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Abstract 

Public health indicators typically used for COVID-19 surveillance can be biased or lag changing 

community transmission patterns. The United States city of Chicago opportunistically investigated 

whether sentinel surveillance of recently symptomatic individuals receiving outpatient diagnostic testing 

for SARS-CoV-2 could accurately assess the instantaneous reproductive number R(t) and provide early 

warning of changes in transmission. Patients tested at community-based diagnostic testing sites 

between September 2020 and June 2021, and reporting symptom onset within four days preceding their 

test, formed the sentinel population. R(t) calculated from sentinel cases agreed well with R(t) from other 

indicators. Retrospectively, trends in sentinel cases did not precede trends in COVID-19 hospital 

admissions by any identifiable lead time. In deployment, sentinel surveillance held an operational 

recency advantage of nine days over hospital admissions. The promising performance of opportunistic 

sentinel surveillance suggests that deliberately designed outpatient sentinel surveillance would provide 

robust early warning of increasing transmission. 

 

Introduction 

In the SARS-CoV-2 pandemic, the ability of public health agencies to monitor disease incidence and 

trends in transmission has formed a critical component of public health preparedness and response [1-

4]. Worldwide, policymakers have implemented staged regional mitigation systems, where the 

progression of a region from one stage of mitigation policy to another is contingent upon certain 

indicators surpassing a given threshold or relative rate of growth [5-7]. The timeliness of mitigation 

measures is a decisive factor in their efficacy; delaying the implementation of mitigation measures can 

drastically increase prevalence, mortality, and the probability that healthcare systems are overwhelmed 

amidst a surge in transmission [8-12]. Thus, it is crucial that the indicators that inform these mitigation 

measures represent a timely and accurate measure of trends in infection prevalence. 
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Many common indicators of SARS-CoV-2 transmission are inherently biased or delayed. Incident cases, 

the fraction of diagnostic tests that return a positive result (test positivity rate, TPR), or any other metric 

based on diagnostic testing in the general population is subject to bias due to fluctuating access to, 

availability of, and demand for diagnostic testing. These factors vary across time, geography, age, and 

racial and ethnic groups, and the data needed to control for these biases is often unavailable [1, 13-17]. 

The timeliness of data can also be hampered by long turn-around-times and delays in vendors’ reporting 

of test results to health agencies [14]. 

Severe outcomes, such as COVID-19 hospital admissions, emergency department visits, and deaths, are 

more reliable indicators of community transmission [1]. However, hospital admission can lag infection 

by as much as two weeks, and deaths can further lag hospital admission by another week (Table 1) [18-

23]. Hospital- and death-based indicators are thus inherently limited in their ability to report very recent 

trends in transmission [24]. Furthermore, hospitalizations and deaths better represent older populations 

that are more likely to experience severe outcomes and may not report accurately for the general 

population if transmission trends in older populations diverge from those in younger populations [1]. For 

instance, if a population-wide surge in disease burden is initially driven by an increase in transmission in 

younger age-groups, hospital-based indicators will not reflect this change until this increase in 

transmission propagates to the older age groups better-represented in admissions and ED visits. 

Additionally, if hospitalizations in older populations are greatly reduced by vaccination, signals of trends 

in community transmission derived from hospital admissions are further muddled. 

Sentinel populations can be used to track changes in SARS-CoV-2 transmission in the general population 

and have previously been used or proposed for monitoring seasonal and pandemic influenza [25, 26]. As 

long as testing criteria and sampling effort on the sentinel population are predefined and do not change 

with time, COVID-19 surveillance on the sentinel population should be less subject to selection bias than 

diagnostic testing in the population at-large. 

