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Abstract 

Polygenic risk scores (PRSs) can boost risk-prediction in late-onset Alzheimer’s disease 

(LOAD) beyond apolipoprotein E (APOE) but have not been leveraged to identify genetic 

resilience factors. Here, we sought to identify resilience-conferring common genetic variants in 1) 

unaffected individuals having high PRSs for LOAD, and 2) unaffected APOE-ε4 carriers also 

having high PRSs for LOAD. We used genome-wide association study (GWAS) to contrast 

“resilient” unaffected individuals at the highest genetic risk for LOAD with LOAD cases at 

comparable risk. From GWAS results, we constructed polygenic resilience scores to aggregate 

the addictive contributions of risk-orthogonal common variants that promote resilience to LOAD. 

Replication of resilience scores was undertaken in eight independent studies. We successfully 

replicated two polygenic resilience scores that reduce genetic-risk penetrance for LOAD. We 

also showed that polygenic resilience scores positively correlate with polygenic risk scores in 

unaffected individuals, perhaps aiding in staving off disease. Our findings align with the 

hypothesis that a combination of risk-independent common variants mediates resilience to 

LOAD by moderating genetic disease risk. 
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Abbreviations: 

AD, Alzheimer’s disease; LOAD, late-onset Alzheimer’s disease; SNPs, single nucleotide 

polymorphisms; GWASs, genome-wide association studies; APOE, apolipoprotein E; PRS, 

polygenic risk score; AAO, age-at-onset; AAE, age-at-last-examination; QC, quality-control; 

HRC, Haplotype Reference Consortium; GERAD, Genetic and Environmental Risk for 

Alzheimer’s disease; LD, linkage-disequilibrium; OR, odds ratio; CI, confidence interval; SD, 

standard deviation; df, degree of freedom; ADNI, Alzheimer’s Disease Neuroimaging Initiative; 

ADC7, Alzheimer Disease Centers Wave 7.  
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1. Introduction  

Alzheimer’s disease (AD) is the leading cause of dementia1. AD exists as two genetically 

distinct forms: early-onset AD, which is caused by autosomal dominant mutations in genes 

(PSEN1; PSEN2; APP; SORL1) and typically has an onset of symptoms between the ages of 

40 to 60 years2, and the more common late-onset AD (LOAD), which is sporadic, polygenic, and 

typically has an onset of symptoms in the mid-60s3. Elevated risk of LOAD is associated with a 

host of lifestyle factors and medical conditions, such as a high-fat diet, heavy drinking and 

smoking, cardiovascular disease, type-2 diabetes, and traumatic brain injury4. More importantly, 

the heritability of LOAD from twin studies was estimated at 58%-79%5, and its estimates from 

single nucleotide polymorphisms (SNPs) range from 13% to 33%6-9. The goal of this study is to 

determine whether genes also play a role in resilience to LOAD. We used an innovative 

approach first introduced and applied in schizophrenia as a general framework for resilience 

research10, focusing on individuals at the highest levels of genetic risk. 

To date, genome-wide association studies (GWASs) have discovered close to 50 

genome-wide significant loci (p<5e-08) associated with LOAD risk9, 11-20. The ε4 allele of 

apolipoprotein E (APOE) is the polymorphism with the strongest effect on LOAD susceptibility21. 

Beyond APOE-ε4, there may be thousands of additional genetic polymorphisms that make small 

individual contributions to the overall risk for LOAD22-25. A polygenic risk score (PRS)26 can be 

derived by summing the weighted effect of SNPs to identify a single genetic risk variable that 

reflects one’s relative susceptibility to LOAD. Recent LOAD PRSs capture most of the SNP-

heritability for LOAD9, 24, 27. Extensive research shows that PRSs boost the accuracy of LOAD 

diagnosis beyond the performance of APOE22-25, and capture LOAD phenotypic variability not 

explained by APOE status28, 29.   

Revealing the genetic architecture of LOAD is vital for understanding its etiology and 

identifying molecular targets for innovative therapeutic interventions. Yet, knowledge of risk 

factors might be fruitfully complemented by an understanding of resilience-associated or -
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promoting mechanisms as well. As such, some AD research has shifted focus from 

symptomatic cases to healthy aging individuals or asymptomatic individuals at elevated risk30. 

