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Abstract 4 

We propose an efficient method to generate the summary statistics for set-based gene-environment 5 

interaction tests, as well as a meta-analysis approach that aggregates the summary statistics across 6 

different studies, which can be applied to large biobank-scale sequencing studies with related samples. 7 

Simulations showed that meta-analysis is numerically concordant with the equivalent pooled analysis 8 

using individual-level data. Moreover, meta-analysis accommodates heterogeneity between studies and 9 

enhances power in multi-ethnic studies. We applied the meta-analysis approach to the whole-exome 10 

sequencing data from the UK Biobank and successfully identified gene regions associated with waist-hip 11 

ratio, as well as those with sex-specific genetic effects.  12 
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Background 27 

Complex diseases are influenced by the synergy of genes and the environment. The study of gene-28 

environment interactions (GEI) may shed light on disease etiology and help identify environmental risk 29 

factors that modify the effects of disease-susceptible genes, as well as genetic variants that modify the 30 

effects of environmental risk factors for complex diseases (1,2). Following rapid advances in next-31 

generation sequencing (NGS) technologies over the past years, a growing body of research focuses on 32 

investigating GEI effects in rare variants (with minor allele frequency (MAF) < 5%), which provides 33 

insights into additional disease risk and trait variability undiscovered in common variants from genome-34 

wide association studies (GWAS)  (3,4). As in genetic main effect tests, single-variant tests are 35 

underpowered in rare variant GEI tests (1,2). A wide variety of set-based GEI tests were developed to 36 

improve the statistical power, which are commonly extensions of the burden test and sequence kernel 37 

association test (SKAT) (5-7), or a combination of them (8-10). Additionally, the joint tests of both 38 

genetic main effects and interaction effects for rare variants were developed to identify variants associated 39 

with complex traits, accounting for heterogeneous genetic effects in different environmental exposures 40 

(8,10). It is especially useful to perform joint tests when the main effects are small and GEI effects are 41 

difficult to detect through interaction only tests (11,12).  42 

Detecting rare variant GEI effects requires extremely large sample sizes given the low power as only a 43 

few individuals carried a rare variant while exposed to the environment factor (2,12). Meta-analysis is a 44 

well-established way to achieve the scale of sample size needed by rare variant GEI tests. By aggregating 45 

summary statistics from different studies, meta-analysis not only increases the sample size, but also 46 

avoids sharing individual-level data, which is usually restricted by study policies and confidentiality laws. 47 

On the other hand, the file sizes of individual-level genotype data are often extremely large, making it 48 

difficult to transfer across platforms with limited disk space and computational resources. The meta-49 

analysis approach can circumvent this problem easily as it does not require sharing individual-level data 50 

but rather the genomic summary statistics which are more resource-efficient. 51 
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Meta-analysis tools have been developed for genetic main effect tests (13-21). In GWAS, the widely-used 52 

inverse variance weighted meta-analysis for common variants usually combines the single-variant effect 53 

estimates and their standard errors (21). Meta-analysis for rare variants cannot use the same approach, as 54 

models estimating multiple genetic effect sizes with large variances for sparse data can fail to converge, 55 

making the algorithm numerically unstable. For this reason, meta-analysis tools for rare variants usually 56 

combine score statistics and covariance matrices of individual variants to recover the set-based tests, 57 

which are better suited for low-frequency and rare variants. Among these tools, MetaSKAT (13), MASS 58 

(17), and Meta-Qtest (19) were developed for unrelated samples. For related samples, RAREMETAL (15-59 

17) can retrieve either the burden test or SKAT, whereas SMMAT (20) can recover burden, SKAT, and a 60 

unified test that combines both. 61 

For set-based GEI tests and joint tests, however, very few meta-analysis methods have been developed. 62 

Among them, ofGEM (22) introduces filtering statistics based on meta-analysis, but it is only applicable 63 

to unrelated samples and no joint tests for genetic main effects and GEI effects were proposed. A recent 64 

study proposed extending the rareGE framework (8) to meta-analysis, which can also be conducted for 65 

unrelated samples only (23). It is not computationally efficient to generate summary statistics using this 66 

method, as for every variant set, a separate statistical model accounting for genetic main effects needs to 67 

be fitted. Moreover, methods have been proposed for meta-analysis of joint tests for genetic main effects 68 

and GEI effects (24, 25), but they are only applicable to single variant tests. It remains a technical gap in 69 

the field to efficiently generate and utilize genomic summary statistics for set-based GEI and joint tests. 70 

Recently, we developed a computationally efficient method, Mixed-model Association test for Gene-71 

Environment interactions (MAGEE), for rare variant GEI and joint tests (10). The goal of this study is to 72 

develop a general framework for genomic summary statistics and meta-analysis for set-based GEI and 73 

joint tests, which are applicable to both unrelated and related samples as well as both quantitative and 74 

binary traits. Since MAGEE does not require fitting a separate model adjusting for the genetic main 75 

effects in each testing region, the genomic summary statistics for set-based GEI and joint tests can be 76 

generated efficiently even for large samples in a whole-genome analysis. 77 
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Results 78 

P value benchmark 79 

The simulated individual-level genotype data included 100,000 samples and 100,000 genetic variants in 80 

1,000 groups (100 variants per group).  In the meta-analysis, a great amount of time can be saved when 81 

the sample size is large as summary statistic-based calculations do not depend on the sample size. For 82 

example, we directly computed the p values from individual-level data of 100,000 samples, which took 83 

1,030 s on a single thread for each simulation replicate with 100,000 variants. In contrast, when using the 84 

summary statistics, computing the p values of the same tests took only 9.7 s using a single thread on the 85 

same computing server, which saved over 99% CPU time. 86 

For both quantitative and binary traits with different sample sizes, we compared the p values from the 87 

meta-analysis (assuming homogeneous genetic effects across studies) with those from pooled individual-88 

level data analysis. Each panel in Figure 1 and Figure 2 displays 10,000 p values from quantitative trait 89 

analyses with related samples. In the MAGEE framework for individual-level data, we developed two 90 

GEI tests, interaction variance component (IV) test and interaction hybrid test using Fisher’s method (IF), 91 

along with three joint tests, joint variance component (JV) test, joint hybrid test using Fisher’s method 92 