This study used data from patients tested at community-based testing programs operated by the 

Chicago Department of Public Health (CDPH) and the Illinois Department of Public Health (IDPH) to 

assess trends in SARS-CoV-2 transmission with minimal bias and lag in the United States (US) city of 

Chicago (Figure 1). These community-based testing programs had been implemented to improve access 

to testing in underrepresented groups, and this study opportunistically reused the data to evaluate the 

potential utility of outpatient-based sentinel surveillance. Recently symptomatic individuals (onset 

within 4 days of test) were used as the sentinel population from which to estimate the instantaneous 

effective reproductive number R(t), a measure of community transmission. In theory, this approach 

would provide operational recency over hospital-based indicators, since symptom onset occurs sooner 

after infection than hospitalization, allowing R(t) to be estimated for more recent dates (Figure 1, Table 

1). Furthermore, sentinel surveillance would provide information on trends in younger populations than 

the hospitalized population, which, if changes in transmission occur first in younger populations, could 

result in trends in sentinel surveillance data leading trends in hospitalizations. The extent to which 

sentinel surveillance captured gold-standard hospital admission trends was evaluated and the lead time 

and operational recency of sentinel surveillance data over hospitalization data was assessed. 
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Figure 1. Theoretical diagram of the instantaneous effective reproductive number R(t) derived from 

hospitalizations (orange) and sentinel surveillance (blue). Because symptom onset typically occurs 

sooner in the course of disease than a visit to the emergency department or hospitalization, sentinel 

cases can return more recent estimates of R(t) than hospital-based indicators. With sufficient sample 

size, sentinel surveillance could also return more precise estimates of R(t).  

 

Table 1: Delays associated with each indicator traditionally used for SARS-CoV-2 surveillance and the 

theoretical operational recency provided by outpatient sentinel surveillance. 

 

Results 

From September 2020 to June 2021, CDPH and IDPH operated a combined 10 static and 167 mobile 

community-based diagnostic testing sites in the city of Chicago that collected data on symptom status 

and date of symptom onset (Figure 2A). These testing sites targeted communities experiencing high 

COVID-19 incidence and demographic groups and geographic areas underrepresented in testing by 

other clinical providers [29]. Testing sites focused specifically on serving Hispanic/Latino residents 

because this population had the highest daily incidence of COVID-19 of any racial/ethnic group during 

the study period (Figure 3). Diagnostic testing data from CDPH and IDPH community-based sites were 

re-analyzed in this study as outpatient sentinel surveillance. Of 324,872 total specimens collected during 

the study period, 21,406 were from Chicago residents with a valid recorded date of symptom onset, and 

13,952 met the criteria to be sentinel samples (residing in Chicago with symptom onset date at most 

Indicator Presentation 
date 

Days from infection 
to presentation 
median (IQR) 
[source] 

Days from 
presentation to 
report during 
study period 

Days from 
infection to 
report 
(operational lag) 

Cases Date of 
specimen 
collection 

8 (4 – 14) [27, 28] ~2-3 ~10-11 

Hospital admissions Date of 
admission 

10 (7 – 14) [18, 21] ~5 ~15 

Emergency 
department (ED) visits 

Date of ED 
visit 

10 (7 – 14) [18, 21] ~1-2 ~11-12 

Outpatient sentinel 
surveillance 

Date of 
symptom 
onset 

5 (4 – 7) [21] ~2 ~7 
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four days prior to specimen collection date, see Methods and Figure S1). Of the sentinel samples, 5,407 

were collected at CDPH-operated static sites (Figure 2, sites a – h), 7,478 at IDPH-operated static sites 

(Figure 2, sites i – j), and 1,067 at CDPH-operated mobile sites. The volume of sentinel samples collected 

each day fluctuated with the opening and closure of sites and decreased on weekends (Figure 2B, 2C). 

Cumulatively across the study period, 3,607 sentinel samples returned a positive diagnosis (25.8%) and 

were considered sentinel cases (Figure S1). 

 

 

Figure 2. Locations and volume of outpatient sentinel surveillance in Chicago from September 27, 2020, 

to June 13, 2021. A) Static sentinel testing site locations in Chicago. Letter labels correspond to site 

names in panel C. Colors indicate the percentage of each ZIP area’s residents who are Hispanic/Latino or 

Non-Hispanic Black. B) Total sentinel samples (blue, n=13,952) and sentinel cases (red, n=3,607) plotted 

by date of symptom onset. C) Operating dates (black bars) of static sentinel testing sites. 

