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Abstract  

Background  

Green and blue spaces can promote good physical and mental health and prevent the 

development of long-term conditions. Evidence suggests that not all green spaces affect 

health equally, and that certain types and properties of green spaces are stronger predictors of 

health than others. However, research into the causal mechanisms is limited in large cohorts 

due to lack of objective and comparable data on green space type, accessibility, and usage.  

 

Methods  

We used data from Urban Atlas to compute measures of urban park accessibility, street trees 

availability, and total green and blue space availability for 300,000 UK Biobank participants. 

Exposure metrics were computed using circular buffers with radii of 100 m to 3000 m. 

Pearson correlation coefficients and other descriptive statistical parameters were used to test 

agreement between variables and explore the utility of indictors in capturing different types of 

green spaces.  

 

Results 

Strong positive correlations were observed between variables of the same indicator with 

different buffer sizes. The presence of park and proportion of street tree canopy variables 

were negatively correlated with amount of total green space variables. This signifies distinct 

differences in type of green spaces captured by these variables.  
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Conclusions  

Overall, five distinct indicators of park accessibility, street trees availability, and total green 

and blue space availability have been integrated into a large sample of the UK Biobank. Our 

method is replicable to settings across Europe and facilitates evidence-based research on the 

roles of different green and blue spaces in health promotion and ill-health prevention.  

 

 

Key Words: environmental epidemiology, methods, data linkage, data manipulation, green 

space, blue space, large cohort, health, chronic health, evidence-based research 

 

Key Messages 

 

• Different types of green spaces and their position in the neighbourhood can promote 

and protect health by mitigating pollution and increasing physical activity and 

socialisation.  

 

• We present the methods of constructing and linking data on urban green spaces, street 

trees and natural vegetation into a large health cohort, the UK Biobank.  

 

• The ability to distinguish between types of green spaces and their intended use can 

help inform public health interventions, influence urban policy, and aid urban 

planning in building sustainable and healthy cities.  

 

• Our methods are transferable and will allow others to explore the links between 

environment and health in UK Biobank and other health cohorts.   

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.09.22274764doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.09.22274764


 4 

 

Introduction  

 

Green and blue spaces are umbrella terms used to describe the presence of vegetation (green) 

and water (blue) bodies in the surrounding environment.[1] Green spaces can affect health 

through several bio-physiological pathways, including promoting health-related behaviours 

like physical activity; increasing socialisation and connectedness with people and nature; and 

reducing the presence of air pollutants and noise.[2, 3] Exposure to green space can 

potentially reduce the risk of several non-communicable diseases (NCDs). In a longitudinal 

study, for example, the risk of developing cardio-vascular disease (CVD), myocardial 

infraction, and stroke was respectively 15%, 23% and 13% lower in those who had more 

green spaces in their neighbourhood compared to those who had fewer green spaces.[4] 

Moreover, meta-analyses found 28% reduction in the risk of type II diabetes and 23% 

reduction in the risk of stroke mortality in those with greater amount of green space in their 

neighbourhood.[5, 6] 

 

Green spaces also impact mental health and wellbeing. Observational, epidemiological studies 

found higher amount of green space was associated with lower odds of stress, higher self-

perceived general health, and higher quality of life.[7-9] Furthermore, longitudinal research 

showed that those living in areas with lowest amount of residential greenery had 24% to 52% 

higher risk of developing schizophrenia compared with those living in areas with most 

greenery.[10, 11] The relationship between green space and depression is less well 

understood, but cross-sectional studies showed a moderate decrease in the odds of depression 

with greater amount of green space and higher accessibility to parks of large areas.[12, 13] 
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Growing evidence suggests that, in addition to amount of green space, different types of green 

and blue space environments affect health differently.[14] Green areas, such as grasslands, 

serene environments, higher number of forests and higher number of urban green spaces 

reduced the risk of poor mental health.[15, 16] However, no protective relationships with 

mental health were observed for exposures to saltwater bodies, wetlands, rangeland, and 

agricultural land.[15, 16] In urban settings, higher availability of street trees, but not higher 

availability of grass or total green space, was associated with lower odds of diabetes and CVD 

events.[17, 18] Furthermore, a comparison between higher availability of public parks and 

total green space area showed that public parks reduced blood pressure while larger areas of 

green space in the neighbourhood showed no significant relationship with blood pressure 

change.[19] 