This was motivated by the premise that high-risk asymptomatic individuals, yet unaffected, may 

provide clues that protect them against AD. Here, we employ the term “resilience” to indicate 

individuals who show better than expected outcomes in the face of high genetic risk for 

disease30-35. 

Increasing evidence suggests that several factors—including education, literacy, 

physical activity, and mental activity—can moderate the risk for LOAD31, 32, 36, and it is estimated 

that one-third to 40% of dementia cases might be preventable36, 37. These moderation effects 

may be explained by reverse causation38, but genetic influences—which are not subject to 

reverse causation—also underlie these factors. Educational attainment39, 40 and, particularly, 

general cognitive ability40, 41 are heritable. Thus, some of these factors may also confer 

resilience-enhancing genetic effects. Notably, some genetic variants, such as APOE-ε242 and 

the APP A673T variant43, have been identified as protective for LOAD. However, the biological 

mechanisms that drive the protective effects remain largely unknown. Importantly, we consider 

such protective effects to be fundamentally different from the “resilience” effects we sought in 

our study, in that protective factors are generally operative across the full range of risk, whereas 

resilience factors are only operative in those at the highest risk for disease. Very little work has 

been aimed at identifying additional genetic resilience factors that potentially moderate the 

genetic risk established by the cumulative effects of risk-associated alleles and their 

corresponding protective alleles. Genetic resilience against risk for LOAD has been investigated 

through diverse approaches based on varying conceptualizations and measurements used to 

identify individuals at high risk. As aggregation of beta-amyloid plaques and tau tangles in the 

brain are two of the neuropathological hallmarks of LOAD44, a principal focus of resilience has 

been on asymptomatic individuals who have cognition levels that are better than predicted 

based on these pathologies45-47. Other studies have leveraged known genetic risk factors to 
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study resilience. For example, in APOE-ε4 carriers, over a dozen SNPs have been reported to 

potentially facilitate resilience, such as rs10553596 in CASP748 and the rs4934 nonsynonymous 

variant in SERPINA349, 50. However, a substantial part of the genetic risk for LOAD is neglected 

without incorporating the effects of genes other than APOE. Thus, although composite genetic 

risk indices (such as the PRS) are growing in popularity and utility, they have not been 

employed in the service of identifying genetic resilience for LOAD. Now, with very large 

numbers of LOAD samples and a more comprehensive profile of the genetic factors that confer 

LOAD risk, we are entering a period in which it is possible to study the interplay of genetic risk 

factors and genetic modifiers that reduce their penetrance.  

Here, we posit the existence of common genetic variants, which have not been identified 

by GWAS as associated with AD as either risk or protective factors, that can help older adults 

remain LOAD-free despite a high genetic-risk burden. We hypothesize that there exist 

resilience-associated variants that lower LOAD susceptibility in a manner that is statistically 

independent of the effects of risk-associated alleles (or their alternative protective alleles). We 

tested this hypothesis by capitalizing on the most comprehensive known PRS for LOAD18 and 

APOE allelic status to develop two designs identifying unaffected individuals with the highest 

genetic likelihood of developing LOAD. Design 1 defined “resilient” individuals as normal 

controls with the highest PRSs for LOAD. Design 2 defined “resilient” individuals as normal 

controls with at least one APOE-ε4 allele and the highest LOAD PRSs (excluding the APOE 

region). We aimed to discover residual common genetic variants that confer resilience to 

unaffected individuals in the highest genetic risk-tiers for LOAD. We then leveraged this profile 

of resilience-promoting genetic variants to build a polygenic resilience score for LOAD. We 

hypothesized that polygenic resilience scores would account for significant variation in affection 

status for LOAD among individuals with high genetic risk, and would show a significant positive 

correlation with PRSs in unaffected controls.  
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2. Methods 

2.1 Research design 

Our workflow is shown in Figure 1. In stage 1, a recent GWAS meta-analysis for 

LOAD18 was leveraged for identifying risk variants and polygenic risk scoring. In stage 2, we 

compared two analytic designs to identify high-risk “resilient” normal controls and “risk-matched” 

LOAD cases. In stage 3, a resilience GWAS was conducted for each design using the identified 

high-risk individuals. Then the polygenic resilience score weights were derived from resilience 

GWAS meta-analysis summary statistics. Finally, polygenic resilience scores were replicated in 

independent external studies for evaluating the performance in distinguishing high-risk “resilient” 

normal controls from “risk-matched” LOAD cases. The parameters of each analysis step are 

summarized in Supplementary Table 3. 