Compared with the general Chicago population and with all diagnostic tests performed during the study 

period, sentinel samples had a higher proportion of Hispanic/Latino residents (Figure 3A). By proportion, 

the sentinel population was more Hispanic/Latino than COVID-19-confirmed hospitalizations, less non-

Hispanic Black, and less non-Hispanic White. The age distribution of sentinel samples (9.9% greater than 

60 years old) was younger than that of COVID-19-confirmed hospitalizations (52.7% greater than 60 

years old) and COVID-19-confirmed emergency department (ED) visits (38.3% greater than 60 years old), 

more closely resembling, but still younger than, the age distribution of the population at large (18.9% 

greater than 60 years old) and the age distribution of all diagnostic tests (18.3% greater than 60 years 
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old) (Figure 3B). Sentinel sites performed <10% of all diagnostic tests in Chicago during the study period 

and only 0.4% of all diagnostic tests in Chicago were enrolled as sentinel samples. 

 

Figure 3. Demographic breakdowns by A) race/ethnicity and B) age group for 2019 Chicago population 

estimates, all diagnostic tests, sentinel samples, COVID-19-confirmed emergency department (ED) visits, 

and COVID-19-confirmed hospital admissions during the study period. Race/ethnicity data was not 

available for ED visits. Three hospitalizations and 75 ED visits were of unknown age, and are excluded 

from (B). 

 

R(t) Estimation 

Trends in transmission were evaluated from time series derived from sentinel cases, sentinel test 

positivity rate (sentinel cases adjusted for testing volume, see Methods), general population cases, CLI 

emergency department visits (CLI ED), COVID-19-confirmed emergency department visits (COVID ED), 

CLI hospital admissions (CLI admits), and COVID-19-confirmed hospital admissions (COVID admits) by 

estimating the time-varying instantaneous reproductive number R(t) from each data series (Figure 4A). 

R(t) was calculated with epyestim v0.1 [27], a Python implementation of the method developed by Cori 

et al. [30]. R(t) > 1 indicates a growing epidemic and R(t) < 1 indicates a shrinking epidemic. The larger 

confidence interval for R(t) estimates from sentinel cases toward the end of the study period reflects the 

decline in testing demand and lower number of sentinel cases collected in May-June 2021 (Figure 2B). 

The agreement between R(t) estimates derived from two data series was defined as the percentage of 

the study period when both median R(t) estimates were ≥ 1.0 or both were < 1.0. Agreement was 

highest between CLI ED, COVID ED, CLI admits, and COVID admits (Figure 4B). R(t) derived from sentinel 

cases agreed with R(t) from COVID admissions on 85.5% of dates. Adjusting sentinel case counts by the 

volume of sentinel samples with the same day of symptom onset (sentinel TPR) did not improve 

correlation with other indicators, producing an R(t) series with 69.0% agreement with COVID admits. 

R(t) derived from sentinel cases produced slightly better agreement with hospital-based indicators in the 
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latter half of the study period (February-June 2021, Figure S3). Agreement between all R(t) estimates 

worsened slightly when R(t) was calculated with a seven-day smoothing window (Figure S4). 

Of 21,046 specimens meeting all other criteria to be sentinel samples, 13,952 had a symptom onset date 

four or fewer days prior to their specimen collection date (65.2%) and 16,271 had a symptom onset date 

seven or fewer days prior to their specimen collection date (76.0%) (Figure S5). Varying the inclusion 

criteria for sentinel samples from symptom onset ≤3 days prior to specimen collection to symptom 

onset ≤7 days prior to specimen collection did not appreciably change retrospective agreement between 

R(t) derived from sentinel cases and R(t) derived from other indicators (Figure S6). During the first three 

months of deployment, variation in testing volume was accounted for by employing a subsampling 

technique wherein only sentinel cases from a random sample of 40 sentinel samples collected each day 

were considered. This technique did not improve retrospective agreement between R(t) derived from 

sentinel cases and R(t) derived from other indicators (Figure S7).  