(JF), and joint hybrid test using double Fisher’s procedures (JD) (10). We conducted extensive 93 

simulations in MAGEE (10), which showed that each test was well-calibrated for type I error rates. As 94 

illustrating examples, here we compared results from IF test as the GEI test, and JD test as the joint test, 95 

for meta-analysis and MAGEE pooled analysis. The meta-analysis assuming homogeneous genetic effects 96 

shared highly consistent empirical GEI and joint test p values with MAGEE pooled analysis (Figures 1 97 

and 2), regardless of the simulation scenario of homogeneous or heterogeneous genetic effects, and the 98 

precision of estimates increased with the sample size. Most importantly, for small p values around the 99 

commonly used significance thresholds (5.0×10-8 to 2.5×10-6), meta-analysis did not lose any accuracy 100 

compared with the MAGEE pooled analysis while being more resource-efficient in saving the 101 

computational time. We also found similar results for binary traits (Supplemental Figure S1 and S2). 102 

 103 
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Figure 1. GEI test p value benchmark for meta-analysis assuming homogeneous genetic effects with 104 
MAGEE in 20,000, 50,000, and 100,000 unrelated samples. (A) Scenario 1 (homogeneous scenario) in 105 
quantitative traits. (B) Scenario 2 (heterogeneous scenario) in quantitative traits. 106 

 107 

Figure 2. Joint test p value benchmark for meta-analysis assuming homogeneous genetic effects with 108 
MAGEE in 20,000, 50,000, and 100,000 unrelated samples. (A) Scenario 1 (homogeneous scenario) in 109 
quantitative traits. (B) Scenario 2 (heterogeneous scenario) in quantitative traits. 110 

 111 

A

B

N=20,000 N=50,000 N=100,000

B

A

N=20,000 N=50,000 N=100,000

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.08.22274819doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.08.22274819
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

Power comparison 112 

Figure 3 shows the empirical power of the meta-analysis GEI and joint tests for analyzing quantitative 113 

traits from scenario 1, where the two studies had homogeneous covariate effects, genetic effects, and GEI 114 

effects. The power was calculated at the significance level of 2.5×10-6 with 20,000, 50,000, and 100,000 115 

related samples, respectively. The top panel displays results when the ratio of positive and negative causal 116 

variants was 1:1, while the bottom panel displays results when the ratio of positive and negative causal 117 

variants was a 4:1. Overall, the meta-analysis tests assuming homogeneous effects are more powerful for 118 

both GEI and joint tests, with the IF test being more powerful than the IV test and the JF test being 119 

slightly more powerful than the other 2 joint tests. 120 

Figure 4 illustrated the empirical power of the meta-analysis GEI and joint tests for analyzing quantitative 121 

traits from scenario 2, where the two studies had heterogeneous covariates effects, genetic effects, and 122 

GEI effects. Same as in Figure 3, the ratio of positive to negative causal variants in Figure 4 was 1:1 on 123 

the top panel and 4:1 on the bottom panel. In this scenario, as heterogeneity was introduced to these 124 

studies, the overall performance of the meta-analysis tests assuming heterogeneous effects outperformed 125 

the meta-analysis assuming homogeneous effects for both GEI and joint tests.   126 

The same simulations were conducted for binary traits, and we summarized those results in Supplemental 127 

Figures S3 and S4. 128 

  129 
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Figure 3. Empirical power of meta-analysis tests for scenario 1 (homogeneous scenario) on quantitative 130 
traits in 20,000, 50,000, and 100,000 related samples. (A) GEI tests with 80% null variants, 10% causal 131 
variants with positive effects, and 10% causal variants with negative effects. (B) Joint tests with 80% null 132 
variants, 10% causal variants with positive effects, and 10% causal variants with negative effects. (C) GEI 133 
tests with 80% null variants, 16% causal variants with positive effects, and 4% causal variants with 134 
negative effects. (D) Joint tests with 80% null variants, 16% causal variants with positive effects, and 4% 135 
causal variants with negative effects. 136 

 137 

  138 
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Figure 4. Empirical power of meta-analysis tests for scenario 2 (heterogeneous scenario) on quantitative 139 
traits in 20,000, 50,000, and 100,000 related samples. (A) GEI tests with 80% null variants, 10% causal 140 
variants with positive effects, and 10% causal variants with negative effects. (B) Joint tests with 80% null 141 
variants, 10% causal variants with positive effects, and 10% causal variants with negative effects. (C) GEI 142 
tests with 80% null variants, 16% causal variants with positive effects, and 4% causal variants with 143 
negative effects. (D) Joint tests with 80% null variants, 16% causal variants with positive effects, and 4% 144 
causal variants with negative effects. 145 

 146 

 147 

Meta-analysis of waist-hip ratio in the UK Biobank 148 

The original individual-level genotype data from whole-exome sequencing (WES) provided by the UK 149 

Biobank for 200,632 samples was 830 GB for 22 autosomes in the PLINK BED format, while the gene-150 

based summary statistics were about 11 GB in total, including 5.4 GB intermediate files from the first 151 

batch and 5.4 GB intermediate files from the second batch. By sharing only the summary statistics files 152 
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for meta-analysis, we saved about 98.7% disk space compared to directly sharing individual-level data for 153 

set-based GEI tests. In addition, when we directly computed p values from individual-level data, it took 154 

25.48 h (91,732 s) CPU time with 10 threads to conduct all the GEI tests and joint tests in the MAGEE 155 

framework. In contrast, we spent only 23.8 min (1,428 s) CPU time using a single thread on the same 156 

computing server to compute the p values of the same GEI and joint tests when we had the summary 157 

statistics, saving about 98.4% of computational time. One additional advantage for meta-analyzing the 158 

UK Biobank WES data is that when new samples are released in future tranches, we do not have to spend 159 

extra computational cost in rerunning the pooled analysis including previously released samples. Instead, 160 

by combining the summary statistics from different releases in a meta-analysis, we can get similar results 161 

as the pooled analysis while saving the computational resources. 162 

The two batches of WES data from the UK Biobank were meta-analyzed in 18,668 protein-coding regions 163 

to investigate gene-sex interactions effects on waist-hip ratio (WHR). The significance level was adjusted 164 

by Bonferroni correction for multiple testing (26) at 0.05/18,668 = 2.7×10-6. As shown in Figure 5, the 165 

GEI test found three significant regions: COBLL1 (p value = 5.8×10-10) on chromosome 2, HMGA1 (p 166 

value = 2.8×10-7) on chromosome 6, and VEGFB (p value = 1.3×10-6) on chromosome 11. However, none 167 

of them remained significant after conditioning on significant variants in the region, defined as those with 168 

a single variant joint test p value < 5.0×10-8, MAF > 1% and genotype missing rate < 5% (Table 1). A 169 

total of 13 significant protein-coding regions were found from the joint tests, including TBX15, ACVR1C, 170 