 

2.2 Samples and genotypes 

Table 1 shows the number of normal controls, LOAD cases, high-risk “resilient” normal 

controls, and “risk-matched” LOAD cases in each study. Summary statistics of age-at-onset 

(AAO) for LOAD cases and age-at-last-examination (AAE) for normal controls are presented in 

Supplementary Table 1. In design 1 and design 2, the mean AAE of high-risk “resilient” normal 

controls and the mean AAO of “risk-matched” LOAD cases ranged from 70.3 to 80.9, and there 

were no significant age differences between groups. A common lower bound for AAO of LOAD 

is 65; however, the age cutoff has no specific biological significance3, and many genetic studies 

of LOAD have included cases with AAO as low as 60 (and the same AAE for unaffected 

comparison subjects). Therefore, we included participants in our analysis having AAO/AAE ≥60 

years old. The full name and accessibility of each study can be found in Supplementary Table 

2. All 26 studies in the discovery stage came from the stage-1 AD GWAS meta-analysis of 

Kunkle et al.18. The eight studies in the replication stage are fully independent of the discovery 

studies. Full descriptions of the discovery and replication samples were published previously9, 17, 
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18, 51, 52. Genotypes for all studies were imputed using the Haplotype Reference Consortium 

(HRC) r1.1 2016 reference panel53. Detailed quality control (QC) steps for samples and 

genotypes are described in Supplementary Methods. 

 

2.3 Identifying individuals at high genetic risk 

In design 1, a PRS was used to select individuals with high genetic risk. The PRS 

weights were derived from stage-1 AD GWAS meta-analysis summary statistics18. See 

Supplementary Methods for further details. The variance in AD explained by PRS maximizes 

at a p-value threshold of 0.5 in samples from GERAD (Genetic and Environmental Risk for 

Alzheimer’s disease)23, so we adopted this threshold for risk scoring. Within each study, LOAD 

cases and normal controls were ranked based on their PRSs. Following the original workflow10, 

the 10% of controls with the highest PRSs were classified as “resilient”. The LOAD cases whose 

risk scores were between the 90th percentile and the maximum PRS in controls were retained 

as risk-matched LOAD cases for comparison.  

In design 2, we restricted the analysis to APOE-ε4 carriers. APOE and its flanking region 

(chr19: 44,400kb–46,500kb)23 were removed from the PRS. As this analysis was restricted to 

fewer individuals, we lowered the high-PRS cutoff for identifying “resilient” individuals to the 80th 

percentile to retain more participants and preserve power. In this design, “resilient” normal 

controls were identified as those with at least one APOE-ε4 allele, and a risk score ranked at 

≥80th percentile. Risk-matched LOAD cases were defined as APOE-ε4 carriers whose PRSs fell 

within the high-PRS range of “resilient” normal controls.  

 

2.4 Derivation, replication, and statistical analysis of polygenic resilience scores 

GWASs of resilience were performed using logistic regression with Plink (version 1.9)54. 

Selected principal components, AAO/AAE and sex were used as covariates. A GWAS meta-

analysis was conducted in METAL55 software using an inverse-variance random-effect model 
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with genomic control. In accord with the pipeline described by Hess et al.10, SNPs known to be 

associated with LOAD risk were excluded from the resilience-scoring algorithm; these were 

defined as those SNPs that showed an association with AD risk (p<0.5) from the GWAS meta-

analysis summary statistics18, and variants that were in linkage-disequilibrium (LD) (r2
≥0.2 in a 

1Mb window) with those risk variants with associations of p<0.5. This pruning step of excluding 

risk variants from consideration as resilience loci serves as a conservative measure to avoid re-

discovering risk variants for resilience scoring. For both resilience designs, the polygenic 

resilience score weights were generated from the marginal SNPs of resilience GWAS meta-

analysis summary statistics following the same series of QC steps (see Supplementary 

Methods).  