Lead time estimation 

The lead time of sentinel cases over all cases, ED visits, and hospital admissions was evaluated by 

calculating cross-correlation functions between each case, visit, or admission timeseries in relation to 

the other timeseries. Changes in sentinel cases did not precede changes in any hospital-based indicators 

by any identifiable lead time (Figure 4C). Changes in sentinel TPR returned positive lead times over cases 

and hospital-based indicators, albeit with low correlation and high uncertainty. Cases from the general 

population led COVID ED visits by about four days [lead time of 3 (-1, 8) days, peak ρ = 0.932]. CLI ED 

visits led CLI admits by about four days [lead time of 4 (0, 7) days, peak ρ = 0.961] and COVID ED visits 

led COVID admits by about three days [lead time of 3 (-1, 6) days, peak ρ = 0.973]. 
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Figure 4. Retrospective performance of sentinel cases at quantifying transmission and providing lead 

time compared with emergency department visits and hospital admissions. A) R(t) calculated from seven 

types of surveillance data. Solid lines indicate median estimates and shaded regions show 95% 

confidence intervals. B) Similarity matrix of percent agreement between R(t) series. Percent agreement 

is the percentage of dates when the median R(t) estimates of two series are both ≥ 1.0 or both < 1.0. C) 

Cross-correlation functions between seven types of surveillance data. Lead time indicates the number of 

days the series shown on the x-axis was displaced relative to the series on the y-axis. Positive lead time 

indicates that the x series leads the y series and negative lead time indicates that the x series lags the y 

series. Solid blue lines show nominal values of Spearman’s ρ and shaded regions indicate the 95% 

confidence interval from 1,000 bootstrapped estimates. Red solid lines indicate the lead time at which 

maximum correlation is achieved; this lead time is noted in the upper left corner of each plot. Red 

shaded regions indicate an uncertainty bound for the lead time (see Methods). 

Operational recency evaluation 
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To evaluate operational performance of sentinel surveillance with recently symptomatic patients, we 

first corrected for right-censoring of sentinel cases using epidemic nowcasting [31-35], drawing from 

empirical data collected during the study period to estimate the proportional completeness of recent 

data (Figure 5A). We tested three models of proportional completeness, drawing from data from the 

last 30 days (past month retrospective), all previous dates in the study period (all-time retrospective), or 

all previous dates in the study period on the same day of the week as the date being nowcasted (day-of-

week model). For each evaluation date in the study period, we applied each model of proportional 

completeness, then evaluated R(t) (Figure 5B). Nowcasting was not performed for hospital admissions 

due to inconsistent backfilling of hospitalization data across the study period. Where nowcasting can be 

applied to hospitalization data, counts are right-censored over a much larger window than with sentinel 

surveillance, engendering greater uncertainty in nowcasted estimates [31, 32]. 

Operationally, complete estimates of R(t) were available for a given date nine days earlier with sentinel 

surveillance data than with hospitalization data. With nowcasting, sentinel surveillance showed 

increases in R(t) weeks before the same increase was registered by hospital data. For example, on an 

evaluation date of February 27, 2021, nowcasted sentinel case counts suggested that R(t) had risen past 

1.0 on February 20, 2021; for this particular increase in transmission, COVID-confirmed admissions only 

returned R(t) > 1 on evaluation date March 17, 2021, 18 days later. 

 

We calculated false positive and false negative rates of real-time R(t) estimates by comparing against 

R(t) values derived from uncensored sentinel case counts (Figure 5C). Deriving R(t) from censored 

counts frequently underestimated recent reproductive rates, with a false negative rate (R(t)censored < 1 

whereas R(t)uncensored ≥ 1) of 0.4 and a false positive rate (R(t)censored ≥ 1 whereas R(t)uncensored < 1) of 0.0. 

Nowcasting decreased the false negative rate at little expense to the false positive rate. Nowcasting with 

an all-time retrospective model returned a lower false positive rate than nowcasting with a past-month 

retrospective or day-of-week model. 
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Figure 5. Operational performance of sentinel surveillance. A) Sentinel case counts for a representative 

evaluation date of February 27, 2021. Black dots: sentinel case counts fully accessible on the evaluation 

date. Gray dots: sentinel case counts partially accessible or not yet accessible on the evaluation date. 