COBLL1, NISCH, PLXND1, CYTL1, HLA-B, HMGA1, KIAA0408, MLXIPL, VEGFB, SBNO1, and 171 

PAM16, after excluding less significant protein-coding regions in 1 million base pair flanking regions. Of 172 

note, COBLL1 (p value = 1.3×10-8 after adjusting for 7 significant single variants) and KIAA0408  (p 173 

value = 9.3×10-9 after adjusting for 1 significant single variant) had significant joint test p values in the 174 

conditional analysis (Table 1). 175 

Previous GWAS have identified many loci in these genes for WHR, some of which have sex-dimorphic 176 

effects. For example, there is some evidence that certain loci at COBLL1, PLXND1, HMGA1, and VEGFB 177 

have more impact on BMI-adjusted WHR among women (27, 28). In our meta-analysis GEI tests, 178 
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PLXND1 did not show significance, however, we did identify gene-sex interactions in the other three 179 

regions. Additionally, Justice et al. (29) reported gene-sex interactions in COBLL1, PLXND1, and 180 

KIAA0408. There were no significant gene-sex interaction signals in PLXND1 (p value = 4.6×10-5) or 181 

KIAA0408 (p value = 4.5×10-6), possibly because of the limited sample size in our analysis, and more 182 

weights were added to rare variants using the beta function, which had potentially diminished the signals 183 

from common variants. 184 

We observed most signals driving our joint analyses were contributed by genetic main effects, as only 185 

COBLL1, HMGA1 and VEGFB were significant in the GEI tests (they were significant in the main effect 186 

tests as well). Several loci in the genes identified in the joint tests were reported to be associated with 187 

WHR in previous GWAS analysis (27-32) except for HLA-B. HLA-B is a member of the human leukocyte 188 

antigen (HLA) complex gene family, which helps the immune system distinguish between proteins 189 

created by the body and proteins made by outside invaders like viruses and bacteria (33). Further research 190 

is needed to investigate if there are any sex-specific genetic impacts on WHR in HLA-B. The underlying 191 

mechanisms for most of these genetic and sex differences have yet to be discovered. 192 

We pooled individual-level data and ran MAGEE GEI and joint tests to validate the findings. 193 

Supplemental Figure S5 shows that p values from the meta-analysis and the MAGEE pooled analysis 194 

were highly concordant. 195 

  196 
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Figure 5. Manhattan plots of UK Biobank WES data analysis using meta-analysis for gene-sex interaction 197 
effects on WHR. (A) GEI test. (B) Joint test.  198 

 199 
 200 
Table 1. Meta-analysis results for gene-sex interaction effects on WHR from the UK Biobank WES data 201 
analysis. 202 

    N 

variants 

N sig 

variants* 

Unconditional Conditional 

Gene Chr Start End GEI Joint GEI Joint 

TBX15 1 118883046 118989556 82 1 0.79 5.5×10-11 0.67 0.011 

ACVR1C 2 157526767 157628864 104 0 0.0089 3.1×10-8 0.0089 3.1×10-8 

COBLL1 2 164653624 164843679 221 7 5.8×10-10 4.2×10-16 3.8×10-5 7.4×10-8 

NISCH 3 52455118 52493068 348 11 5.6×10-4 7.3×10-11 5.0×10-4 3.6×10-4 

PLXND1 3 129555175 129606818 423 14 4.6×10-5 3.0×10-15 0.037 8.3×10-4 

CYTL1 4 5014586 5019458 33 0 0.085 1.6×10-6 0.085 1.6×10-6 

HLA-B 6 31269491 31357188 639 3 0.41 7.5×10-12 0.45 2.0×10-5 

HMGA1 6 34236873 34246231 67 3 2.8×10-7 7.3×10-28 0.42 0.10 

KIAA0408 6 127438406 127459389 76 1 4.5×10-6 4.4×10-17 0.0036 9.3×10-9 

MLXIPL 7 73593194 73624543 202 4 0.0014 5.6×10-8 0.016 0.0022 

VEGFB 11 64234538 64238793 81 2 1.3×10-6 1.2×10-17 0.22 0.16 

SBNO1 12 123289109 123364847 344 0 0.021 1.3×10-8 0.021 1.3×10-8 

PAM16 16 4331549 4355607 234 0 0.11 1.1×10-6 0.11 1.1×10-6 
* Number of significant variants in the region, defined as those with a single variant joint test p value < 203 
5.0×10-8, MAF > 1% and genotype missing rate < 5%. Conditional analysis p values were computed by 204 
adjusting for both the genetic main effect and gene-sex interaction terms of significant single variants. 205 

 206 
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Discussion 207 

We present a framework for meta-analysis of rare variant GEI and joint tests for continuous and binary 208 

traits. The meta-analysis is based on a generalized linear mixed effect model (GLMM), which can 209 

account for relatedness in the samples. Single-variant scores and covariance matrices of individual studies 210 

can be efficiently generated from MAGEE. The summary statistics for the meta-analysis can be easily 211 

aggregated, which allows combining the evidence from millions of samples collected from multiple large-212 

scale sequencing studies to improve statistical power. Additionally, the proposed meta-analysis 213 

framework provides flexible set-based joint tests for genetic main effects and GEI effects, including a 214 

SKAT-type variance component test, and two unified tests combining burden and SKAT-type tests. In 215 

population-based studies, heterogeneity is possible because different ethnic groups might have different 216 

MAFs or effect sizes for the same variants, as well as different levels of environmental exposure. 217 

Different ways of collecting and measuring data, genotyping methods, quality-control criterion, and 218 

imputation methods make studies heterogeneous (34). The meta-analysis can easily account for the 219 

heterogeneity across studies, which is difficult in pooled analyses using individual-level data.  220 

We evaluated the performance of the proposed GEI and joint tests through computer simulations. We first 221 

showed that meta-analysis assuming homogeneous genetic effects is numerically concordant with the 222 

equivalent pooled analysis using individual-level data. Additionally, the proposed methodology can 223 

account for heterogeneity across studies in terms of both covariate and genetic effects. GEI and joint tests 224 

assuming heterogeneous genetic effects were generally more powerful than homogeneous-type meta-225 

analyses in the presence of simulated heterogeneity. Overall, IF tests were more powerful than IV tests, 226 

and JF tests were the most efficient of the three joint tests, in accordance with what we determined from 227 

the single-study numerical simulation of MAGEE.     228 

We assessed gene-sex interaction effects impacting WHR, using GEI and joint tests within the proposed 229 

meta-analysis framework on WES data from the UK Biobank. GEI tests identified COBLL1, HMGA1 and 230 

