1

2	The impact of side effect framing on COVID-19 booster vaccine
3	intentions in an Australian sample.
4	Barnes, K. ¹ , Faasse, K. ² , & Colagiuri, B. ¹
5	
6	¹ School of Psychology, The University of Sydney, Sydney, NSW, Australia
7	² School of Psychology, The University of New South Wales, Sydney, NSW, Australia
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18 19 20 21	Corresponding Author: Dr. Kirsten Barnes, School of Psychology, A18 University of Sydney
22 23 24	NSW 2006 Australia EmNNE <u>kThis previous reported new research that h</u> as not been certified by peer review and should not be used to guide clinical practice.

1

25	Abstract
26	Objective: To evaluate the effect of presenting positively attribute-framed side effect
27	information on COVID-19 booster vaccine intention relative to standard negatively-framed
28	wording and a no-intervention control.
29	Design setting and participants: A representative sample of Australian adults (N=1,204) were
30	randomised to one of six conditions within a factorial design: Framing (Positive; Negative;
31	Control) * Vaccine (Familiar (Pfizer); Unfamiliar (Moderna)).
32	Intervention: Negative Framing involved presenting the likelihood of experiencing side effects
33	(e.g., heart inflammation is very rare, 1 in every 80,000 will be affected), whereas Positive
34	Framing involved presenting the same information but as the likelihood of not experiencing side
35	effects (e.g., 79,999 in every 80,000 will not be affected).
36	Primary Outcome: Booster vaccine intention measured pre- and post-intervention.
37	Results: Positive Framing (M=75.7, SE=0.9, 95% CI[73.9, 77.4]) increased vaccine intention
38	relative to Negative Framing (M=70.7, SE=0.9, 95% CI[68.9, 72.4]) overall (F(1, 1192)=4.68,
39	$p=.031$, $\eta_p^2=.004$). Framing interacted with Vaccine and Baseline Intention ($F(2, 1192)=6.18$,
40	<i>p</i> =.002, η_p^2 =.01). Positive Framing was superior, or at least equal, to Negative Framing and
41	Control at increasing Booster Intention, irrespective of the participants pre-intervention level of
42	intent. Side effect worry and perceived severity mediated the effect of Positive vs. Negative
43	Framing across vaccines.
44	Conclusion: Positive framing of side effect information appears superior for increasing vaccine
45	intent relative to the standard negative wording currently used.

46 **Pre-registration:** See: aspredicted.org/LDX_2ZL

2

4/	

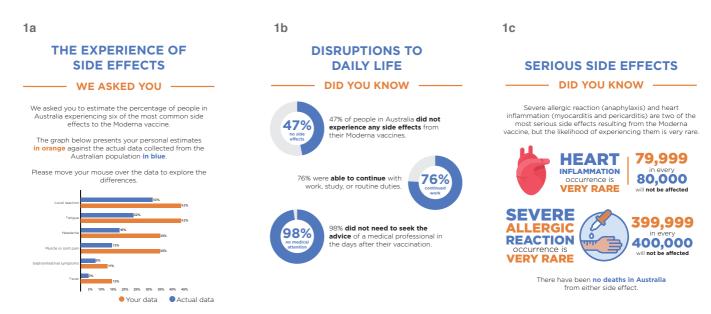
Introduction

48	Reasons for vaccine hesitancy are multifaceted ^{1,2} . However, side effect apprehension is a
49	primary factor ¹ , with previous experience of COVID-19 vaccine side effects shown to reduce
50	later booster vaccine intention ³ . To achieve effective societal protection from COVID-19,
	-
51	behavioural intervention is required to reduce apprehension and increase vaccine acceptance ⁴ .
52	Side effect information framing has been suggested as such an intervention ⁵ . Standard
53	negative wording is typically used to present side effect information on official sources such as
54	the Australian Government and AusVaxSafety (a national vaccine safety system) websites. For
55	example, "33% of people were affected by headaches after their second Pfizer dose". Our
56	research suggests negative wording of this type may increase hesitancy relative to positive
57	wording (i.e., presenting the number not affected) ⁶ . Further, consistent with prior research
58	demonstrating that vaccine relevance or familiarity moderates the effect of framing ^{7,8} , this effect
59	was especially pronounced when associated with an unfamiliar vaccine ⁶ .
60	Updating currently presented side effect information with a positively framed
61	counterpart is both easy to implement and does not violate patient informed consent (given that
62	statistical information is equivalent to the standard negative form) ⁹ . As such, framing may be
63	particularly well suited to increasing vaccine acceptance. However, in our previous research
64	conducted in a UK sample, framing was applied to side effect frequency bands presented in
65	manufacturer Patient Information Leaflets (PILs). This statistical information is commonly
66	presented in the EU, but not in Australia.
67	In the present study, we therefore tested an intervention more similar to current
68	Australian sources of side effect information (such as AusVaxSafety). Information detailing
69	severe side effects (heart inflammation and anaphylaxis ^{10,11}) and side effect-induced daily
70	disruptions (data from AusVaxSafety) were presented to participants who had received two
71	doses of a COVID-19 vaccine but no booster. This information was presented using the