Red dots: right-censored sentinel case counts available on the evaluation date. Blue dots: nowcasts 

sentinel case counts with a past-month retrospective model. Blue shaded region: 95% confidence 

interval for nowcasted counts. B) R(t) derived from uncensored sentinel cases, right-censored sentinel 

cases, nowcasted sentinel cases, and COVID-confirmed admissions for an evaluation date of February 

27, 2021. C) False negative and false positive rates of R(t) derived from right-censored and nowcasted 

sentinel cases when compared to R(t) derived from uncensored case counts.  

 

Discussion 

This study used convenience data from community-based testing programs to opportunistically evaluate 

a potential outpatient sentinel surveillance system for COVID-19 based on the diagnostic testing results 

of recently symptomatic individuals. Although the daily volume of sentinel samples fluctuated 

substantially over the study period and the sentinel population was not demographically representative 

of Chicago’s population at-large, R(t) estimated from sentinel cases was in good agreement with R(t) 

estimated from hospital data in the general population. Since the COVID-19 pandemic did not affect 

various racial and ethnic groups to the same extent in Illinois [17], and the sentinel population was more 

Hispanic/Latino than the general population, the small divergence between sentinel R(t) and hospital-

based R(t) could indicate true differences in transmission dynamics between the sentinel and general 

populations. However, the general agreement in sentinel R(t) and hospital admissions R(t) is impressive 

given the biased sampling frame of the sentinel cases. 

Because symptoms are expected to develop an average of 5.5 days after infection and hospital 

admission occurs an average of 11.1 days after infection [18, 21], the naïve expectation for retrospective 

lead time of trends in sentinel cases over trends in hospital admissions was 5-6 days. Retrospective 

cross-correlation analysis revealed no identifiable lead time between sentinel cases and hospital-based 

indicators. A combination of factors could contribute to this observation. First, the low number of daily 

counts obtained from sentinel surveillance adds significant noise, obscuring potential trends in lead 

time. Second, because delays between infection and symptom onset or between infection and 

hospitalization both follow skewed distributions (Figure S2), the median lead will be less than 5.5 days 

(i.e., less than the mean lead time). Third, although the use of smoothing windows was necessary in this 

analysis to remove day-of-week effects, smoothing blurs temporal changes in each indicator, which 

could complicate extracting trends through cross-correlation analysis. Finally, it is possible that the true 

distributions of days from infection to hospitalization and days from infection to symptom onset 

changed over the course of the study period with the arrival of different variants in Chicago. Estimates 

of lead time between an adjusted sentinel case time series (sentinel TPR) and hospital-based indicators, 

while positive, were highly uncertain. Sampling effort fluctuated substantially during the study period 

and increasing the number of sentinel samples collected relative to the size of the general population 

would likely produce more precise estimates of lead time. 

 

R(t) estimates are sensitive to serial interval estimates. The serial interval distribution and delay 

distributions used were derived from empirical research conducted before the global emergence of the 
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Delta variant (Pango lineage B.1.617.2), which is suspected to spread with a shorter serial interval than 

the strains in circulation at the time of these studies [36, 37]. For the two-week period ending on June 5, 

2021, the CDC estimated the national proportion among incidents infections of all variants carrying a 

L452R spike protein substitution to be 15.3%, suggesting that the Delta variant’s impact on the serial 

interval was likely minor across the study period [38]. The serial interval is also expected to change with 

implementation of non-pharmaceutical interventions (NPIs), which included back-and-forth impositions 

and relaxations of mask mandates and indoor dining restrictions during the study period [39]. However, 

the actual extent to which NPIs changed the behavior of Chicago residents is unknown and it is unclear 

how to include changes in NPIs in estimates of the serial interval. R(t) estimates are also sensitive to 

delay distribution estimates, and erroneous assumptions in the delay distribution of one indicator can 

harm the accuracy of pairwise comparisons of R(t) and other indicators. For instance, if trends in 

sentinel cases and admissions were identical, but the assumed distribution from infection to symptom 

onset (the delay distribution used for sentinel cases) is too short, increases in R(t) derived from sentinel 

cases would appear later in time than increases in R(t) derived from admissions. 