VEGFB that are already known to have loci with sex-dimorphic effects on WHR. The meta-analysis joint 231 

tests identified 13 protein-coding regions, of which 10 had been previously linked to WHR in GWAS (27-232 
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32), including COBLL1, HMGA1, VEGFB, PLXND1 and KIAA0408 that were reported to have sex-233 

specific genetic loci (27-29). The proposed meta-analysis GEI test did not reach significance for PLXND1 234 

and KIAA0408, possibly due to the limited sample size. To identify rare variants that have effects 235 

modified by the environment, extremely large sample sizes are required. Furthermore, we only examined 236 

genetic variants in the exome, but noncoding regions may play a substantial role and may have integrated 237 

effects with protein-coding genes in complex diseases and traits (27, 35). Once more WES data from the 238 

UK Biobank and more whole-genome sequencing (WGS) data become available from other large-scale 239 

consortia in the future, we expect that the meta-analysis will be used to identify more novel genetic 240 

pathways contributing to a wide range of complex diseases. 241 

Our summary statistics and meta-analysis framework have a few limitations. All participating studies in 242 

the proposed meta-analysis must use a unified group definition file to ensure that the summary statistics 243 

are generated consistently across studies. Although all component variants need not be present for all   244 

studies, if different studies use different gene-level tests or group definition files, the summary statistics 245 

would be incompatible (3). In addition, in certain case-control studies, case/control ratios could be 246 

extremely unbalanced, leading to strong heterogeneity across studies (13). Future research could explore 247 

these extremely heterogeneous cases in further depth. 248 

Conclusions 249 

We developed efficient and powerful meta-analysis approaches to overcome the challenges associated 250 

with set-based GEI and joint tests for rare variants while allowing for sample relatedness. The meta-251 

analysis leverages study-specific genomic summary statistics, eliminating the need to share individual-252 

level data, and is applicable to both quantitative and binary traits. In addition, the meta-analysis can 253 

accommodate heterogeneity among studies. These features allow the analysis of GEI effects across 254 

multiple large-scale sequencing studies and can improve the power in identification of novel risk factors 255 

for complex traits. 256 

 257 
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Methods 258 

Modeling summary statistics 259 

The meta-analysis of rare-variant GEI and joint tests involves two major steps. In the first step, we 260 

perform a single-study analysis to calculate the summary statistics of the single-variant score vector and 261 

covariance matrix for each variant. The second step consists of combining the summary statistics and 262 

constructing the test statistic for the meta-analysis. The first step can be performed by using the MAGEE 263 

software package. Below is a brief illustration of how to generate the summary statistics. 264 

Suppose we have 𝑚 = 1, 2, ⋯ , 𝑀 studies, first we need to generate the summary statistics for each 265 

individual study. The full generalized linear mixed model (GLMM) for a single study 𝑚 is in the 266 

following form: 267 

𝑔(𝜇𝑚𝑖) = 𝑿𝑚𝑖𝜶𝑚 + 𝑮𝑚𝑖𝜷𝑚 + 𝑲𝑚𝑖𝜸𝑚 + 𝑟𝑚𝑖    (1) 268 

where 𝑔(∙) is the link function of 𝜇𝑚𝑖, which is the conditional mean of the phenotype of individual 𝑖 in 269 

study 𝑚. Typically, for a quantitative trait, 𝑔(∙) is an identity function, while for a binary trait, 𝑔(∙) is a 270 

logit function. 𝑿𝑚𝑖 is a vector of 𝑝 covariates including the intercept, and 𝑮𝑚𝑖 is a vector of 𝑞 variants, 271 

and 𝑲𝑚𝑖 is a vector of 𝑑𝑞 pairwise GEI terms for 𝑑 environmental factors and  𝑞 variants. Note that the 272 

environmental factors are a subset of the covariates in 𝑿𝑚𝑖. Accordingly, 𝜶𝑚 is a 𝑝 × 1 vector for the 273 

covariate effects, 𝜷𝑚 is a 𝑞 × 1 vector for the genetic main effects, and 𝜸𝑚 is the 𝑑𝑞 × 1 vector for GEI 274 

effects. The vector for the random intercept 𝒓𝑚 = (𝑟1 𝑟2 ⋯ 𝑟𝑁)𝑇~𝑁(0, ∑ 𝜆𝑙𝝍𝑙
𝐿
𝑙=1 ), where 𝑁 is the sample 275 

size for study 𝑚,  𝜆𝑙 are the variance component parameters of 𝐿 random effects, and 𝝍𝑙 are 𝑁 × 𝑁 276 

known relatedness matrices. 277 

Through MAGEE, we made statistical inference that the GEI effects test statistic in model (1) can be 278 

approximated by fitting a global null model without adjusting for the genetic main effects. Specifically, 279 

the global null models are fitted to each individual study as follows:  280 

𝑔(𝜇𝑚𝑖) = 𝑿𝑚𝑖𝜶𝑚 + 𝑟𝑚𝑖     (2) 281 
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The score vector 𝑺𝐺𝑚
 for genetic main effects and GEI effects 𝑺𝐾𝑚

 are in the forms of  𝑺𝐺𝑚
=282 

𝑮𝑚
𝑇 (𝒚𝑚 − �̂�0𝑚)/�̂�𝑚 and GEI effects 𝑺𝐾𝑚

= 𝑲𝑚
𝑇 (𝒚𝑚 − �̂�0𝑚)/�̂�𝑚, where �̂�0𝑚 is a vector of fitted values 283 

and �̂�𝑚 is the dispersion parameter estimated from model (2) in study 𝑚. Assuming the main effect of 284 

genetic variants 𝜷𝑚 are small in a null model with genetic main effects, but without GEI effects 285 