72	standard negative wording (Negative Framing group), positive wording (Positive Framing
73	group), or not at all (No-Intervention Control group).
74	Pre-registered hypotheses were as follows: 1) being presented with objective side effect
75	information, irrespective of type of framing, would increase Booster Intention relative to
76	Control; 2) Positive Framing would increase Booster Intention relative to Negative Framing; 3)
77	Framing (Positive or Negative) would interact with Vaccine Familiarity, with the effect of
78	Positive Framing on Booster Intention being stronger for a less familiar vaccine (i.e., Moderna
79	relative to Pfizer: at the time of data collection ~10,000,000 doses of Moderna had been
80	administered compared to 38,454,860 doses of Pfizer). Secondary-outcomes were explored as
81	potential mediators of the framing effect ^{9,12,13} (see Supplementary Materials: S1.1).
82	
83	Methods
84	Participants
85	Participants (N=1,204) were recruited via Pureprofile, an ISO-certified panel provider.
86	Inclusion criteria were: 1) 18+ years of age; 2) residing in Australia; 3) self-reported English
87	fluency; 4) two doses of a COVID-19 vaccine; 5) no booster vaccine. Data were collected
88	between 3 rd -13 th December 2021, just prior to the Omicron outbreak in Australia. Participants
89	received \$2 for a 10-minute survey. All procedures in this pre-registered study
90	(aspredicted.org/LDX_2ZL) were approved by the University of Sydney Human Research
91	Ethics Committee (reference, 2021/871), and all participants provided informed consent.
92	Reporting is consistent with STROBE guidelines (Supporting Information: S1.2).
93	Data Collection
94	Data were collected on Pureprofile's inhouse platform. Stratification and randomisation
95	(via random number generation) occurred via inbuilt code. Quotas were set for a minimum
96	N=200 in each experimental condition (details below). All items required a response before

4

97	advancement. Several additional items concerning COVID-19 were collected prior to
98	randomisation for a separate pre-registered study (aspredicted.org/XSS_ZD1).
99	Design
100	Participants were stratified by their previous two COVID-19 vaccine doses
101	(2xPfizer/2xAstraZeneca/Combination) and randomised to one of six experimental conditions in
102	a 3 (Framing: Positive, Negative, Control) by 2 (Vaccine: Familiar(Pfizer) vs.
103	Unfamiliar(Moderna)) factorial design.
104	The primary outcome was COVID-19 Booster Intention post-intervention for the
105	assigned vaccine (either Pfizer or Moderna). The following secondary outcomes were measured
106	to test for mediation of the framing effect: 1) Side Effect Worry; 2) Side Effect Severity; 3)
107	Booster Protection. Two additional outcomes were measured. The first was Booster Intention
108	for the "unassigned" vaccine (for the Framing groups, this was the vaccine for which they
109	received no side-effect information; for the Control group, this was simply the other vaccine).
110	This was used to explore possible generalisation of the framing effect to the other vaccine. The
111	second was familiarity with the side effects of the Pfizer and Moderna vaccines measured pre-
112	intervention. This was used to confirm that participants' responses reflected the assumed
113	Familiarity with each vaccine (i.e., Familiar/Pfizer>Unfamiliar/Moderna). All measures were
114	rated on 100-point Visual Analogue Scale (VAS).

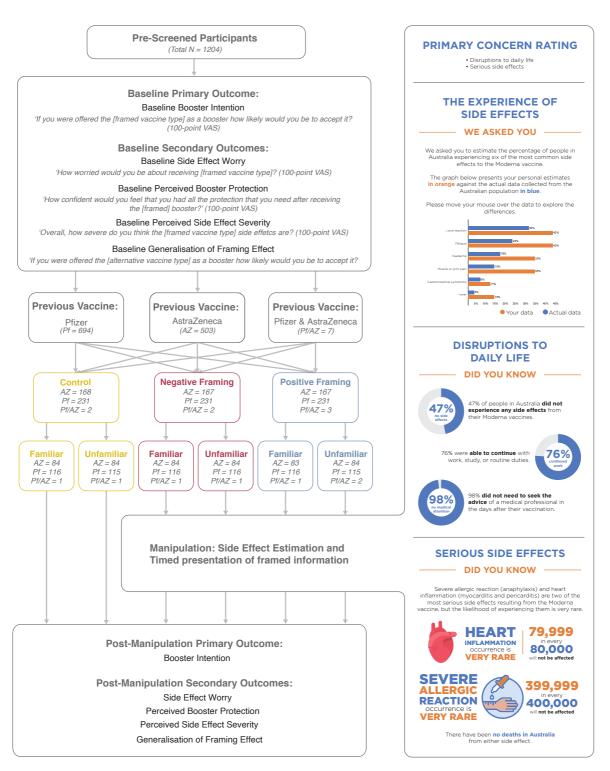

115 Framing Intervention

The intervention occurred in five stages. In stage 1, participants selected whether 'daily disruptions' or 'serious side effects' were their primary vaccination concern. In stage 2, they estimated the percentage of the population they believed would experience six side effects common to both the Pfizer and Moderna vaccine (i.e., local reaction, fatigue, headache, muscle or joint pain, gastrointestinal symptoms, fever) after receiving the framed vaccine. In stage 3, they were shown their responses from stage 2 against veridical percentages from Australian population data (derived from AusVaxSafety; 8th November 2021) for 1 minute. Stages 2 and 3