The timeliness and accuracy of recent admission and ED visit data is limited by the completeness and 

frequency with which individual hospitals and hospital systems report their data to public health 

agencies. Many COVID-confirmed hospitalizations are only reported several weeks after admission; for 

instance, three months after the conclusion of the study period, 6,294 COVID-confirmed hospitalizations 

were newly recorded for dates during the study period. Sentinel surveillance with a trusted set of 

outpatient diagnostic testing vendors would circumvent this issue, ensuring that case counts are 

complete as soon as test results are returned and that the most recent estimates of epidemic growth 

are timely and accurate. 

The operational recency advantage of sentinel surveillance was apparent during deployment in Chicago. 

Complete data from sentinel testing usually became available after about two days (e.g. a dataset made 

available on Friday would include test results with specimen collection dates up to the preceding 

Wednesday), whereas complete data from hospital admissions only became available after about five 

days (e.g. a dataset made available on Friday would only include hospital admissions up to the preceding 

Sunday). Thus, on a typical evaluation date, the most recent estimates of R(t) from hospital admissions 

were for 16 days prior, whereas the most recent estimates of R(t) from sentinel surveillance were for 

seven days prior. These reporting lags added to the intrinsic lag between symptom onset and 

hospitalization to create an aggregate advantage in operational recency of nine days for sentinel 

surveillance over hospital admissions.  

The operational recency of sentinel surveillance can be compromised by atypical operational delays that 

do not affect other indicators. During the study period, although typical wait times for complete sentinel 

testing data were around two days, delays in test turnaround time occasionally further extended this 

wait. In the most extreme instance, in February 2021, inclement weather closed several sentinel testing 

sites and prolonged the delivery of specimens to vendor laboratories, causing wait times for sentinel 

data in excess of seven days. 

Deployment of outpatient symptomatic sentinel surveillance relies on robust and consistent collection 

of symptom data (including date of symptom onset) across time and across sites. Despite federal 

guidance [40], such symptom data has been very poorly collected at US outpatient diagnostic testing 

sites. In this study, collection of symptom data was not consistent between community-based testing 
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sites and thus symptomatic individuals could only be identified by their own reporting of a symptom 

onset date rather than by meeting a consistent definition of “symptomatic”. Stringent standards for 

collection of symptom data should be established prior to and enforced during deployment of this 

method of sentinel surveillance. In settings where symptom status is well-collected but symptom onset 

date collection is relatively incomplete, date of symptom onset could feasibly be imputed for missing 

values [41]. Even with these limitations related to the sentinel population chosen for this study, 

estimates of community transmission derived from sentinel cases approximated those of established, 

hospitalization-based indicators – with a population based sample and standardized collection of 

symptom information, such as the UK’s Office for National Statistics Infection Survey [42], the 

performance and value of this sentinel surveillance model may be enhanced. 

In Chicago, the low volume of sentinel samples ultimately limited the precision of trends estimated from 

sentinel surveillance. However, that even a low-volume, unrepresentative, and opportunistic outpatient 

sentinel surveillance performed fairly well strongly suggests that a deliberate sentinel surveillance 

system, with high testing volume, routine reporting of date of symptom onset, and representative 

sampling of outpatient providers, would provide robust early warning. With sufficient sentinel sampling 

volume, neighborhood-level R(t) estimations should be possible. Under conditions of exponential 

growth, even 1-2 weeks’ early warning could save lives. 

 

Conclusions 

Monitoring transmission trends in recently symptomatic individuals through a convenience sentinel 

surveillance sample increases operational recency of trend estimates and could provide lead time over 

trends from hospital admissions and emergency department visits, even if sentinel sites are not 

representative of the general population. A deliberate sentinel model, including population-based 

sampling and standardized symptom data collection, would further enhance the timeliness, accuracy 

and public health value of these data. 