𝑔(𝜇𝑚𝑖) = 𝑿𝑚𝑖𝜶𝑚 + 𝑮𝑚𝑖𝜷𝑚 + 𝑟𝑚𝑖 (3), we can approximate the score vector for GEI effects accounting 286 

for the genetic main effects by �̃�𝐾𝑚
≈ 𝑺𝐾𝑚

− 𝑲𝑚
𝑇 �̂�𝑚𝑮𝑚(𝑮𝑚

𝑇 �̂�𝑚𝑮𝑚)−1𝑺𝐺𝑚
where 𝑮𝑚 =287 

(𝑮𝑚1
𝑇  𝑮𝑚2

𝑇 … 𝑮𝑚𝑁
𝑇 )𝑇is a 𝑁 × 𝑞 matrix of genetic variants, 𝑿𝑚 = (𝑿𝑚1

𝑇  𝑿𝑚2
𝑇 … 𝑿𝑚𝑁

𝑇 )𝑇 is a 𝑁 × 𝑝 matrix 288 

of covariates, �̂�𝑚 = �̂�𝑚
−1 − �̂�𝑚

−1𝑿𝑚(𝑿𝑚
𝑇 �̂�𝑚

−1𝑿𝑚)−1𝑿𝑚
𝑇 �̂�𝑚

−1 is an 𝑁 × 𝑁 projection matrix from the global 289 

null model, where �̂�𝑚 = �̂�𝑚 +  ∑ �̂�𝑙𝝍𝑙
𝐿
𝑙=1 , �̂�𝑚 = �̂�𝑚𝑰𝑁 for quantitative traits and 𝑑𝑖𝑎𝑔{

1

�̂�0𝑚𝑖(1−�̂�0𝑚𝑖)
} for 290 

binary traits, which we estimate from model (2). 291 

In the meta-analysis context, we save the single-variant scores of genetic main effects and GEI effects, 292 

 𝑺𝐺𝑚
, 𝑺𝐾𝑚

,  as well as the covariance matrix for the score vectors 𝛀𝑚 = [
𝑮𝑚

𝑇 �̂�𝑚𝑮𝑚 𝑮𝑚
𝑇 �̂�𝑚𝑲𝑚

𝑲𝑚
𝑇 �̂�𝑚𝑮𝑚 𝑲𝑚

𝑇 �̂�𝑚𝑲𝑚

] = 293 

[
𝑽𝐺𝑚

𝑪𝑚

𝑪𝑚
𝑇 𝑽𝐾𝑚

] for each participant study 𝑚, where 𝑺𝐺𝑚
 is a 𝑞 × 1 vector, 𝑺𝐾𝑚

 is a 𝑑𝑞 × 1 vector, 𝑽𝐺𝑚
=294 

𝑮𝑚
𝑇 �̂�𝑚𝑮𝑚 is a 𝑞 × 𝑞 matrix, 𝑽𝐾𝑚

= 𝑲𝑚
𝑇 �̂�𝑚𝑲𝑚 is a 𝑑𝑞 × 𝑑𝑞 matrix, and 𝑪𝑚 = 𝑮𝑚

𝑇 �̂�𝑚𝑲𝑚 is a 𝑞 × 𝑑𝑞 295 

matrix. As  𝛀𝑚  is a large and symmetric matrix, we can save the lower triangle elements in a binary 296 

format data to save space. Compared to saving the summary statistics as the double-precision floating 297 

numbers that each takes 8 bytes, we used 4 bytes to save each floating-point number to further save the 298 

space by 50%, without losing accuracy in the downstream meta-analysis.  299 

The test statistics are recovered using two combination strategies based on the assumption that genetic 300 

effects are homogeneous or heterogeneous across studies. 301 

Combine summary statistics assuming homogeneous effects 302 

We combine the test statistics by summing the scores and their covariance matrices if we assume the 303 

genetic effects are homogeneous across all the studies. For example, for 𝑚 = 1, 2 … 𝑀 studies, we sum 304 
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the score statistics by 𝑺𝐺 = ∑ 𝑺𝐺𝑚

𝑀
𝑚=1 , 𝑺𝐾 = ∑ 𝑺𝐾𝑚

𝑀
𝑚=1  and covariance matrix 𝛀 = ∑ 𝛀𝑚

𝑀
𝑚=1 =305 

[
∑ 𝑽𝐺𝑚

𝑀
𝑚=1 ∑ 𝑪𝑚

𝑀
𝑚=1

∑ 𝑪𝑚
𝑇𝑀

𝑚=1 ∑ 𝑽𝐾𝑚

𝑀
𝑚=1

] = [
𝑽𝐺 𝑪

𝑪𝑇 𝑽𝐾
]. Assuming all participating studies have 𝑞 variants,  𝑺𝐺 is a 𝑞 × 1 306 

vector, 𝑺𝐾 is a 𝑑𝑞 × 1 vector, 𝑽𝐺 is a 𝑞 × 𝑞 matrix, 𝑽𝐾 is a 𝑑𝑞 × 𝑑𝑞 matrix, and 𝑪 is a 𝑞 × 𝑑𝑞 matrix. In 307 

practice, each variant does not need to be included in all the studies. If a variant is absent in study 𝑚, we 308 

put a placeholder of 0 in place of this variant. 309 

Combine summary statistics assuming heterogeneous effects 310 

Suppose 𝐵 ethnic groups are studied, some variants can have different allele frequencies depending on the 311 

ancestry. Also, lifestyles (e.g., eating habits) and environmental exposures might modify the gene 312 

differently, thus their effects on GEI might differ among ethnicities. By correctly accounting for 313 

heterogeneity across studies, the power of the meta-analysis should be improved (4). Assuming 314 

homogeneous within-ancestry but heterogeneous between-ancestry genetic and GEI effects, we sum the 315 

score statistics by 𝑺𝐺 = (∑ 𝑺𝐺1𝑚

𝑇𝑀1
𝑚=1  ∑ 𝑺𝐺2𝑚

𝑇𝑀2
𝑚=1  ⋯ ∑ 𝑺𝐺𝐵𝑚

𝑇𝑀𝐵
𝑚=1 )𝑇, 𝑺𝐾 =316 

(∑ 𝑺𝐾1𝑚

𝑇𝑀1
𝑚=1  ∑ 𝑺𝐾2𝑚

𝑇𝑀2
𝑚=1  ⋯ ∑ 𝑺𝐾𝐵𝑚

𝑇𝑀𝐵
𝑚=1 )𝑇 and the covariance matrices by 𝛀 = 𝑑𝑖𝑎𝑔{∑ 𝛀𝑏𝑚

𝑀𝑏
𝑚=1 } over 317 

the studies, where 𝑺𝐺𝑏𝑚
, 𝑺𝐾𝑏𝑚

, and 𝛀𝑏𝑚
 are the genetic score vector, GEI score vector, and covariance 318 

matrix of study 𝑚 in ethnic group 𝑏, respectively. 𝑀𝑏 is the number of studies in ethnic group 𝑏 and 319 