5

123 were performed in order to encourage participants to engage with and process the presented side 124 effect information. The primary components of the intervention occurred in stages 4 and 5. In 125 stage 4, participants viewed framed information (either positive or negative depending on group 126 assignment) in the form of infographics regarding 'daily disruptions' from side effects. In stage 5 this was also done regarding 'serious side effects' (estimates from^{10,11}). Stages 4 and 5 were 127 128 displayed for 30 seconds each. The exact order of presentation for stages 4 and 5 depended on 129 the participant's primary concern from stage 1. For example, if they indicated that they were 130 more concerned with 'daily disruptions' then that information was first presented at stage 4. 131 The information presented to the Positive and Negative framing groups differed only in 132 terms of whether this information stated the likelihood of experiencing or not experiencing the 133 described side effect. Those assigned to the Negative Framing group saw 'standard' wording 134 regarding side effects (e.g., Heart Inflammation: occurrence is very rare, 1 in every 80,000 will 135 be affected), while those in the Positive Framing group saw the logical inverse (e.g., occurrence 136 is very rare, 79,999 in every 80,000 will not be affected). Example infographics are displayed in 137 Figure 1 (all infographics presented in S1.4). Framed information was not presented to the 138 Control group. Instead, participants undertook an activity of their choosing for an equivalent 139 intervention duration (2 minutes).

6



- Figure 1: Example materials used to present side effect information to those who received
 Positive Framing of the Unfamiliar vaccine (i.e., Moderna). 1a demonstrates the wording when
 presenting estimated and actual prevalence rates for the six common side effects, 1b concerns
- 144 daily disruptions, and 1c serious adverse events from vaccination.
- 145

146 **Procedure**

- Prior to randomisation, all participants provided demographic information, as well as 147 148 vaccine and COVID-19 history (see Supporting Information (S1.3) for survey items). They also 149 completed baseline measures for the primary (Booster Intention) and secondary outcomes, 150 before being assigned to a condition. Please note, Baseline Intention was collected for both 151 vaccines (Pfizer and Moderna). Dependent on randomisation, one of these ratings became the 152 baseline for the framed vaccine, and the other the 'unassigned' vaccine (i.e., to explore 153 generalisation). 154 Following group assignment, framing information (positive or negative) regarding sideeffect likelihood for the assigned vaccine was presented to those in the intervention groups. All 155
- 156 participants subsequently provided post-manipulation ratings for primary and secondary
- 157 outcomes. See Figure 2 for a visual representation of the Procedure.

7

158

Figure 2: Sample size, item wording, and experimental design (example: Unfamiliar/Positive
Frame). Participants provided Baseline Booster Intention ratings for both vaccines (Pfizer and
Moderna). Dependent on randomisation, one became the baseline for the framed vaccine and
the other to explore generalisation of the framing effect (i.e., to unassigned vaccine).
Participants were stratified by previous vaccine and randomised to one of six groups (2*3
factorial design). Those receiving Positive or Negative Framing underwent a manipulation with
five stages: rating of primary concerns; active estimation of side effects; presentation of
estimated side effects against population data; framed information regarding daily disruptions;

estimated side effects against population data; framed information regarding daily disruptions;
 framed information regarding serious side effects. Pre-registered analysis of all secondary

167 named information regarding serious side effects. Fie-registered allarysis of all second

168 outcomes are presented as Supporting Information (S1.1).

8

169 Analysis and Sample

170	Statistical analysis was performed using R (version 4.1.1). Primary analysis was a
171	3(Framing)*2(Vaccine) ANCOVA on post-intervention Booster Intention. Pre-specified
172	orthogonal contrasts were: Contrast1 (Control vs. Framing [Positive and Negative combined]);
173	Contrast2 (Positive vs. Negative). Differences in baseline Booster Intention (the covariate) were
174	observed with Vaccine Familiarity ($F(1, 1198)=172.49, p<.0001, \eta_p^2=.13$). As such, interactions
175	between the covariate and manipulated variables (i.e., Framing and Familiarity) were included
176	in the model, as recommended ^{14,15} . Mediation using the Lavaan package was performed using
177	the secondary outcomes (Side Effect Worry; Side Effect Severity; Booster Protection).
178	Sample size was calculated via an <i>a priori</i> power analysis (95% power, alpha=.05, effect
179	size $f^2=0.02$) for a separate concurrent study run that contained more predictors (N=9), and
180	therefore required more power (see study pre-registration).
181	
182	Results
107	
183	Sample
183	Sample A total of 2,639 participants expressed interest. Of these, 998 did not meet inclusion
	-
184	A total of 2,639 participants expressed interest. Of these, 998 did not meet inclusion
184 185	A total of 2,639 participants expressed interest. Of these, 998 did not meet inclusion criteria, 3 terminated at consent, 296 withdrew before completion, and 138 were excluded on
184 185 186	A total of 2,639 participants expressed interest. Of these, 998 did not meet inclusion criteria, 3 terminated at consent, 296 withdrew before completion, and 138 were excluded on pre-registered quality-control criteria (see S1.5). The final sample included 1,204 participants.
184 185 186 187	A total of 2,639 participants expressed interest. Of these, 998 did not meet inclusion criteria, 3 terminated at consent, 296 withdrew before completion, and 138 were excluded on pre-registered quality-control criteria (see S1.5). The final sample included 1,204 participants. Demographics