 

Methods 

Data collection for sentinel surveillance 

Chicago is an urban area of 2.7 million people located in the central US state of Illinois [43]. From May 

13, 2020, CDPH and IDPH operated community-based SARS-CoV-2 diagnostic testing sites throughout 

Chicago. These sites were primarily intended to increase access to diagnostic testing among 

communities disproportionately affected by COVID-19 and those with the least access to diagnostic 

testing through other providers [29]. This study focuses on the period from September 27, 2020, to June 

13, 2021, when these sites held consistent hours and reliably collected information on symptoms. In this 

period, CDPH operated static sites at eight locations (Figure 2, sites a – h) and IDPH operated sites at 

two locations (Figure 2, sites i – j). CDPH also held 167 single-day mobile testing site events during this 

period, during which testing vans were positioned outside a community venue for 4-6 hours. Hours of 

operation varied by test site and day of week. In March 2021, IDPH sites moved from offering testing all 

seven days a week to just three days a week. All sites, mobile and static, solely offered anterior nares 

molecular (PCR) diagnostic tests. All individuals receiving a test were asked to report recent symptoms 
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and provide the date of symptom onset. Those testing at IDPH sites were asked to report the presence 

or absence of symptoms from COVID-19 symptom list from the Centers for Disease Control and 

Prevention (CDC) [44]. Those testing at CDPH sites were asked only to report the presence or absence of 

any symptoms without reference to any list of expected symptoms of COVID-19. Due to this discrepancy 

in the collection of symptom data, symptom status for sentinel surveillance was determined by the 

presence of absence of a symptom onset date. All Chicago residents reporting symptom onset within 

four or fewer days of their specimen collection date were included in the sentinel samples. Sentinel 

cases were defined as sentinel samples with a positive test result (Figure S1). Data was pulled on July 6, 

2021. 

Other data sources 

COVID-19-confirmed hospital admissions among Chicago residents, COVID-like illness (CLI) emergency 

department visits among Chicago residents, COVID-19-confirmed emergency department visits among 

Chicago residents, and all cases among Chicago residents were obtained from the City of Chicago Public 

Data Portal [45, 46]. CLI admissions among Chicago residents were obtained from IDPH on August 25, 

2021. Demographic data by ZIP code and citywide were obtained from the 2019 U.S. Census Bureau 

American Community Survey through the City of Chicago Public Data Portal [43]. 

Data on diagnostic tests in the general population were obtained from the Illinois National Electronic 

Disease Surveillance System (I-NEDSS) database and included PCR and antigen tests, but not serological 

tests, performed in Illinois on Chicago residents between September 27, 2020, and June 13, 2021. Data 

were reported as daily total tests by single year of age and race/ethnicity. Ages ranging from 0 to 116 

years were considered valid, and others were reassigned null values. Racial/ethnic values included 

Hispanic/Latino, White non-Hispanic, Black or African American non-Hispanic, Asian non-Hispanic, 

Native Hawaiian or Other Pacific Islander non-Hispanic, American Indian or Alaskan Native non-Hispanic, 

Other non-Hispanic, and Unknown. Due to small sample sizes, data rows indicating Native Hawaiian or 

Other Pacific Islander, American Indian or Alaskan Native, or multiple racial/ethnic categories were 

reassigned as Other non-Hispanic. 

R(t) estimation 

R(t) was estimated from case time series with epyestim v0.1 [27], a Python implementation of the 

method developed by Cori et al. [30]. All R(t) estimates used epyestim’s default SARS-CoV-2 serial 

interval distribution, derived from Flaxman et al. [47], and a final rolling average window of 14 days 

(r_window_size=14). Without knowledge of the date of a case’s actual date of infection, this R(t) 

estimation method attempts to infer the date of infection for each case based on the case’s date of 

presentation (e.g., date of symptom onset, date of specimen collection, date of hospital admission, etc). 