Polygenic resilience scores were derived for 10 p-value thresholds, in a manner similar 

to the PRS algorithm, by summing up the weighted effective allele counts of SNPs26. Logistic 

regression was used to assess the likelihood of “resilient” group inclusion based on harboring a 

higher polygenic resilience score. Selected principal components, AAO/AAE and sex were used 

as covariates. For each polygenic resilience score, we meta-analyzed the natural logarithm of 

the odds ratio (OR) of being a high-risk “resilient” normal control versus a risk-matched LOAD 

case using a random-effects inverse-variance model using the R package metafor, and pooled 

variance explained in resilience across independent replication studies. All tests were two-tailed. 

See Supplementary Methods for further details.  

 

3. Results 

3.1 Resilience GWAS 

Design 1 produced 2,263 high-risk “resilient” normal controls and 11,309 risk-matched 

LOAD cases for the resilience GWAS meta-analysis. As expected, the sample size retained in 

design 2 was smaller, totaling 988 high-risk “resilient” normal controls and 6,541 risk-matched 

LOAD cases (Table 1). Because our analytic approaches used only subsets of all available 
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LOAD case-control GWAS data, we neither had nor anticipated having sufficient power to detect 

individual SNPs with genome-wide significant association with resilience (Supplementary 

Figure 3). Instead, our focus was on deriving and evaluating polygenic resilience scores. As a 

necessary step to generate SNP-weights for summation in those scores, we performed 

individual-SNP association tests and briefly reported the results in Supplementary Results. 

 

3.2 Replication and evaluation of polygenic resilience scores 

After removing risk-associated SNPs (p<0.5) and SNPs in LD with those risk-associated 

SNPs (r2
≥0.2), clumping the remaining marginal SNPs, and applying QC steps, a profile of 

18,723 SNPs was included in the resilience score for design 1, and 18,122 SNPs in design 2. 

Resilience scores for all 10 p-value thresholds were significantly associated with “resilient” 

group inclusion (“resilient” normal controls versus risk-matched LOAD cases) when tested in 

locally downloaded discovery datasets. Results of the association between “resilient” group 

inclusion and polygenic resilience scores from the replication datasets were meta-analyzed, 

yielding 1,056 high-risk “resilient” normal controls and 381 risk-matched LOAD cases in design 

1, and 583 high-risk “resilient” normal controls and 331 risk-matched LOAD cases in design 2 

(Table 1).  

In design 1, the meta-analysis found significant replication of the association between 

“resilient” group inclusion and polygenic resilience scores at two p-value thresholds (p<0.1, 

p<0.2) (Figure 2A). The most significant association was found for the polygenic resilience 

score containing all independent marginal SNPs with resilience GWAS p<0.1 (OR=1.24, 95% 

confidence interval [CI]=1.05-1.47, p=0.010). Resilience scores for the 0.1 p-value threshold 

explained an average of 1.3% (standard deviation [SD]=5.3%) of the variance in “resilient” 

group inclusion or 1.2% (SD=4.3%) (Figure 2B) of the variance on the liability scale, i.e., SNP-

heritability of resilience. No significant (p<0.05) replication of the association between “resilient” 
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group inclusion and polygenic resilience scores was observed for any of the 10 polygenic 

resilience scores in design 2.  

 

3.3 Interaction of risk and resilience effects 

In the full samples from three locally downloaded replication studies (Alzheimer Disease 

Centers Wave 7 [ADC7], AddNeuroMed, and Alzheimer’s Disease Neuroimaging Initiative stage 

GO/2/3 [ADNI-GO/2/3]; normal controls, n=1,321; LOAD cases, n=943) (Table 1 and 

Supplementary Table 1), we tested for correlations between PRSs and polygenic resilience 

scores. As hypothesized, the standardized polygenic resilience scores of the optimal p<0.1 

threshold in design 1 exhibited a significant positive correlation with PRSs in normal controls 

(Pearson’s r=0.102, 95% CI=0.048-0.155, degree of freedom [df]=1319, p=2.1e-04), and no 

significant correlation was observed in LOAD cases (Pearson’s r=0.022, 95% CI=-0.042-0.085, 

df =941, p=0.51) (Figure 3).  