- 191 Table 1: Sample descriptive statistics presented against population data generated from the
- 192 Australian Bureau of Statistics, Education and Work Dataset 2021. *Nb*: Education sums to
- 193 109% due to calculation relying on separate ISCED and ASCED items to calculates estimates
- 194 for Primary and High School completers. Dashes denote unavailable population data.
- 195

	Control Familiar	Control Unfamiliar	Negative Familiar	Negative Unfamiliar	Positive Familiar	Positive Unfamiliar	All Respondents	Australian population
	N=201	N=200	N=201	N=201	N=200	N=201	(%)	(%)
Demographic Information	1							
State/territory								
New South Wales	68	64	62	67	65	53	31.5	31.7
Victoria	48	48	58	52	54	57	26.3	26.3
Queensland	42	42	36	42	37	46	20.3	20.0
Western Australia	21	17	16	19	21	27	10.0	10.4
South Australia	12	23	16	11	18	10	7.5	6.9
Tasmania	5	0	8	4	6	3	2.2	2.1
Australian Capital	5	4	4	5	2	2	1.8	1.7
Territory	č	·	•	e	-	-	1.0	1.,
Northern Territory	0	2	1	1	0	0	0.3	0.8
Region	U U	-	1	1	Ū	v	0.5	0.0
Metro	153	147	147	147	129	140	71.7	67.7
Regional	48	53	54	54	71	61	28.3	32.3
<i>Employment</i>	40	55	54	J 4	/ 1	01	20.3	32.5
	05	70	00	00	70	07	11 5	40.4
Employed full-time	85	79	88	88	78 25	82	41.5	49.4
Employed part-time	40	47	35	36	35	31	18.6	21.7
Self employed	6	9	5	9	9	8	3.8	-
Unemployed (looking)	9	9	10	13	7	14	5.1	1.3
Carer	12	10	7	12	14	13	5.6	-
Student	4	9	9	6	9	6	3.6	-
Retired	44	37	45	37	47	46	21.3	-
Other	1	0	2	0	1	1	0.4	-
Education								
Primary school	1	0	0	1	2	0	0.3	4.5
High school	51	58	46	53	57	60	27.0	45.2
Technical certificate	28	30	34	29	29	34	15.3	18.5
Advanced	25	26	41	20	25	23	13.3	10.1
diploma/diploma								
Bachelor's degree	59	40	48	59	51	49	25.4	20.6
Graduate	14	16	11	13	12	16	6.8	10.1
diploma/certificate		- •				••	0.0	
Postgraduate	22	29	21	24	23	19	11.5	8.5
Other	1	1	0	2	1	0	0.4	-
Country of Birth	1	1	U	2	1	U	U.T	-
Australia	151	152	156	167	160	162	78.7	65.6
Overseas	50	48	45	34	40	39	28.3	34.4
Gender	50	40	45	34	40	37	20.3	34.4
	102	00	0.4	102	106	104	50.5	50 7
Woman	103	99 101	94 105	102	106	104	50.5	50.7
Man	98	101	105	99	94	97	49.3	49.3
Non-binary / other	0	0	2	0	0	0	0.2	-
Age bracket (years)								
18-24	20	24	20	22	21	19	10.5	12.1
25-34	33	39	51	42	37	35	19.7	20.6
35-44	39	41	27	38	33	32	17.4	19.3
45-54	36	29	30	33	37	37	16.8	18.0
55-64	28	29	31	25	36	30	14.9	16.6
65+	45	38	42	41	36	48	20.8	13.3
Vaccine / COVID-19 Histo	ory							
Previous COVID-19 Vaccin	•							
AstraZeneca (both	84	84	84	84	83	84	41.8	-
doses)	-	-	-	-		-	-	
d 05 0 5)								

							10	
Pfizer (both doses)	116	115	116	116	116	115	57.6	
AstraZeneca and Pfizer (combination)	1	1	1	1	1	2	06	
Months since last COVID	-19 vaccinati	on						
0-5	188	185	183	176	185	180	91.1	
6-15	12	13	15	22	12	19	7.7	
16-20	1	2	3	3	3	2	1.2	
COVID-19 Exposure: Per	sonal infectio	on						
Yes	7	4	5	2	6	3	2.2	
No	194	196	196	199	194	198	97.8	
COVID-19 Exposure: Sig	nificant othe	rs						
Yes	28	24	24	25	21	24	12.1	
No	173	176	177	176	197	177	89.4	
Previously heard of the P	fizer COVID-	19 vaccine						
Yes	198	198	198	196	198	200	98.7	
No	3	2	3	5	2	1	1.3	
Previous heard of the Mo	derna COVIL	D- 19 vaccine						
Yes	183	185	181	178	174	187	90.4	
No	18	15	20	23	26	14	9.6	
<u> </u>								