 

Type, position, and duration of exposure to green/ blue space affect health at different rates 

and potentially through different causal pathways. In systematic reviews, higher amount of 

street trees, good accessibility to parks and some types of land use classes showed stronger 

relationships with health than higher availability of grass or total green space.[20-22] 

However, the mechanisms and direction of causation behind these relationships are still not 

fully understood. This is partly due to lack of high quality comparable observational research. 

Despite the World Health Organisation’s (WHO) [23] call to include more objective and 

comparable measures of green space accessibility and usage in evidence-based research, 

cohort studies still mainly use single measures of greenery, such as the Normalized Difference 

Vegetation Index (NDVI), or proportion of green space.[13, 14, 24] Reasons for this include 

lack of availability of objective environmental data in health cohorts, and limited 

characterisation of different green spaces present in the surrounding environment.[24]  
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The UK Biobank is a comprehensive resource for studying the complex interactions between 

the environment and health. However, studies on the relationship of exposure to green and 

blue spaces and health have mainly used NDVI and data from older land use datasets to 

capture proportion of greenery on limited spatial scales.[25-28] We describe here the methods 

to link high resolution data on street trees, parks, and amount of green and blue space from 

2006 and 2012 Urban Atlas dataset into the UK Biobank. Based on prior research, we 

hypothesise that it is certain types of green spaces, such as parks and street trees, and their 

properties (e.g., type, position, size, or intended use) that influence health through different 

bio-physiological pathways (fig. 1).[21, 22] Therefore, the aim of this study is to construct 

multiple distinct indicators of green and blue space availability and accessibility that can be 

used in evidence-based health research. To achieve this, we first describe the process and 

methods of computing and integrating variables of urban park accessibility, street trees 

availability, and total green and blue space availability into UK Biobank participants using 

geographical information systems programming. Second, we calculate the statistical 

parameters of these variables to descriptively characterise each exposure metric and its spatial 

scale. Third, we use correlation coefficients to test the agreement between variables and 

explore the ability of indicators in capturing different types of green spaces in the surrounding 

neighbourhood. This linked dataset will be used to model the cross-sectional associations 

between green space availability and accessibility and the prevalence of multimorbidity 

disease clusters. It will also become available for anyone seeking to conduct research using 

UK Biobank data.  
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Figure 1: Conceptual framework for the relationship between green and blue space properties 

and health 
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Methods 

Description of Data Sources 

 

UK Biobank 

 

The UK Biobank is a large, population-based prospective cohort of 502,650 men and women 

aged 40-69 years.[29] Recruitment for voluntary participation started in 2006 and finished in 

2010. Participants were selected if they resided within 25 miles of one of the 22 UK Biobank 

assessment centres around the UK and were registered with a National Health Service (NHS) 

General Practitioner (GP). Data about participants’ socio-demographic characteristics, living 

arrangements, lifestyle factors, built-environment exposures, and medical history were 

collected through touchscreen questionnaires and nurse-led interviews. Follow-up of the 

cohort is ongoing and disease status and mortality are tracked through electronic health 

records and cancer registries.[29] 

 

 

Urban Atlas 

 

The European Urban Atlas (UA) is a land use dataset covering over 200 European Functional 

Urban Areas (FUA) with a population of at least 50,000 people.[30, 31] FUAs are defined by 

the European audit as the area of a metropolitan city and its surrounding commuting zone. 