∑ 𝑀𝑏
𝐵
𝑏=1 = 𝑀.  𝛀  can be partitioned to 𝑑𝑖𝑎𝑔 {∑ [

𝑽𝐺𝑏𝑚
𝑪𝑏𝑚

𝑪𝑏𝑚

𝑇 𝑽𝐾𝑏𝑚

]
𝑀𝑏
𝑚=1 }, and the variance matrices for 320 

genetic effects, GEI effects, and the covariance matrix of genetic and GEI effects are 𝑽𝐺 =321 

𝑑𝑖𝑎𝑔{∑ 𝑽𝐺𝑏𝑚

𝑀𝑏
𝑚=1 }, 𝑽𝐾 = 𝑑𝑖𝑎𝑔{∑ 𝑽𝐾𝑏𝑚

𝑀𝑏
𝑚=1 }, and 𝑪 =  𝑑𝑖𝑎𝑔{∑ 𝑪𝑏𝑚

𝑀𝑏
𝑚=1 }, respectively. The lengths are 322 

then 𝐵𝑞 for 𝑺𝐺 and 𝐵𝑑𝑞 for 𝑺𝐾. 𝑽𝐺, 𝑽𝐾, and 𝑪 are block-diagonal matrices with 𝐵 blocks of 𝑞 × 𝑞, 323 

𝑑𝑞 × 𝑑𝑞 , and 𝑞 × 𝑑𝑞 sub-matrices respectively for each ancestry. 324 

GEI tests 325 

In the MAGEE framework (10), we developed two GEI tests: interaction variance component (IV) test 326 

and interaction hybrid test using Fisher’s method (IF). The same GEI tests can be reconstructed for the 327 
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meta-analysis from the combined score vectors and the covariance matrices.  IV test assumes the overall 328 

GEI effects 𝜸 ~ 𝑁(0, 𝜏𝑾𝐾
2), for which the test statistic is 329 

𝑇𝛾 = �̃�𝐾
𝑇 𝑾𝐾𝑾𝐾�̃�𝐾, 330 

where �̃�𝐾 ≈ 𝑺𝐾 − 𝑪𝑇𝑽𝐺
−1𝑺𝐺 and 𝑾𝐾 is a predefined diagonal weight matrix for interaction. 𝑇𝛾 follows a 331 

distribution of ∑ 𝜉𝛾,𝑗
𝐵𝑑𝑞
𝑗=1 𝜒1,𝑗

2 , where  𝜒1,𝑗
2  are independent chi-square distributions with 1 degree of 332 

freedom (df), and 𝜉𝛾,𝑗 are the eigenvalues of 𝑾𝐾𝚲𝑾𝐾, where 𝚲 = 𝑽𝐾 − 𝑪𝑇𝑽𝐺
−1𝑪.  333 

𝑾𝐾 can be flexibly determined using annotation information or MAFs in the combined studies without 334 

having to access the individual-level data (36-38). One of the most popular ways to add weight to variants 335 

based on MAF is to use a beta density function with parameters 1 and 25 for the MAF (6). The dimension 336 

of 𝑾𝐾 is 𝐵𝑑𝑞 × 𝐵𝑑𝑞, in which 𝐵 = 1 if we combine the summary statistics assuming homogeneous 337 

genetic effects. 338 

IF test assumes the overall GEI effects 𝜸 ~ 𝑁(𝑾𝐾𝟏𝐵𝑑𝑞𝛾0, 𝜏𝑾𝐾
2 ), where 𝟏𝐵𝑑𝑞 is a vector of 1’s with 339 

length B𝑑𝑞. To test for 𝐻0: 𝛾0 = 𝜏 = 0, we need two test statistics, 𝑇𝛾0
for the burden effects 𝛾0 and 𝑇𝜏 for 340 

the variance component effects 𝜏. The burden effects test statistic 341 

𝑇𝛾0
= �̃�𝐾

𝑇 𝑾𝐾𝟏𝐵𝑑𝑞𝟏𝐵𝑑𝑞
𝑇 𝑾𝐾�̃�𝐾 342 

follows the distribution of  𝜉𝛾0
𝜒1

2 under the null hypothesis 𝐻0: 𝛾0 = 0, where 𝜉𝛾0
= 𝟏𝐵𝑑𝑞

𝑇 𝑾𝐾𝚲𝑾𝐾𝟏𝐵𝑑𝑞. 343 

The variance component effects test statistic is 344 

𝑇𝜏 = �̃�𝐾𝑉
𝑇 𝑾𝐾𝑾𝐾�̃�𝐾𝑉, 345 

where �̃�𝐾𝑉 ≈ �̃�𝐾 − 𝚲𝑾𝐾𝟏𝐵𝑑𝑞(𝟏𝐵𝑑𝑞
𝑇 𝑾𝐾𝚲𝑾𝐾𝟏𝐵𝑑𝑞)−1𝟏𝐵𝑑𝑞

𝑇 𝑾𝐾�̃�𝐾. 𝑇𝜏 follows the distribution of 346 

∑ 𝜉𝜏,𝑗
𝐵𝑑𝑞
𝑗=1 𝜒1,𝑗

2  under the null hypothesis 𝐻0: 𝜏 = 0, where 𝜉𝜏,𝑗 are eigenvalues for 𝑾𝐾𝚲𝑾𝐾 −347 

𝑾𝐾𝚲𝑾𝐾𝟏𝐵𝑑𝑞(𝟏𝐵𝑑𝑞
𝑇 𝑾𝐾𝚲𝑾𝐾𝟏𝐵𝑑𝑞)

−1
𝟏𝐵𝑑𝑞

𝑇 𝑾𝐾𝚲𝑾𝐾. Since 𝑇𝛾0
 and 𝑇𝜏 are asymptotically independent 348 

(proved by Wang et al. (10)), a Fisher’s combination (39) can be used to find the p value for the IF test: 349 
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𝑝𝐼𝐹 = P(𝜒4
2  >  −2 log 𝑝𝛾0

− 2 log 𝑝𝜏), where 𝑝𝛾0
 and 𝑝𝜏 are p values from the burden-type test 𝐻0: 𝛾0 =350 

0 (under the assumption 𝜏 = 0) and the adjusted variance component test 𝐻0: 𝜏 = 0, respectively.  351 

Joint tests 352 

In the joint test, which evaluates both genetic effects and GEI effects, 𝜷 and 𝜸, the test statistics for 𝜷 353 

must also be reconstructed after summing the summary statistics across all studies. A meta-analysis 354 

framework for genetic main effects tests has been developed by SMMAT, which supports both SKAT test 355 

and unified burden and SKAT test. Wang et al. (10) has shown that those test statistics for the genetic 356 

main effects and the GEI test are mutually independent. Assume that the p value from the meta-analysis 357 