197

- 200201Manipulation Checks
- 202 As expected, side effect familiarity was greater for the Pfizer than Moderna vaccine
- 203 $(t(1203)=28.63, p<.0001, \text{Cohen's } d_z =.83)$. During the intervention, more participants

¹⁹⁸ Figure 3: Geospatial data with participant frequency plotted against SA4 postal regions in199 Australia

204	underestimated side effects for the Modena (N=118) relative to Pfizer (N=65) vaccine ($\chi^2(1) =$
205	18.97, $p \le .0001$), due to the vaccine having a higher incidence of side effects than Pfizer.
206	Primary Analysis
207	Booster Intentions were higher for any Framing relative to Control (Contrast1: $F(1, $
208	1192)=11.56, <i>p</i> =.0007, η_p^2 =.010) and for Positive Framing (<i>M</i> =75.7, <i>SE</i> =0.9, 95% CIs[73.9,
209	77.4]) relative to Negative Framing (<i>M</i> =70.7, <i>SE</i> =0.9, 95% CIs[68.9, 72.4]; <i>F</i> (1, 1192)=4.68,
210	<i>p</i> =.031, η_p^2 =.004). As presented in Figure 4a, the anticipated Framing*Vaccine interaction was
211	not significant at Contrast2 (Positive vs. Negative: $F(1, 1192)=3.31$, $p=.069$, $\eta_p^2=.003$), but was
212	at Contrast1 (Framing vs. Control: $F(1, 1192)=8.91, p=.003, \eta_p^2=.007$), with the effect of any
213	information over Control larger for the Unfamiliar vaccine (see S1.6 for full model output and
214	means).
214 215	means). As in Figure 4b, a three-way Framing*Vaccine*Baseline Intention interaction was
215	As in Figure 4b, a three-way Framing*Vaccine*Baseline Intention interaction was
215 216	As in Figure 4b, a three-way Framing*Vaccine*Baseline Intention interaction was present at both Contrasts (Control vs. Framing: $F(1, 1192)=7.39$, $p=.007$, $\eta_p^2=.006$ Positive vs.
215216217	As in Figure 4b, a three-way Framing*Vaccine*Baseline Intention interaction was present at both Contrasts (Control vs. Framing: $F(1, 1192)=7.39$, $p=.007$, $\eta_p^2=.006$ Positive vs. Negative: $F(2, 1192)=5.26$, $p=.022$, $\eta_p^2=.004$). For the less familiar Moderna vaccine, Positive
215216217218	As in Figure 4b, a three-way Framing*Vaccine*Baseline Intention interaction was present at both Contrasts (Control vs. Framing: $F(1, 1192)=7.39$, $p=.007$, $\eta_p^2=.006$ Positive vs. Negative: $F(2, 1192)=5.26$, $p=.022$, $\eta_p^2=.004$). For the less familiar Moderna vaccine, Positive Framing ($M=94.92$, $SE=1.88$, 95% CI[91.24, 98.60]) increased Booster Intention relative to
 215 216 217 218 219 	As in Figure 4b, a three-way Framing*Vaccine*Baseline Intention interaction was present at both Contrasts (Control vs. Framing: $F(1, 1192)=7.39$, $p=.007$, $\eta_p^2=.006$ Positive vs. Negative: $F(2, 1192)=5.26$, $p=.022$, $\eta_p^2=.004$). For the less familiar Moderna vaccine, Positive Framing ($M=94.92$, $SE=1.88$, 95% CI[91.24, 98.60]) increased Booster Intention relative to Negative Framing ($M=87.18$, $SE=1.95$, 95% CI[83.35, 91.0]) at high Baseline Intent
 215 216 217 218 219 220 	As in Figure 4b, a three-way Framing*Vaccine*Baseline Intention interaction was present at both Contrasts (Control vs. Framing: $F(1, 1192)=7.39$, $p=.007$, $\eta_p^2=.006$ Positive vs. Negative: $F(2, 1192)=5.26$, $p=.022$, $\eta_p^2=.004$). For the less familiar Moderna vaccine, Positive Framing ($M=94.92$, $SE=1.88$, 95% CI[91.24, 98.60]) increased Booster Intention relative to Negative Framing ($M=87.18$, $SE=1.95$, 95% CI[83.35, 91.0]) at high Baseline Intent (VAS=100). For the more familiar Pfizer vaccine, Positive Framing ($M=24.03$, $SE=4.29$, 95%