The commuting zone is the area around the city where at least 15% of the employed residents 

are commuters into the city.[32] The UA dataset contains nomenclature of 20 land use 

classes, 17 of which are built-environment classes with a minimum mapping unit (MMU) of 

0.25 ha and 3 are natural classes with a MMU of 1 ha. The overall minimum accuracy for the 
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data is 80% and the minimum mapping width is 10 m. The UA datasets are collated from 

topographic maps, 2.5 m Earth Observation spatial resolution multispectral data, SPOT 5 

satellite imagery and other Very High Resolution (VHR) imagery for the years 2006, 2012 

and 2018.[31] The data is open access and available from the European Environment Agency 

and the Copernicus Land Monitoring website (https://land.copernicus.eu). 

 

The validity of UA in capturing amount of green space has been previously tested against the 

CORINE, UK Land Cover Map and NDVI datasets. It was established that UA produces 

comparable results to all three of these indicators.[33, 34] The Urban green areas layer from 

the UA has also been endorsed by WHO [23] as a suitable indicator of urban green space 

accessibility and is a preferred indicator for capturing usable green spaces in urban areas due 

to its high resolution and ability to measure green space change over time.[35]  

 

 

Data Selection and Processing 

 

UK Biobank participants’ residential address location coordinates (rounded to 100 m 

accuracy) at baseline were used as proxies for permanent residence. UK Biobank participants 

predominantly live in urban areas and UA data is available for about 300,000 UK Biobank 

participants who reside within the boundaries of the following FUAs: London, Bristol, 

Cardiff, Stoke-on-Trent, Nottingham, Sheffield, Leeds, Manchester, Liverpool, Newcastle 

upon Tyne, Edinburgh, and Glasgow.  
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Exposure Metrics  

 

Several natural and artificial land use classes were used to compute exposure metrics of 

accessibility to park; availability of street tree canopy; availability of total green space; 

availability of total blue space; and availability of total green and blue space at different 

spatial scales (see table 1 for further information).[36]  

 

Table 1: Descriptions of Computed Exposure Metrics  

Exposure 
Indicator 

Exposure 
Metric 

UA Nomenclature 
used (year of data 

collection) [36] 

UA Nomenclature 
Description [40] 

Buffer 
Sizes 

 
Accessibility 

to Usable 
Urban Park 

Distance to Park 
14100 Green urban 

areas (2006) 
 

Green areas accessible 
to the public for 
predominantly 

recreational use, such 
as public parks, 

gardens, and zoos. 

N/A 

Presence of Park 300m, 
1500m 

Availability 
of Street 

Trees 

Amount of Street 
Tree Canopy 

Street Tree Layer 
(2012) 

Contiguous patches of 
trees (> 5 m height) 

covering an area of at 
least 500m2 over 
Level 1 Artificial 

surfaces nomenclature 
layers 

300m, 
1500m 

Availability 
of Total 

Green Space 

Amount of Total 
Green Space 

14100 Green urban 
areas (2006) 

 
20000 Agricultural + 
seminatural + wetland 

areas (2006) 
 

31000 Forests (2006) 

Agricultural + 
seminatural + wetland 
areas layer:  range of 
natural open spaces 

including arable land, 
pastures, grasslands, 
arable crops, moors, 
beaches, bare rocks, 

snow and ice and 
wetlands. 

 
Forests layer: areas 

with tree canopy 
coverage of over 30% 
and tree height of over 

5 m. 

100m, 
300m, 
1500m, 
3000m 
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Availability 
of Blue 
Space 

Amount of Total 
Blue Space 5000 Water Bodies 

 
Visible water surface 
area of rivers, lakes, 

ponds and canals 

100m, 
300m, 
1500m, 
3000m 

 

Availability 
of Total 

Green and 
Blue Space 

Amount of Total 
Green & Blue 

Space 

14100 Green urban 
areas (2006) 

 
20000 Agricultural + 
seminatural + wetland 

areas (2006) 
 

31000 Forests (2006) 
 

5000 Water Bodies 

 
 

See above 

100m, 
300m, 
1500m, 
3000m 

 

 

 

Accessibility to urban park was measured as the straight-line (Euclidean) distance from a 

participant’s residential address to their nearest public park using data from the UA 2006 

nomenclature layer: Green urban areas. 

