder associations 

are consistent with well-described phenotypic and genetic overlaps of  schizophrenia, bipolar 

disorder, major depression, and ADHD.40 

 

The impact of data-processing choices 

To identify whether different data-processing choices could improve the correspondence 

between GWAS and current treatment targets, we explored additional approaches for GWAS-

to-drug target mapping such as representing the PPI network at varying densities, expanding 

eQTLs to include other tissues, as well as using data quantifying long-range chromatin 

interactions (Hi-c) resulting in a set of 27 measures [see eMethods 7 in Supplement 1]. As 

shown in eFigure 2, gene scores derived from different mapping methods demonstrated varying 

levels of similarity – PPI-based measures were generally more similar to each other than to Hi-

c or eQTL-based scores, whereas regional gene expression was not similar to other measures.  

 

The degree of correspondence between GWAS-implicated genes and treatment targets was 

markedly variable (Fig. 3): none of the individual mapping methods yielded significant 

matches for ADHD or schizophrenia (Fig. 3 a-c), whereas major depression, bipolar disorder, 

and diabetes exhibited significant correspondences for several PPI-based measures 

(Fig. 3 b,d,e). Consistent with the initial findings, gene scores assigned from the PPI network 

were generally the most informative for bipolar disorder, major depression, and diabetes, 

suggesting that indirect interactions through gene products might be involved in the mechanism 

of pharmacological treatments. 
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Figure 3. PPI-based mapping methods show the strongest correspondence between treatment targets and 
genes implicated in a GWAS for bipolar disorder and diabetes. Circles represent the significance of the 
association between the treatment-based score, sdrug, and GWAS-based score, sGWAS, for a selected disorder. The 
significance is quantified using a permutation-based p-value comparing the empirical GWAS-treatment matching 
score r to a set of 5000 matching scores generated using a selection of random drugs [see details in eMethods 5 
in Supplement 1]. The position of the circle corresponds to -log10(p) where higher values indicate a more 
significant association. Subplots correspond to different disorders: (a) ADHD, (b) major depression, 
(c) schizophrenia, (d) bipolar disorder, and (e) diabetes. Colors indicate different types of mapping methods: SNP 
position (dark green); spatial transcriptomic similarity (gray); chromatin interaction, Hi-c (pink); PPI network 
quantified as the proportion of neighbors (light blue); PPI network quantified as the total number of neighbors 
(dark blue); and eQTL (light green); linear combination of all measures (red; the null model was also adjusted to 
incorporate the linear regression across all measures in each iteration to account for this optimization step). 
Horizontal lines represent the degree of statistical significance: light gray line – pperm = 8.3 ´ 10-3 (Bonferroni 
correction for six types of measures, this threshold provides guidance for the expected significance level 
considering that groups of measures derived from the same type of mapping method show a degree of similarity); 
dark gray line -- pperm = 1.9 ´10-3 (Bonferroni correction for 27 measures); black line -- pperm  = 3.7 ´ 10-4 
(Bonferroni correction for 27 measures and 5 disorders, this threshold provides guidance for a highly conservative 
correction assuming independence among all mapping methods and disorders). Permutation-based approach 
estimates a p-value with a minimum resolution of 2 ´ 10-4 (corresponding to 1/5000). If the estimated p-value is 
lower, we conservatively place it at 2 ´ 10-4. 

 

We additionally evaluated whether complementary information derived from different 

mapping methods could increase correspondence to treatment targets. A linear combination of 

27 available measures provided a statistically significant correspondence for bipolar disorder 

(pperm = 2 ´ 10-4), and an improvement relative to all other measures for schizophrenia 

(pperm = 0.003, slightly above the Bonferroni-corrected threshold for 27 measures, p = 0.002), 

but did not outperform individual measures for ADHD, major depressive disorder, and diabetes 

(Fig. 3). Whereas our results are mixed, the example of schizophrenia demonstrates that 

complementary information from multiple bioinformatic sources can sometimes be combined 

to substantially improve the correspondence between GWAS and treatment targets. 

 

Overall similar results were obtained using different sets of GWAS summary statistics data for 

all psychiatric disorders6,7,41,42 as well as diabetes43 (eFigure 3-5) indicating that the results are 

Combined measures AHBAChromatin interactioneQTLPercent of PPI neighbors Number of PPI neighborsSNP position

M
ea
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s

a | ADHD b | Major depression c | Schizophrenia d | Bipolar disorder e | Diabetes
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not unduly influenced by the GWAS sample size. To assess if our findings were specific to 

psychiatric disorders, we also evaluated the correspondence between treatment targets and 

genes implicated by GWAS for several non-psychiatric diseases such as heart failure, 

rheumatoid arthritis, and inflammatory bowel disease. In most cases, individual mapping 

methods, as well as the combined score, did not provide significant correspondence between 

GWAS-implicated genes and treatment targets, suggesting poor mapping for these non-

psychiatric disorders (eFigure 6). 
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Discussion 

 

In addition to identifying the genetic architecture of complex disorders, GWAS research aims 

to inform potential treatment targets that can be used in pharmacological interventions to 

alleviate the symptom expression. The possibility that risk genes for psychiatric disorders may 

act by creating vulnerability to illness during development through pathways that are distinct 

from the pathophysiological mechanisms influencing symptom onset and severity, however, is 

commonly overlooked. Here we aimed to investigate whether the mechanisms of action of 

pharmacological treatments specifically relate to the disorder-associated genetic variation 

identified through GWAS. To test this, we introduced a new method for assessing the 

correspondence between genetic variation implicated in GWAS for complex disorders and 

their pharmacological treatment targets using multiple bioinformatic modalities. 