 

4. Discussion 

We applied a validated analytic framework to detect common variants that, when 

combined into a polygenic resilience score, are associated with lower LOAD-risk penetrance 

among older individuals with relatively high genetic risk of disease. We found reliable evidence 

to reinforce the notion that unaffected individuals with higher genetic risk-loads may be 

protected from complex diseases, such as LOAD, by the collective effects of risk-independent 

common variants that reduce the penetrance of one’s overall genetic risk burden. Identifying 

genetic factors that moderate risk penetrance may prove valuable for explaining the missing 

heritability and etiologic heterogeneity of LOAD, which in turn could shed light on 

pathophysiological mechanisms and eventually lead to better interventions and preventive 

treatments.  
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4.1 Risk-countering effects of polygenic resilience scores 

Individuals with higher polygenic resilience scores (p<0.1 and p<0.2 thresholds of design 

1) had higher odds of being a “resilient” high-risk normal control than a risk-matched LOAD case. 

Polygenic resilience scores (design 1) significantly increased with higher PRSs in normal 

controls, but not in LOAD cases. Taken together, these results support the hypothesis that 

polygenic resilience scores capture risk-countering polygenic effects against the penetrance of 

high polygenic risk for LOAD, and that normal controls with higher PRSs are protected from 

LOAD by harboring correspondingly higher polygenic resilience scores. Although no polygenic 

resilience scores in design 2 demonstrated significant risk-buffering effects, we cannot rule out 

the possibility that common variants might reduce risk penetrance in normal controls with 

enriched risk from both APOE and PRSs. In fact, among APOE-ε4 carriers, higher resilience 

scores in design 1 at the p<0.1 threshold (OR=1.64, 95% CI=1.08-2.50, p=0.021) and the p<0.2 

threshold (OR=1.98, 95% CI=1.24-3.15, p=3.9e-03) were associated with higher odds of being 

a “resilient” high-PRS normal control than a risk-matched LOAD case. Among “resilient” high-

PRS controls, higher resilience scores in design 1 (p<0.2 threshold) were significantly 

associated with increased odds of carrying at least one APOE-ε4 allele (OR=1.57, 95% 

CI=1.07-2.29, p=0.021). A similar trend was observed when the p<0.1 threshold was used, 

although this was not significant (OR=1.30, 95% CI=0.90-1.89, p=0.16) (Supplementary 

Results). We therefore conclude that polygenic resilience scores may moderate the risk effects 

of the LOAD PRS generally, and the APOE-ε4 allele specifically. However, these analyses were 

carried out in relatively small studies (ADC7, AddNeuroMed, and ADNI-GO/2/3), and need to be 

repeated in larger, more powerful, replication samples. 

 

4.2 Interplay of polygenic effects and APOE 

In design 2, we hypothesized that a two-stage selection of individuals (with both higher 

PRSs and one or more APOE-ε4 alleles) would enrich for individuals with the absolute highest 
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genetic risk for LOAD56, 57; yet, there was a substantial reduction in the performance of design 2 

in contrast to design 1. The lack of significant replication of association with resilience in design 

2 simply might be due to lower statistical power in both the resilience score development and 

replication stages, considering the total sample size of design 2 is approximately half that of 

design 1. Alternatively, resilience-promoting variants may be found among APOE-ε4 carriers 

through broader exploration of the model-parameter space (e.g., PRS threshold in particular), 

separate evaluation of APOE-ε4 homozygotes and various heterozygote combinations, and 

more accurate modeling of the genetic architecture of resilience (see limitations below). An 

important question future studies should address is to what extent common variants may 

influence the penetrance of genetic risk in larger samples of APOE-ε4 carriers, or whether the 

prevalence of risk-modifying common variants differs between APOE-ε4 carriers and non-

carriers. 