 

Availability of street trees in the neighbourhood was measured as amount (proportion) of 

street tree canopy in straight-line (Euclidean) radial distance buffers around the residential 

address. Availability of total green space, blue space and total green and blue space was 

measured in amount (proportion) within a straight-line (Euclidean) radial distance buffers 

around the residential address. The UA data layers used to construct each indicator are 

described in Table 1. 
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Data Processing and Analysis  

 

All data were processed in ArcGIS Pro, a 64-bit Desktop application facilitated by Esri 

ArcGIS Platform. The 2006 UA vector datasets were rasterized to 50 m resolution and the 

2012 Street Tree Layer dataset was rasterised to 10 m resolution. The six-digit residential 

location coordinates of UK Biobank participants were overlayed with the rasterized UA data. 

Proportion green/blue space within distance buffers and the Euclidean distance to park were 

then computed for each UK Biobank participant (see table 1 for further details on buffer size). 

Participants whose residential address or buffer area fell on or outside the boundary of the UA 

data were excluded.  

 

 

Data Analysis  

 

The derived environment data was transferred from ArcGIS Pro to RStudio for analysis. 

Descriptive statistics, such as central tendency (i.e., means, medians), frequencies and 

dispersion measures (i.e., standard deviation and inter-quartile ranges) were calculated. 

Bivariate data analysis, chi-squared tests, Pearson tetrachoric, point biserial and product 

moment correlations were also applied according to data type. 
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Results 

 

Table 2 describes the statistical parameters of the computed green and blue space variables. 

Just under two-thirds (62.94%) of UK Biobank participants had a park within 300 m of their 

residential address and almost all (98%) had a park within 1500 m of the residential address. 

The mean straight-line distance to a park from the residential address was 291.48 m (table 2). 

The Chi-squared test suggests there’s strong correlation between presence of park in 300 m 

and presence of park in 1500 m variables. 

 

 

Table 2: Statistical parameters of computed green and blue space variables  

Metrics Var. Name 
n 

(observed 
cases) 

Mean 
(%) 

Standard 
Deviation 

Median 
(%) 
 

Min 
(%) 

Max 
(%) 

Total 
green 

space in 
100m 

total_100_ 
green 311,451 10.26 20.32 0.00 0.00 100.00 

Total 
green 

space in 
300m 

total_300_ 
green 308,979 15.40 18.32 8.84 0.00 99.03 

Total 
green 

space in 
1500m 

total_1500_
green 239,747 27.78 20.57 21.19 0.04 99.74 

Total 
green 

space in 
3000m 

total_3000_
green 192,094 32.31 21.10 25.94 1.47 98.85 

Total blue 
space in 
100m 

blue_100 311,451 0.24 2.68 0.00 0.00 95.49 
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Total blue 
space in 
300m 

blue_300 308,979 0.46 2.66 0.00 0.00 87.54 

Total blue 
space in 
1500m 

blue_1500 271,118 1.12 2.55 0.21 0.00 50.51 

Total blue 
space in 
3000m 

blue_3000 219,462 1.20 1.70 0.56 0.00 47.92 

Tree 
canopy in 

300m 
tree_300 138,831 20.03 17.13 15.30 0.04 99.60 

Tree 
canopy in 

1500m 
tree_1500 171,734 19.14 13.47 16.70 0.00 85.06 

Total 
green and 
blue space 
in 100m 

green_blue_
100 311,451 10.48 20.51 0.00 0.00 100.00 

Total 
green and 
blue space 
in 300m 

green_blue_
300 

308,979 15.86 18.52 8.84 0.00 100.00 

Total 
green and 
blue space 
in 1500m 

green_blue_
1500 239,719 28.93 20.50 22.85 0.29 99.74 

Total 
green and 
blue space 
in 3000m 

green_blue_
3000 180,572 34.04 21.19 27.70 2.10 99.02 

Distance 
to park 

distance_ 
park 312,284 291.48* 378.90* 201.15* 0.00

* 
15843.71

* 
 

 Var. Name Yes (%) No (%) 
Presence 
of park in 

300m 
park_300 194,481 (62.94%) 114,498 (37.06%) 