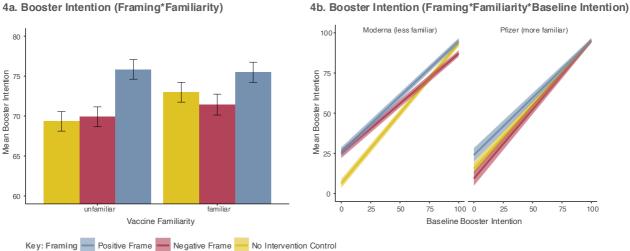


Figure 4: Model estimated mean differences in the primary outcome (Booster Intention). 4a depicts mean Booster Intention for each framing condition by vaccine type. 4b depicts the

227 Framing*Familiarity*Baseline Booster Intention interaction. All error bars represent ± 1 SEM.

228 229

Secondary-Predictors: Mediation

230 Positive Framing is theorised to create a valence-consistent shift in perceptions that 231 alters evaluation and intention^{16,17}. Analysis was therefore run to explore whether side effect perceptions mediated the effect of framing (Positive vs. Negative) on Booster Intentions across 232 233 vaccines (i.e., as if the intervention were generally applied). Three models were run with 234 baseline-corrected Booster Intention (change score) as the outcome and baseline-corrected 235 secondary predictors as mediators. As in Table 2, partial mediation was observed through a 236 decrease in Side Effect Worry and Severity associated with Positive Framing. This was specific 237 to side effect perceptions and not significant for Booster Protection.

238

13

239	Table 2: Mediation of Framing (Positive vs. Negative) on Booster Intention through Side Effect
240	Worry, Perception of Side Effect Severity, and Perceived Booster Protection. Paths a and b
241	represent paths from predictor to mediator and mediator to outcome. Path c represents the total
242	effect (Framing on Booster Intention), c' the association between Framing and Booster Intention
243	controlling for all other paths, and a*b indirect effect of the mediator on the Framing – Booster
244	Intention association. Bias-corrected bootstrapped 95% CIs (10,000 samples) are presented.
245	

	β	В	SE B	Ζ	р	95% CIs
а	-0.14	-6.51	1.66	-3.92	<.001	[-9.85, -3.36]
b	-0.18	-0.15	0.04	-3.77	<.001	[-0.18, -0.18]
с	0.10	3.93	1.37	2.87	.004	[1.22, 6.55]
c'	0.08	2.98	1.34	2.23	.026	[0.33, 5.56]
a*b	0.02	0.95	0.35	2.68	.007	[0.40, 1.82]

A) Mediation Model: Side Effect Worry

B)	Mediation	Model:	Perceived	Side	Effect	Severity
----	-----------	--------	-----------	------	--------	----------

	β	В	SE B	Ζ	р	95% CIs
а	-0.20	-8.63	1.48	-5.83	<.001	[-11.54, -5.66]
b	-0.20	-0.18	0.05	-3.67	<.001	[-0.29, -0.09]
c	0.10	3.93	1.37	2.87	.004	[1.22, 6.55]
c'	0.06	2.34	1.37	1.71	.088	[-0.36, 4.99]
a*b	0.04	1.59	0.52	3.02	.002	[0.04, 0.08]

C) Mediation Model: Perceived Booster Protection

	β	В	SE B	Ζ	р	95% CIs
а	0.05	1.74	1.16	1.50	.134	[-0.53, 3.99]
b	0.32	0.38	0.06	5.88	<.001	[0.25, 0.50]
c	0.10	3.93	1.37	1.47	.004	[1.22, 6.55]
c'	0.09	3.28	1.30	2.52	.012	[0.70, 5.75]
a*b	0.02	0.66	0.45	1.47	.143	[-0.15, 1.62]

²⁴⁶

247

248

Discussion

249	The present study tested an intervention involving the presentation of framed side-effect
250	information. Overall, providing side effect information of any type to participants increased
251	their COVID-19 Booster Intention relative to the Control group, who received no information at
252	all. Of note, Positive Framing further increased Booster Intention relative to Negative Framing
253	by 5 percentage points. While the mapping between intention and uptake is unlikely to be
254	exact ¹⁸ (see below), our results suggest that Positive Framing could lead to up to half a million

14

255	extra booster vaccinations among those aged 18 and over (based on population averages from
256	the ABS Education and Work Dataset 2021). Results therefore indicate that presenting
257	positively-framed information to people, for example on Australian Government and
258	AusVaxSafety websites, is likely to increase favorable perceptions of booster vaccination.
259	Based on our previous research ⁶ and the broader literature concerning framing effects on
260	vaccine-related intentions ^{7,8} , vaccine familiarity was anticipated to modulate the effect of
261	Positive Framing. However, Booster Intention after Positive Framing was only numerically, not
262	statistically, larger for the less familiar Moderna vaccine compared to Negative Framing.
263	Instead, we found that both Positive and Negative provided an increased benefit to Booster
264	Intention over Control for the less familiar Moderna vaccine relative to the more familiar Pfizer
265	vaccine (although this appeared to be driven by the Positive Framing manipulation). A three-
266	way interaction involving Baseline Intention qualified these effects. Here, the difference
267	between Positive and Negative Framing was largest at low levels of Baseline Intent for the
268	Familiar vaccine, but at high levels of Baseline Intent for the Unfamiliar vaccine. In our
269	previous research, Positive Framing was found to decrease Booster Intention relative to
270	Negative Framing for familiar vaccines ⁶ . Notably, this was not the case here. Several
271	differences exist between these studies, such as sample location, number of framed side effects,
272	and the mode of presentation (PILs vs. infographics). As such, future research should strive to
273	understand the conditions under which Positive Framing reduces vaccine intention to ensure that
274	optimal messaging is employed.
275	Population level public health information on side effects is inherently general and