On the other hand, multiple studies22-25, 28, 58-61 have revealed that PRSs capture 

independent risk effects beyond APOE alone, while few studies have explored the risk-

predictive performance of PRSs stratified by APOE status. Higher PRSs were found to be 

associated with increased susceptibility for LOAD in APOE-ε4 non-carriers25, 29, 56. Furthermore, 

the risk effects of PRS deciles across APOE status could be dependent on the ages of 

participants29, 56, 60, 62. Further mining of the complex relationship between the risk effects of 

PRSs and APOE is outside the scope of the current study; however, further investigations on 

the penetrance of high PRSs among APOE-ε4 carriers and non-carriers seem warranted.  

 

4.3 Strengths and limitations 

Our approach has identified candidate resilience loci that may ultimately serve as targets 

for the promotion of resilience. We examined the performance of two polygenic resilience 

scores: design 1 selected participants with the highest polygenic risk regardless of APOE-ε4 

status, while design 2 restricted analyses to APOE-ε4 carriers. To our knowledge, this is the first 
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study to identify a polygenic resilience score for genetic LOAD risk, comprising thousands of 

risk-independent common variants that partially offset the genetic risk conferred by a relatively 

high PRS. An important distinction of the current study relative to prior work on genetic 

resilience to LOAD is that we accounted not only for the risk from APOE, but also the aggregate 

effect of thousands of additional risk variants throughout the genome via the LOAD PRS.  

A conservative variant-filtering strategy was applied, which resulted in the removal of 

common variants associated with LOAD risk variants (risk association p<0.5) and those in 

liberal LD (r2>0.2) with LOAD risk variants. A strength of this approach is that we ensured the 

polygenic resilience scores derived in the current study are independent of the risk scores so 

that the SNPs comprising the polygenic resilience score are not sub-threshold risk SNPs. 

Additionally, the resilience alleles of these risk-residual SNPs are not simply protective alleles 

defined in a risk framework, where each biallelic locus is defined by both a risk allele and a 

corresponding and opposing protective allele. Thus, this strategy helps identify resilience effects 

that are conditioned on net risk effects, owing to the combination of risk and protective alleles 

summed in polygenic risk scores. Yet, although our approach is conservative, it is limited in the 

identification of a better-performing resilience score because most of the genome has been 

discarded from the analysis. Biologically, it is plausible that variants nearby risk loci, such as 

those in the same LD block or in the same gene with risk SNPs, could exert modifying 

functions63. Our conservative strategy, discarding all SNPs with any semblance of risk-

association, and those in liberal LD threshold with such SNPs, consequently leads to lower 

power in uncovering variants with potentially higher biological functionality. This notion is borne 

out in the fact that no significant gene-ontology pathways were enriched by resilience-related 

common variants identified in this study (results not shown). With larger samples, resilience-

conferring SNPs may be investigated using a stricter LD threshold (e.g., r2>0.1) to further 

restrain the “hitchhiking” of risk variants. More importantly, Mendelian randomization, conditional 

association testing, or simulation analysis may be better suited to evaluate the hypothesis that 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.22274858doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.10.22274858
http://creativecommons.org/licenses/by-nc/4.0/


 

 16

resilience signals are more likely to co-localize with risk loci or genes. In addition, filtering 

variants by LD with risk SNPs results in a low LD structure among the remaining SNPs as 

demonstrated previously10, which diminishes our capacity to examine the genetic correlation of 

resilience to LOAD with other risk- or resilience-related phenotypes (e.g., via LD score 

regression). A high priority should be placed on the design of new methods that can detect 

resilience-associated SNPs that may reside in regions of strong LD with risk variants.  

Resilience was defined by discrete groups in our analysis, which truncated effective 

sample sizes to the upper tail of the risk distribution. In the future, when larger samples are 

available, higher risk thresholds can be applied and more extreme-risk samples could be 

leveraged to increase statistical power. Theoretically, resilience also could be a continuous 

measure. Thus, our resilience approach might also be improved by leveraging all study samples 

and modeling the continuity of resilience using either linear or non-linear analysis. Despite the 

restricted sample sizes in the current study, two p-value thresholds of the resilience scores in 

design 1 were sufficiently robust to replicate significantly in fully independent studies. Further 

replication would be key to testing the validity of these resilience scores. It is expected that the 

strength of our results (in terms of variance-explained and the significance of associations) will 

only increase with the addition of more samples.  