SKAT is 𝑝𝑀𝑉 and the p value from the meta-analysis IV test is 𝑝𝐼𝑉, we can combine them through 358 

Fisher’s method as 𝑝𝐽𝑉 = P(𝜒4
2  >  −2 log 𝑝𝑀𝑉 − 2 log 𝑝𝐼𝑉) for the joint variance component (JV) test. 359 

Similarly, assuming 𝑝𝛽0
 and 𝑝𝜎 are the p values from the hybrid genetic main effects meta-analysis, we 360 

can combine them with their GEI test counterparts 𝑝𝛾0
 and 𝑝𝜏 through 𝑝𝐽𝐹 = P(𝜒8

2  >  −2 log 𝑝𝛽0
−361 

2 log 𝑝𝜎 − 2 log 𝑝𝛾0
− 2 log 𝑝𝜏), which is the joint hybrid test using Fisher’s method (JF). Alternatively, 362 

we can combine the p values for genetic effects separately by 𝑝𝑀𝐹 = P(𝜒4
2  >  −2 log 𝑝𝛽0

− 2 log 𝑝𝜎), 363 

and then combine the main effects and GEI p values by  𝑝𝐽𝐷 = P(𝜒4
2  >  −2 log 𝑝𝑀𝐹 − 2 log 𝑝𝐼𝐹), which 364 

is the joint hybrid test using double Fisher’s procedures (JD). 365 

Numerical Simulations 366 

Using related individuals from the same population and different populations, we conducted simulation 367 

studies with two purposes: (1) benchmarking p values from the meta-analysis to the pooled analysis of 368 

individual-level data from MAGEE; and (2) evaluating the performance of each test under the conditions 369 

of heterogeneous genetic influence across populations.  370 

We simulated the genotype replicates in two different populations using MS (40) and prepared two 371 

scenarios based on the two populations. In scenario 1, we simulated 100,000 individuals from the same 372 

population, which included 50,000 parents and 50,000 children in a family relatedness pattern with a 373 
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kinship matrix of [

0.5  0.0  0.25  0.25
0.0  0.5  0.25  0.25

0.25  0.25  0.5  0.25
0.25  0.25  0.25  0.5

]. The 100,000 samples were split into two studies of 50,000 374 

individuals (12,500 families) each, and the covariates were the same in the two studies. In scenario 2, we 375 

simulated 2 populations with a migration rate of 10. Each population had 50,000 individuals, including 376 

25,000 parents and 25,000 children who were related to each other in the same way as scenario 1. The 377 

covariates in these two studies were different. The simulation scenarios and covariates setup for each 378 

study are summarized in Table 2. Each scenario had 1,000 genotype replicates of 100 variants in a group. 379 

Both qualitative and binary traits were simulated, and the following section describes the details for each 380 

simulation. 381 

Table 2. Summary of simulation scenarios. 382 

 Population 1 Population 2 Covariates 

Scenario 1: homogeneous genetic main effects and GEI effects 

Study 1 50,000 0 Age, sex, BMI 

Study 2 50,000 0 Age, sex, BMI 

Scenario 2: heterogeneous genetic main effects and GEI effects 

Study 1 50,000 0 Age, sex, BMI 

Study 2 0 50,000 Sex, BMI 

 383 

Comparison of p values and power 384 

We simulated 10 phenotype replicates per genotype replicate. In each study, the quantitative traits of 385 

individual 𝑗 in family 𝑖 were simulated from 386 

𝑦𝑖𝑗 = 𝛼1𝐴𝑔𝑒𝑖𝑗 + 𝛼2𝑆𝑒𝑥𝑖𝑗 + 𝛼3𝐵𝑀𝐼𝑖𝑗 + ∑ 𝛽𝑡(𝐺𝑖𝑗𝑡 − 𝐺𝑡
̅̅ ̅)

𝑞
𝑡=1 + ∑ 𝛾𝑡(𝐾𝑖𝑗𝑡 − 𝐾𝑡

̅̅ ̅)
𝑞
𝑡=1 + 𝑟𝑖𝑗 + 𝜀𝑖𝑗, 387 

where 𝐴𝑔𝑒𝑖𝑗 ∼ 𝑁(50, 5) for parents and 𝐴𝑔𝑒𝑖𝑗 ∼ 𝑁(50, 5) for children, 𝑆𝑒𝑥𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) for both 388 

parents and children, BMI for family i follows a distribution with heritability (41) of 0.75 (44) 𝑩𝑴𝑰𝑖 ∼389 

𝑁([

25
25
25
25

] , [

4.0  0.0  1.5  1.5
0.0  4.0  1.5  1.5
1.5  1.5  4.0  1.5
1.5  1.5  1.5  4.0

]), the random effects for family i 𝒓𝑖 ∼ 𝑁([

0
0
0
0

] , [

1.0  0.0  0.5  0.5
0.0  1.0  0.5  0.5
0.5  0.5  1.0  0.5
0.5  0.5  0.5  1.0

] ), and the 390 

random error 𝜀𝑖𝑗 ∼ 𝑁(0, 1). 𝐺𝑖𝑗𝑡 was the t-th genetic variant for individual j in family i and 𝐺𝑡
̅̅ ̅ was the 391 
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mean of the t-th variant, and 𝐾𝑖𝑗𝑡 = (𝐺𝑖𝑗𝑡 − 𝐺𝑡
̅̅ ̅)(𝐵𝑀𝐼𝑖𝑗 − 𝐵𝑀𝐼̅̅ ̅̅ ̅̅ ) was the GEI term for the t-th variant with 392 

BMI for individual j from family i and 𝐾𝑡
̅̅ ̅ was the mean of the t-th interaction term in that study. 393 

The binary traits were simulated using a logistic regression model from 394 

log (
𝑃(𝑦𝑖𝑗=1)

1−𝑃(𝑦𝑖𝑗=1)
) = 𝛼0 + 𝛼1(𝐴𝑔𝑒𝑖𝑗 − 𝐴𝑔𝑒̅̅ ̅̅ ̅) + 𝛼2(𝑆𝑒𝑥𝑖𝑗 − 𝑆𝑒𝑥̅̅ ̅̅ ̅) + 𝛼3(𝐵𝑀𝐼𝑖𝑗 − 𝐵𝑀𝐼̅̅ ̅̅ ̅̅ ) +395 

∑ 𝛽𝑡(𝐺𝑖𝑗𝑡 − 𝐺𝑡
̅̅ ̅)