Presence 
of park in 

1500m 
park_1500 273,172 (98.14%) 5,190 (1.86%) 

X-squared = 9902.8, df = 1, p-value < 2.2e-16 
* Unit of measurement is meters (not percentage) 
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Median and interquartile range values for all other environment variables are shown in box 

and whisker plots in figure 2. Overall, the data are skewed towards the null. The median 

amount of green/blue space increases with buffer size. The median amount of total green 

space in a 100 m buffer is around 0%. This increases to 26% in a 3000 m buffer. Median 

amount of blue space follows a similar pattern, but values tend to stay around 0% for all 

buffer sizes. Median amount of street tree canopy is 15% in a 300 m buffer and 17% in a 1500 

m buffer.  

 

 

 

Figure 2: Box and whisker plots of variables  
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Figure 3 shows a Pearson correlation matrix of the computed variables. Overall, variables of 

the same exposure indicator with different buffer sizes tend to have strong positive 

correlations with each other. The correlation coefficients are weaker between variables that 

have larger buffer size differences. There’s strong positive correlation between street tree 

canopy in 300 m buffer and street tree canopy in 1500 m buffer (r = 0.78).   

 

The correlation matrix also shows negative correlations between the presence of park 

variables, street tree canopy variables and amount of total green space variables. Weak 

positive correlations were observed for presence of park in 300 m buffer variable (park_300) 

with amount of total green space and amount of total green and blue space variables. 

However, weak to moderate negative correlations were observed for presence of park in a 

1500 m buffer variable (park_1500) with amount of total green space and amount of total 

green and blue space variables (fig. 2). There are also weak negative correlations between the 

amount of street tree canopy in 1500 m buffer variable (tree_1500) and the amount of total 

green and blue space variables.  
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Figure 3: Pearson correlation matrix of variables  
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Discussion 

Interpretation of Computed Green Space Indicators  

 

In this data linkage study, we present the process and results of linking green and blue space 

exposure data from Urban Atlas with the UK Biobank. Five distinct indicators were 

constructed: accessibility to park; availability of street trees; availability of total amount of 

green space; availability of total amount of blue space; and availability of total amount of 

green and blue space. Accessibility to park is measured by the presence of a park in 300 m 

buffer, presence of park in 1500 m buffer, and the Euclidean distance to nearest park. Having 

a park within 1500 m of the residential address was negatively correlated with having higher 

amount of total green space. The amount of total green space variables were computed using 

two natural land use layers: Forests and Agricultural + seminatural + wetland areas, and one 

artificial surfaces layer: Green urban areas. The Green urban areas layer was used to 

compute the presence of park variables and while there’s overlap in data, the negative 

correlations between the two indicators suggest that participants who have high proportion of 

total green space in 1500 m buffer around their residential address likely live on the rural-

urban fringe and have higher availability of forests and agricultural vegetation rather than 

urban green areas. The amount of total green space variables, therefore, are indicators of 

availability of naturally growing outdoor vegetation, while the presence of park variables are 

indicators of accessibility to usable urban green spaces.  

 

With the emerging evidence on the health-promoting role of street trees we also aimed to 

compute an indicator of street trees availability.[20] This is captured by the amount of street 

tree canopy variables. Higher proportion of street trees showed to be negatively correlated 

with both higher proportion of total green space and presence of parks. This is expected 
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because UA nomenclature, Street Tree Layer, is a non-overlapping dataset of patches of street 

tree canopy over artificial surfaces only.[36] These results show that, together, the five 

indicators are distinct but complementary to each other. They each capture different types of 

green spaces in the surrounding neighbourhood. The street trees and distance to park variables 

are indicators of two types of accessible green spaces: public parks and trees lining roads and 

paths. The amount of total green space variables, on the other hand, are measures of natural 

vegetation mainly found on the fringe of rural and urban areas.  