 

Whereas our method was able to identify associations for diabetes indicating its general utility 

for establishing meaningful links, in line with previous findings16,22–27 we found that the overall 

degree of correspondence between GWAS-implicated genes for psychiatric disorders and their 

respective treatment targets was low – only bipolar disorder exhibited significant associations, 

that were detectable when incorporating functional information derived from the PPI network. 

Importantly, these results were not strongly dependent on the size of the corresponding GWASs 

used in the analyses (eFigure 3-5), indicating that any lack of association does not simply arise 

from insufficient gene discovery power. 

 

Our comprehensive analyses incorporating a range of bioinformatic modalities suggest that the 

genetic liability to psychiatric disorders might differ from the systems that are currently 

targeted by their pharmacological treatments. This implies that current treatments for these 

disorders are not designed to address the underlying causative events that lead to the 

development of the disorder. This notion is also supported by the fact that a large fraction of 

genes identified through GWASs relate to neurodevelopmental processes such as presynaptic 

and neuron differentiation, neuronal morphogenesis and projection,5 neuronal development 

and synapse formation,6,44 as well as synaptic plasticity,7,41 whereas targets for 

pharmacological treatments mostly involve genes for synaptic signalling indicating a likely 

disconnect between the genetic susceptibility and the mechanisms targeted by drugs.  
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Our results demonstrate that, among different data-processing options, PPI network-based 

mapping methods consistently yielded the strongest GWAS–drug associations (Fig. 3 b,d,e), 

supporting the idea that the concordance between GWAS and pharmacological treatments is 

likely to involve interactions between the corresponding gene products.22,39,45 These findings 

are also in line with the comprehensive evaluation of approaches for drug target identification 

demonstrating that incorporating diffusion through PPI network significantly increases drug 

target identification.15 

 

Besides investigating the concordance between GWAS and treatment targets for individual 

disorders, our approach also allowed us to directly test cross-disorder correspondence – 

namely, whether treatment targets for one disorder match genes implicated in the GWAS of 

others. The suggestive associations identified between treatments for bipolar disorder and 

genes implicated in both major depression and schizophrenia are consistent with the general 

profile of bipolar disorder treatments as they target some of the overlapping symptoms between 

these disorders, such as depressive mood and psychotic episodes. Similarity in the genetic 

architecture between bipolar disorder, major depression, ADHD, and schizophrenia, quantified 

through the genetic correlation40 and common biological pathways,46 is in line with the 

observed coupling between GWAS and treatment targets. These findings accord with the 

results from a drug repurposing study indicating that repurposing candidates for bipolar 

disorder included a number of antipsychotics and antidepressants, whereas antipsychotics were 

commonly found among top hits for major depression.32 

 

In contrast to previous studies which mainly evaluated significance with respect to gene set 

and pathway enrichment,16,19–21,47 or compared the identified correspondences to what could 

be expected using all available genes,22,23,39 our approach introduces a more stringent null 

model for evaluating associations based on other available treatments. In other words, instead 

of evaluating the correspondence compared to the rest of the genome, our approach addresses 

the specificity of those associations in the context of all available treatments by quantifying if 

the GWAS-implicated genes for a given disorder match its treatment targets to a higher extent 

than other drugs. Based on this null model, GWAS-implicated genes for a particular disorder 

are expected to demonstrate a specific coupling with corresponding treatments exceeding the 

associations with treatments for unrelated disorders. Our proposed method also offers the 

advantage of tailoring the null model by expanding or restricting the range of treatment 

categories used in generating the null distribution. For instance, when focusing on psychiatric 
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disorders, we can restrict the null model to psychiatric treatments or adjust their categories 

based on other criteria (eFigure 7). The key advantage of such a modification is the ability to 

refine the testing based on the relevance of selected treatments. 
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Conclusions 

We observed a relatively low degree of correspondence between treatment targets and GWAS-

implicated genes, suggesting that the genetic architecture of risk for psychiatric disorders may 

be distinct from the pathophysiological mechanisms targeted by current pharmacological 

treatments. This work encourages the further development of novel approaches for 

understanding and treating psychiatric disorders. With improvements in quantifying eQTLs, as 

well as the development of spatially comprehensive time-resolved and cell-specific gene-

expression atlases similar methods can be easily used to investigate other complex disorders 

and examine potential cross-disorder associations.  
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