𝑞
𝑡=1 + ∑ 𝛾𝑡(𝐾𝑖𝑗𝑡 − 𝐾𝑡

̅̅ ̅)
𝑞
𝑡=1 + 𝑟𝑖𝑗, 396 

where 𝐴𝑔𝑒 , 𝑆𝑒𝑥 , 𝐵𝑀𝐼 , and the random effects for family i 𝒓𝑖  followed the same distribution as the 397 

quantitative traits, and 𝐴𝑔𝑒̅̅ ̅̅ ̅, 𝑆𝑒𝑥̅̅ ̅̅ ̅, and 𝐵𝑀𝐼̅̅ ̅̅ ̅̅  were the population means in each study, 𝛼0 was set to log
0.4

1−0.4
 398 

representing a prevalence rate of 0.4. 𝐺𝑖𝑗𝑡 , 𝐺𝑡
̅̅ ̅ and the calculation of 𝐾𝑖𝑗𝑡  and 𝐾𝑡

̅̅ ̅ were the same as the 399 

quantitative traits. 400 

For scenario 1, the parameters for age, sex, and BMI were 𝛼1 = 0.1, 𝛼2 = 0.2, and 𝛼3 = 0.1, the same 401 

for study 1 and study 2. The effect sizes 𝛽𝑡 for G and 𝛾𝑡 for GEI were also the same across in both 402 

studies. In scenario 2, the parameters for the covariates in study 1 were the same as those for scenario 1, 403 

while the parameters in study 2 were 𝛼1 = 0, 𝛼2 = 0.4, and 𝛼3 = 0.12, so that age was excluded from 404 

the covariates. In addition, the effect sizes for G and GEI effects were different between the 2 studies in 405 

scenario 2. Specifically, the effect sizes of a variant 𝛽𝑡 and 𝛾𝑡 were proportional to its MAF as 406 

𝑐log10(𝑀𝐴𝐹𝑡), where c represents a constant. Detailed information of the constants 𝑐 for 𝛽𝑡 and 𝛾𝑡 in 407 

each simulation can be found in supplemental Table S1 for the p value benchmark, supplemental Table 408 

S2 for the quantitative trait power comparison, and supplemental Table S3 for the binary trait power 409 

comparison. 410 

For the p value benchmark, we used different parameters for three different sample sizes. In total, 20% of 411 

the variants were randomly selected as causal, which included 10% positive effects and 10% negative 412 

effects. For power comparisons, the same parameters were used with different sample sizes, but different 413 

parameters were used for GEI and joint tests. We used two approaches to indicate the proportion of causal 414 

variants: (1) we randomly chose 20% of causes, among which 10% were positive and 10% were negative; 415 
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(2) we randomly selected 20% of causes, among which 16% were positive and 4% were negative. The 416 

gene-BMI interaction was tested both for binary and quantitative traits. According to Wu et al. (6), we 417 

used a beta density weight function with parameters 1 and 25 on the MAF, so that rare variants had a 418 

higher weight than common variants. 419 

Application to UK Biobank whole exome sequencing data 420 

We used the UK Biobank (42) whole exome sequencing (WES) data as an example of our proposed meta-421 

analysis. The UK Biobank has released the first tranche of WES data containing 49,959 samples in March 422 

2019. The second tranche of WES data was released in October 2020 with 200,632 samples (including the 423 

samples in the first tranche). We divided the dataset in the second tranche by the first and second batches 424 

to meta-analyze the two datasets because there may be measurement errors or batch-specific 425 

heterogeneities due to differences in quality control procedures. After excluding the subjects with missing 426 

sex information, missing age, BMI or WHR, non-white British, and those who have withdrawn from the 427 

study, a total of 43,190 subjects were eligible for batch 1 (23,372 women and 19,818 men), and 132,058 428 

subjects were eligible for batch 2 (72,961 women and 59,097 men). The age distribution was mean = 429 

56.95 (𝑠𝑑 = 7.89) in batch 1 and mean = 56.75 (𝑠𝑑 = 8.04) in batch 2. The BMI distribution was mean = 430 

27.40 (𝑠𝑑 = 4.77) in batch 1 and mean = 27.34 (𝑠𝑑 = 4.70) in batch 2.We tested for gene-by-sex 431 

interaction effects on WHR at the gene-level for the two batches. We first fitted a linear mixed model (43) 432 

adjusting for sex, age, age2 and the top ten ancestry principal components (PCs) for each batch using 433 

glmmkin function from the GMMAT package,  434 

𝑊𝐻𝑅~𝑠𝑒𝑥 + 𝑎𝑔𝑒 + 𝑎𝑔𝑒2 + 𝐵𝑀𝐼 + 𝑃𝐶1 + 𝑃𝐶2 + ⋯ + 𝑃𝐶10. 435 

The relatedness matrix was constructed using the kinship coefficients computed by KING software (44) 436 

for third-degree and closer relatives, provided by the UK Biobank (see UK Biobank Resource 531).  437 

We used the genotype data generated by the Functionally Equivalent (FE) pipeline (45). The variant 438 

groups were defined as protein-coding regions for the WES data and a total of 19,449 protein-coding 439 

regions with 17,549,650 variants were available for analysis. MAGEE was used to generate the score 440 
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statistics and the covariance matrices for each batch. In the next step, we combined and meta-analyzed the 441 

scores and covariance matrices for the two batches, assuming homogeneous genetic effects. As IF test 442 

was more powerful than the IV test, and JF test was slightly more powerful than JV and JD tests in our 443 

power simulations, in the UK Biobank WES data analysis we reported IF and JF test p values as the GEI 444 

and joint test results, respectively. The meta-analysis excluded variants with a minor allele count (MAC) 445 

less than 5, or with a genotype missing rate greater than 5%  in the combined dataset, and 18,668 protein-446 

coding regions with 2,328,550 variants passed these filters. We applied a beta density weight function 447 

with parameters 1 and 25 on the MAF. In addition, we compared the meta-analysis results to the results of 448 

a joint analysis pooling all the individual-level data using MAGEE. For protein-coding regions that 449 

reached the Bonferroni-corrected significance level of 0.05/18,668 = 2.7×10-6, we also performed 450 

conditional analysis by adjusting for variants in the region that had a single variant joint test p value less 451 

than 5.0×10-8, MAF greater than 1% and genotype missing rate less than 5%. Both the genetic main effect 452 

and gene-sex interaction terms of significant single variants were included in the conditional analysis. 453 

 454 
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