Several studies9, 22, 58, 64 indicated that polygenic risk scores of p-value thresholds less 

than 0.5 (i.e., 5e-08, 1e-05) might show better performance in predicting LOAD risk. Therefore, it 

may be valuable to compare the performance of resilience scores developed from risk scores at 

other p-value thresholds. In addition, it is likely that a subgroup of “resilient” normal controls 

identified in the present work will eventually develop LOAD, but with later onset. Thus, all 

resilient participants demonstrate resilience against high levels of genetic risk for LOAD, but 

only those who never develop LOAD are additionally resistant against the disease itself. Lastly, 

the participants in our analysis were of European ancestry, so the degree of generalization of 

our results to non-European populations is presently unknown. 
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4.4 Future directions 

Two analysis designs were deployed in the current study to select individuals with a high 

genetic risk burden from both PRSs and APOE, and other methods could be devised to expand 

the capabilities of our resilience approach in LOAD. It has been suggested, for example, that 

using a PRS with the APOE region removed and adding APOE alleles as a covariate may boost 

the performance of LOAD risk prediction65, compared with incorporating APOE alleles as 

weighted SNPs in PRSs. In addition, it could be important to include the number of APOE-ε4 or 

ε2 alleles as covariates in resilience analysis models to better reflect the relative risk levels 

among individuals.  

Potentially, polygenic resilience scores from the current study could be applied to other 

resilience-related questions. For example, it would be instrumental in discovering the extent to 

which polygenic resilience score is associated with other phenotypes that have been associated 

with resilience to LOAD risk (e.g., education, general cognitive ability in early life, and other 

indices of cognitive reserve, brain reserve, or brain maintenance)31, 32, 66-70. In follow-up studies, 

it might be illuminating to investigate whether these resilience-promoting genetic factors show 

protective effects for cognitive impairment or LOAD-related pathophysiological changes. 

 

4.5 Conclusion 

We found evidence to support the hypothesis that thousands of risk-independent 

common variants underlie resilience among unaffected individuals with higher genetic risk for 

LOAD. We conclude that common variants not in LD with known LOAD risk variants exert a 

protective effect on LOAD risk. Our findings provide a significant and novel contribution to the 

existing understanding of genetic resilience to LOAD risk. This novel approach highlights a 

window of opportunity for identifying risk-modifying biological mechanisms and potential 

pathways for intervention in populations at the highest risk for LOAD.  
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Data availability 

Resilience-scoring weights for design 1 can be shared by request. The Alzheimer's 

Disease Genetics Consortium (ADGC), the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 

and the AddNeuroMed data used in this study were provided under restricted access by 

NIAGADS (https://www.niagads.org), ADNI (http://adni.loni.usc.edu), and Synapse platform 

(https://www.synapse.org/#!Synapse:syn4907804), respectively. Only summary statistics were 

made available to us from the European Alzheimer’s Disease Initiative (EADI), the Genetic and 

Environmental Risk in Alzheimer’s Disease (GERAD), the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE), the Psychiatric Genomic Consortium (PGC), 

the Australian Imaging, Biomarker & Lifestyle Study (AIBL), and the Sydney Memory and 

Ageing Study (Sydney MAS). 
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Table and figure legend 

Table 1. The number of LOAD cases and normal controls, high-risk normal controls 

("resilient" individuals) and risk-matched LOAD cases identified in each of the discovery 

and replication studies. 

Abbreviations: LOAD, late-onset Alzheimer's disease. A list of study full names is in 

Supplementary Table 2. 

Note: "Retained" column indicates the percentage of high-risk normal controls of all normal 

controls retained for resilience genome-wide association analysis per study, or the percentage 

of risk-matched LOAD cases of all LOAD cases retained in analysis per study. ROSMAP2 study 

had no LOAD cases (highlighted in red) whose risk matched with high-risk normal controls in 

design 2, and was not included in analysis for design 2. 