Population level public health information on side effects is inherently general and
cannot contain nuanced information about the influence of prior history of vaccination or
hesitancy. While a complex pattern of results was observed, Positive Framing was always either
superior, or equal to, Negative Framing and Control at all levels of Baseline Intent for both
vaccines. Moreover, at differing levels of Baseline Intent, Negative Framing decreased Booster
Intention relative to Positive Framing for both familiar and less familiar vaccines. Among those

15

281 most resistant to vaccination, Positive Framing of the more familiar vaccine (Pfizer) increased 282 Booster Intention by 14.6 percentage-points relative to Negative Framing, and by 19.8 283 percentage-points relative to Control for the less familiar vaccine (Moderna). As such, there was 284 never any disadvantage to employing Positive Framing in the present sample, even when 285 targeting those with low Baseline Intent; a population where increasing vaccine acceptance is of critical importance¹⁹. This suggests that Positive Framing is the optimal presentation mode. 286 287 In terms of mechanisms, theories of attribute framing posit that Positive Framing results in a valence-consistent shift in perception that alters evaluation^{16,17}. We therefore reasoned that 288 289 Positive Framing would alter side effect perception, increasing intention to be vaccinated. 290 Mediation analysis provided tentative support for this theory. Specifically, a reduction in the 291 perception of side effect severity and side effect worry partially mediated the effect of Positive 292 (vs. Negative) Framing on Booster Intention, suggesting that Framing may indeed reduce side 293 effect hesitancy. Mediation was not found through perceived booster protection, with the 294 association between Framing and booster protection weaker than with side effect perceptions 295 (severity and worry).

296 There are several strengths to the present study, including the framing of real COVID-19 297 vaccines and the use of actual side effect data presented to the Australian population. Especially 298 as much of the literature in this area frames fictitious vaccines and asks participants to imagine scenarios that they have never experienced and may be unlikely to ever experience^{7,8,12,17,20}. 299 300 Limitations of the study include the measurement of intention, but not uptake. While intention 301 has been found to predict vaccination²¹⁻²⁴, longitudinal research is needed to directly assess the 302 role of framing on actual uptake, as well as the longevity of the framing effect among those yet to receive a booster vaccine. Relevant to the lag in booster uptake in Australia²⁵, the present 303 304 research focused on increasing intention among those already receiving a primary course of 305 COVID-19 vaccination. However, these results do not speak to the effect of framing on those 306 never vaccinated. Investigation of framing on vaccine intention at all points of the vaccination

307 programme would provide a more comprehensive account of the effect of framing on vaccine

308 intentions in general.

309	In summary, a brief online intervention engaging participants in side effect estimation
310	before presenting positively framed side effect information can increase booster vaccine
311	intention. Given the ease with which Positive Framing can be implemented, combined with the
312	fact that the presentation of statistical information in this format does not violate patient
313	informed consent ⁹ , the potential exists for framing of this type to make a real difference in
314	improving societal protection from COVID-19 through reduced vaccine hesitancy.

- 315 **Sources of Funding**: This research was supported by Australian Research Council grants
- 316 DP180102061 and DP200101748. The funding body had no involvement in study design,
- 317 analysis, interpretation, writing, or the decision to submit the present article for publication.
- 318
- 319 Data Availability: The code and raw data necessary to replicate the reported analysis is
- 320 available through the Open Science Framework repository:
- 321 <u>https://osf.io/nfxr3/?view_only=e0717d3f063245268f8ce88144afaa3f</u>
- 322
- 323 Author contributions: KB, BC and KF conceived the experimental design. KB was
- 324 responsible for collecting and analysing the data. KB wrote the first draft of the article. BC and
- 325 KF edited and contributed to the final version.