 

 

Implications for Health Research and Policy 

 

The integration of multiple, distinct green space indicators into UK Biobank addresses an 

important data gap in health research. Lack of high-quality, comparable data on green space 

accessibility, availability and use in epidemiological studies and in the UK Biobank has 

resulted in little research into the causal mechanisms behind the relationship of exposure to 

green and blue space and health.[24, 37, 38] The ability to distinguish between types of green 

spaces, their position in the neighbourhood and their intended use can strengthen evidence-

based research and inform public health practice. Outdoor green and blue spaces can be 

utilised to deliver targeted interventions to promote healthy lifestyles and prevent ill-health. 

This research can also help wider urban planning and policy in creating heathier urban 

environments where green and blue spaces are integral parts of healthy daily living.[23] 
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Strengths and Limitations  

 

This data linkage study has several strengths. To the best of our knowledge, it is the first 

study to integrate multiple comparable indicators of urban park accessibility and street trees 

availability into a large, population-based UK cohort. Previously, data linkages have been 

limited to single area case studies or focused on built-environment indicators.[24] The large 

sample size of the UK Biobank improves precision and power of future research, avoids bias, 

and opens opportunities to explore the still limited but strong evidence for the health-

promoting benefits of street trees, parks and natural vegetation.[39-41] Furthermore, our 

method and exposure metrics are replicable to settings across Europe. The UA dataset covers 

urban areas across Eastern and Western Europe, allowing objective exposure assessment for 

different populations and settings.[36]  

 

We also computed exposures at an individual level, which means every participant has a 

unique measure of greenery in their neighbourhood. This improves accuracy in exposure 

measurement and prevents ecological bias (and potential fallacy) that commonly occurs when 

aggregate measures are used in individual analyses.[42] The computation of buffer sizes 

ranging from 100 m to 3000 m, on the other hand, allows for comparative research at different 

spatial scales. Three-hundred meters is recommended as the maximum distance anyone 

should live from an accessible green space; however, this figure is arbitrary, and research has 

shown that both small (500 m) and large (up to 2000 m) buffer sizes can be strong predictors 

of health. [23, 43, 44] 

 

Our data linkage study has multiple strengths, but it is not without limitations. Our analyses 

are primarily based on measuring proportion of green and blue space within straight-line 
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distance buffers. These buffers capture any greenery that falls within the buffer’s area, 

irrespective of the green space’s accessibility or ownership. One advance in geo-computation 

has been the ability to capture greenery only along publicly accessible roads and paths.[45] 

This approach might be useful for some exposure metrics, such as street trees, but it’s also 

computationally intensive and doesn’t necessarily improve accuracy in exposure 

measurement because circular and road-network buffers tend to capture similar amount of 

greenery.[46] 

 

Other limitations include the geo-processing resolution of the data. The 2006 UA layers were 

converted to raster datasets with a resolution of 50 meters. Rasterising a vector feature may 

cause potential data loss of areas smaller than the size of the raster grid cell. We chose 50 

meters as a grid cell size because it facilitated geoprocessing for large sample sizes. Smaller 

grid cell sizes, while more accurate, could not allow large scale data analysis due to large 

memory storage.  

 

 

Conclusions 

 

In conclusion, we have described a unique set of methods and results about how to link high 

quality, open-access land use data from Urban Atlas with the UK Biobank health cohort. We 

produced five novel indicators of urban park accessibility; street tree availability; and total 

green/ blue space availability. This broadens opportunities for comparable epidemiological 

research in a large health cohort. Given the availability of UA data for UK and Europe, we 

believe our methods are also replicable to settings, populations and curated cohorts outside of 

the UK Biobank. 
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