To estimate the date of infection, epyestim uses a “reporting delay distribution”, which represents an 

estimated distribution of days between infection and this presentation date (defined in Table 1 for each 

data type). For sentinel data, the reporting delay distribution is the time from infection to symptom 

onset, which was approximated with a gamma distribution with shape factor 5.807 and scale factor 

0.948 (mean 5.51 days) [21]. The time from symptom onset to hospitalization or emergency department 

visit was approximated with a gamma distribution with shape factor 1.104 and scale factor 5.074 (mean 

5.60 days) (Figure S2) [18]. The reporting delay distribution for hospital admissions and emergency 

department visits represents the total time from infection to hospitalization and was thus modeled as 

the sum of the infection-to-onset and onset-to-hospitalization distributions using a gamma distribution 
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with shape factor 3.667 and scale factor 3.029 (mean 11.11 days) (Figure S2). For cases in the general 

population, the reporting delay distribution represents the time from infection to test (date of specimen 

collection). This was modeled with epyestim’s default reporting delay distribution, derived from a 

convolution of the incubation time distribution and the onset to test distribution derived from Brauner 

et al. (mean 10.33 days) (Figure S2) [28]. 

To adjust for changing sentinel testing volume over the study window, an additional sentinel time series, 

sentinel test positivity rate (sentinel TPR), was calculated for each date of symptom onset by dividing the 

total number of sentinel cases by the total number of sentinel samples, multiplied by the average 

number of daily sentinel samples across the study window (53.9 samples/day). 

Lead time estimation 

To estimate the lead time of one metric over another, pairwise cross-correlation functions were made 

between counts timeseries of sentinel cases, sentinel TPR, cases in the general population, CLI 

emergency department visits, COVID-19-confirmed emergency department visits, CLI hospital 

admissions and COVID-19-confirmed hospital admissions. A seven-day centered moving average was 

applied to each raw timeseries to eliminate day-of-week effects. For each cross-correlation function, 

one timeseries was iteratively displaced by -25 to 25 days and Spearman’s ρ was calculated between the 

displaced and non-displaced timeseries. All calculations of Spearman’s ρ were supplemented with 1,000 

bootstrapped estimates to produce 95% confidence intervals of ρ at each lead time. The lead time at 

which Spearman’s ρ achieved its maximum was considered the point estimate of lead time for that 

comparison. The uncertainty in the lead time was estimated by taking the minimum and maximum lead 

times at which the 97.5th percentile of bootstrapped estimates of Spearman’s ρ were greater than the 

maximum nominal correlation. 

Operational recency evaluation 

Epidemic nowcasting [31-35] was used to correct for recent underreporting in sentinel case counts. For 

each date t, we estimated the proportional completeness of counts on dates t – 5, t – 4, t – 3, and t – 2 

at the time of evaluation to inflate the sentinel case counts on those dates prior to calculating R(t). 

Proportional completeness was estimated from a retrospective window of one month, all time, or by 

day-of-week. For the past-month retrospective model, the retrospective window used was the 30 dates 

of symptom onset immediately preceding t – 5. For the all-time retrospective model, the retrospective 

window used was all dates in the study window preceding t – 5. For the day-of-week retrospective 

model, the retrospective window used was all dates in the study window preceding t – 5 that shared the 

same day of the week as the date being nowcasted. If the censored count on any date to be nowcasted 

was zero, a pseudo-count of 1 was used.  

 

Each proportional completeness model was evaluated for every potential evaluation date in the study 

period. On each date t, right-censored counts and all three sets of nowcasted counts were used to 

estimate R(t). These estimates of R(t) were compared to estimates of R(t) derived from uncensored 

counts. Instances where the most recent R(t)nowcast < 1 but the most recent R(t)uncensored ≥ 1 were counted 

as false negatives. Instances where the most recent R(t)nowcast ≥ 1 but the most recent R(t)uncensored < 1 

were counted as false positives. 

Data availability 
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Restrictions apply to the availability of sentinel surveillance data and individual-level diagnostic tests 

from I-NEDSS, which contain identifiable private health information. Interested parties should contact 

CDPH or IDPH to inquire about access. Public data on cases, testing, ED visits, and hospital admissions 

are available from CDPH’s Public Data Portal. 

Code availability 

All code used for data analysis is available at 

https://github.com/numalariamodeling/chicago_sentinel_surveillance. 
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