 

Figure 1. An illustration of the workflow of deriving polygenic resilience scores for late-

onset Alzheimer’s disease (LOAD) for design 1 and design 2. Stage 1: Using prior LOAD 

GWAS results to calculate polygenic risk scores (PRSs). Stage 2: Identifying resilient individuals. 

In stage 2, we deployed two analysis designs differing in the definition of “resilient” individuals. 

In design 1, normal controls with LOAD PRSs ≥90th percentile were defined as “resilient” 

participants. In design 2, within the subset of normal controls who had at least one 

apolipoprotein E (APOE)-ε4 allele, a threshold of ≥80th percentile of PRSs (excluding SNPs in 

the APOE region) was used to define high-risk controls as “resilient”. Stage 3: Resilience 

genome-wide association study (GWAS) and replication of polygenic resilience scores. GWAS 

was performed using “resilient” individuals and risk-matched affected cases from each of the 

two designs. For each design, polygenic resilience scores were derived and evaluated in 

external replication datasets. Abbreviations: LD, linkage disequilibrium; OR, odds ratio; SNPs, 

single nucleotide polymorphisms. 
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Figure 2. The performance of polygenic resilience scores in capturing resilience 

variability in independent replication studies. In design 1, normal controls with late-onset 

Alzheimer’s disease (LOAD) polygenic risk scores (PRSs) ≥90th percentile were defined as 

“resilient” participants. In design 2, a threshold of ≥80th percentile of PRSs (excluding SNPs in 

the apolipoprotein E [APOE] region) was used to define high-risk controls as “resilient” within 

the normal controls who have at least one APOE-ε4 allele. Panels A and B: design 1 (high-risk 

normal controls, n = 1,056; risk-matched LOAD cases, n = 381). Panels C and D: design 2 

(high-risk normal controls, n = 583; risk-matched LOAD cases, n = 331). The odds ratio (OR) 

and variance explained by polygenic resilience scores reflect meta-analytic results from 

independent replication samples. Nagelkerke’s pseudo-R2 values in the liability scale are 

weighted average using the weights from the meta-analysis of ORs. The dot-plots (Panels A 

and C) show corresponding ORs for resilience scores across 10 p-value thresholds, wherein 

OR > 1.0 indicates higher resilience scores are associated with a higher likelihood of being a 

high-risk normal control (“resilient” individual) than being a risk-matched LOAD case. Error bars 

represent the 95% confidence intervals (CI) around each OR, which are the exponent of the 95% 

CI of β coefficients. The bar-plots (Panels B and D) show the amount of variance in resilience 

(i.e., “resilient” high-risk normal controls versus risk-matched LOAD cases) on the liability scale 

that is explained by resilience scores. Asterisks (*) indicate p-values < 0.05 for ORs > 1.0. 

 

Figure 3. The correlation of standardized polygenic risk scores (PRSs) and polygenic 

resilience scores (design 1) in normal controls and late-onset Alzheimer’s disease (LOAD) 

cases in three independent replication studies not used in the resilience score derivation steps 

(i.e., ADC7, AddNeuroMed, and ADNI-GO/2/3; normal controls, n = 1,321; LOAD cases, n = 

943). The optimal p-value threshold for polygenic risk-scoring was 0.5, and the optimal p-value 

threshold for polygenic resilience scoring was 0.1 (see Figure 2). The blue round dots indicate 
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normal controls, and the orange circles indicate LOAD cases. The blue and orange lines 

represent the best-fit for correlations between PRSs and resilience scores in normal controls 

and in LOAD cases, respectively. The blue and orange annotation text shows the Pearson 

correlation coefficient (r) and the p-value between PRSs and resilience scores in normal 

controls and LOAD cases, respectively. In this analysis, we excluded ultra-high-risk LOAD 

cases whose PRSs are higher than the maximum of all normal controls, and ultra-low-risk 

normal controls whose PRSs are lower than the minimum of all LOAD cases.
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Table 1 
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Figure 1 
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Figure 2 

 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.22274858doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.10.22274858
http://creativecommons.org/licenses/by-nc/4.0/


 

 33

Figure 3 
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