18

327		References
328	1	Solís Arce, J. S. et al. COVID-19 vaccine acceptance and hesitancy in low- and middle-
329		income countries. Nature Medicine 27, 1385-1394 (2021).
330	2	Troiano, G. & Nardi, A. Vaccine hesitancy in the era of COVID-19. Public Health 194,
331		245-251 (2021).
332	3	Rzymski, P., Poniedziałek, B. & Fal, A. Willingness to Receive the Booster COVID-19
333		Vaccine Dose in Poland. Vaccines 9, 1286 (2021).
334	4	Chevallier, C., Hacquin, AS. & Mercier, H. COVID-19 Vaccine Hesitancy: Shortening
335		the Last Mile. Trends in Cognitive Sciences 25, 331-333 (2021).
336	5	World Health Organization. Data for action: achieving high uptake of COVID-19
337		vaccines: gathering and using data on the behavioural and social drivers of
338		vaccination: a guidebook for immunization programmes and implementing partners:
339		interim guidance, 1 April 2021. (World Health Organization, Geneva, 2021);
340		https://apps.who.int/iris/handle/10665/340645
341	6	Barnes, K. & Colagiuri, B. Positive attribute framing increases COVID-19 booster
342		vaccine intention for unfamiliar vaccines. Preprint at:
343		https://www.medrxiv.org/content/10.1101/2022.01.25.22269855v2 (2022).
344	7	Donovan, R. J. & Jalleh, G. Positive versus Negative Framing of a Hypothetical Infant
345		Immunization: The Influence of Involvement. Health Education & Behavior 27, 82-95
346		(2000).
347	8	Haydarov, R. & Gordon, J. C. Effect of combining attribute and goal framing within
348		messages to change vaccination behavior. Journal of Communication in Healthcare 8,
349		45-54 (2015).
350	9	Barnes, K. et al. Can Positive Framing Reduce Nocebo Side Effects? Current Evidence
351		and Recommendation for Future Research. Frontiers in Pharmacology 10, 167 (2019).
352	10	Shimabukuro, T. T., Cole, M. & Su, J. R. Reports of Anaphylaxis After Receipt of
353		mRNA COVID-19 Vaccines in the US—December 14, 2020-January 18, 2021. JAMA
354		325 (11), 1101–1102 (2021).
355	11	Diaz, G. A. et al. Myocarditis and Pericarditis After Vaccination for COVID-19. JAMA
356		326 (12), 1210–1212 (2021).
357	12	Webster, R. K. & Rubin, G. J. The Effect of Positively Framing Side-Effect Risk in Two
358		Different Formats on Side-Effect Expectations, Informed Consent and Credibility: A
359		Randomised Trial of 16- to 75-Year-Olds in England. Drug Safety 43, 1011–1022
360		(2020).

361	13	Berry, D. C., Raynor, D. K. & Knapp, P. Communicating risk of medication side effects:
362		An empirical evaluation of EU recommended terminology. Psychology, Health &
363		Medicine 8, 251-263 (2003).
364	14	Myers, J. L. & Well, A. D. Research design and statistical analysis, 2nd ed. (Lawrence
365		Erlbaum Associates Publishers, 2003).
366	15	Cardinal, R. N. & Aitken, M. R. F. ANOVA for the behavioural sciences researcher.
367		(Lawrence Erlbaum Associates Publishers, 2006).
368	16	Levin, I. P., Schneider, S. L. & Gaeth, G. J. All Frames Are Not Created Equal: A
369		Typology and Critical Analysis of Framing Effects. Organizational Behavior and
370		Human Decision Processes 76, 149-188 (1998).
371	17	Krishnamurthy, P., Carter, P. & Blair, E. Attribute Framing and Goal Framing Effects in
372		Health Decisions. Organizational Behavior and Human Decision Processes 85, 382-399
373		(2001).
374	18	Sheeran, P. Intention—Behavior Relations: A Conceptual and Empirical Review.
375		European Review of Social Psychology 12, 1-36 (2002).
376	19	Ten threats to global health in 2019 (World Health Organisation, 2019);
377		https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
378	20	Zimmermann, C., Baldo, C. & Molino, A. Framing of outcome and probability of
379		recurrence: Breast cancer patients' choice of adjuvant chemotherapy (ACT) in
380		hypothetical patient scenarios. Breast Cancer Research and Treatment 60, 9-14 (2000).
381	21	Gerend, M. A. & Shepherd, J. E. Predicting Human Papillomavirus Vaccine Uptake in
382		Young Adult Women: Comparing the Health Belief Model and Theory of Planned
383		Behavior. Annals of Behavioral Medicine 44, 171-180 (2012).
384	22	Juraskova, I., Bari, R. A., O'Brien, M. T. & McCaffery, K. J. HPV Vaccine Promotion:
385		Does Referring to Both Cervical Cancer and Genital Warts Affect Intended and Actual
386		Vaccination Behavior? Women's Health Issues 21, 71-79 (2011).
387	23	Lehmann, B. A., Ruiter, R. A. C., Chapman, G. & Kok, G. The intention to get
388		vaccinated against influenza and actual vaccination uptake of Dutch healthcare
389		personnel. Vaccine 32, 6986-6991 (2014).
390	24	Jensen, U. T., Ayers, S. & Koskan, A. M. Video-based messages to reduce COVID-19
391		vaccine hesitancy and nudge vaccination intentions. PLOS ONE, 17(4) e0265736
392		(2022).
393	25	Nicholas, J. Tracking Australia's booster rollout: data shows millions of eligible
394		Australians yet to get third Covid vaccine dose. The Guardian (Australia) 2022; 17

395	March. https://www.theguardian.com/australia-news/australia-
396	datablog/2022/mar/17/tracking-australias-booster-rollout-data-shows-millions-of-

397 <u>eligible-australians-yet-to-get-third-covid-vaccine-dose</u> (accessed March 2022).