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Abstract  

Successful treatment of solid cancers relies on complete surgical excision of the tumor 
either for definitive treatment or before adjuvant therapy. Radial sectioning of the 
resected tumor and surrounding tissue is the most common form of intra-operative and 
post-operative margin assessment. However, this technique samples only a tiny fraction 
of the available tissue and therefore may result in incomplete excision of the tumor, 
increasing the risk of recurrence and distant metastasis and decreasing survival. 
Repeat procedures, chemotherapy, and other resulting treatments pose significant 
morbidity, mortality, and fiscal costs for our healthcare system. Mohs Micrographic 
Surgery (MMS) is used for the removal of basal cell and squamous cell carcinoma 
utilizing frozen sections for real-time margin assessment while assessing 100% of the 
peripheral and deep margins, resulting in a recurrence rate of less than one percent. 
Real-time assessment in many tumor types is constrained by tissue size and complexity 
and the time to process tissue and evaluate slides while a patient is under general 
anesthesia. In this study, we developed an artificial intelligence (AI) platform, ArcticAI, 
which augments the surgical workflow to improve efficiency by reducing rate-limiting 
steps in tissue preprocessing and histological assessment through automated mapping 
and orientation of tumor to the surgical specimen. Using basal cell carcinoma (BCC) as 
a model system, the results demonstrate that ArcticAI can provide effective grossing 
recommendations, accurately identify tumor on histological sections, map tumor back 
onto the surgical resection map, and automate pathology report generation resulting in 
seamless communication between the surgical pathology laboratory and surgeon. AI-
augmented-surgical excision workflows may make real-time margin assessment for the 
excision of more complex and challenging tumor types more accessible, leading to 
more streamlined and accurate tumor removal while increasing healthcare delivery 
efficiency. 
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Introduction 
 

Complete surgical resection is first line treatment for many solid tumors, which typically 

requires excision of the clinically evident tumor and the rim of surrounding normal tissue 

followed by closure with subsequent post-operative histologic analysis of tissue margins 

(POMA). In the pathology laboratory, the specimen is most commonly grossed in a 

breadloafed or radial fashion, embedded, sectioned, stained, and read by the 

pathologist. While POMA of breadloafed sections is the current standard, removal and 

histologic analysis of the margin in this manner has three major pitfalls: 1) post-

operative identification of positive margins (tumor identified at the tissue edge), 

necessitating a repeat procedure, 2) false negative or “missed” margins, where the 

tumor is present at a portion of the margin not evaluated due to sampling error, and 3) 

excessive tissue is removed to limit the possibility of pitfalls 1 and 2 as above, which 

can result in the removal of critical structures. Standard excisions and POMA for the 

treatment of skin cancer reveals a combined positive margin or tumor recurrence rate of 

at least 20% 1–4. Either of these outcomes (i.e., post-operative positive margins or false 

negative margins) requires additional surgery, radiation, chemotherapy, or some 

combination thereof, resulting in patient morbidity, mortality, and a significant cost to our 

healthcare system 5–10. These pitfalls have been addressed in some settings through 

the use of intraoperative frozen sections or analyzing a larger percentage of tissue 

margins, which, in comparison to standard excisions and POMA, can reduce positive 

margin or recurrence rates to less than 1-2% in certain surgical subspecialties 3,11–13.  
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Successful intraoperative treatment of solid tumors requires the combined efforts of 

multiple highly trained individuals. Tumor removal is performed by the surgeon; 

cryofreezing and sectioning of the tissue and then staining by the histotechnologist; and 

histologic analysis by the pathologist. In the current surgical workflow, the surgeon, 

histotechnologist, and pathologist are often separated by time and space. For example, 

communication of histological findings between pathologist and surgeon may occur over 

the phone. This separation presents an obstacle to evaluating intraoperative frozen 

sections (Figure 1). Prior studies have shown that breadloaf grossing of tissue sections 

results in analysis of approximately 1-2% of the margin 6. Increasing the percentage of 

tissue margins analyzed requires either: 1) more tissue blocks and sections, or 2) an 

alternative grossing method. These approaches require more time and/or expertise on 

the part of both the histotechnician and pathologist.  

 

 
Figure 1: Intraoperative surgical excision setting and potential use cases for 
integrating artificial intelligence: A) Surgeon removes tumor in the operating room, 
tissue is prepared in the gross room, margins are assessed by pathologist in slide room 
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for margin assessment and findings are mapped back to orientation of surgical site. B) 
3D modeling for automated tissue grossing, computer vision and graph neural networks 
for margin assessment, and morphing techniques orient histological findings to a 
surgical tumor map to inform surgeon where to cut additional tumor 
 

Mohs Micrographic Surgery (MMS) is used for the treatment of skin cancers of the 

head, neck, and special sites 14,15. Tumor removal is performed under local anesthesia 

with real-time margin assessment using frozen tissue sections that are cut by a 

histotechnician in an on-site laboratory. Tissue is grossed in a manner that allows the 

peripheral and deep margin to sit in the same plane, allowing analysis of 100% of tissue 

margins.  The Mohs Micrographic Surgeon performs tumor removal, histologic analysis, 

and the creation of a surgical tumor map to inform additional tumor removal if 

necessary. As compared to standard excisions and POMA (≥20% recurrence, as 

aforementioned), MMS results in a significantly lower tumor recurrence rate (less than 

1-2%, as aforementioned) while minimizing the size of the surgical defect and sparing 

normal surrounding tissue. The advantages conferred by MMS are largely possible due 

to the size and location of the tumors being excised. These characteristics facilitate the 

use of local anesthesia and allow the entire margin to be efficiently processed and 

analyzed. There are numerous obstacles to the application of real-time 100% margin 

analysis in other surgical practices, including: 1) time under general anesthesia, 2) 

tissue specimens of prohibitive size and complexity, 3) availability of expert 

pathologists, and 4) clear mapping of histological findings back to the resection site. 

Additionally, suboptimal preparation of frozen sections can impact the location of 

positive margins and is often cited as precluding real-time margin assessment in higher 

risk settings. Highly trained histotechnicians are required to create quality tissue 
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sections but are in short supply 16. Thus, investing in methods that can improve the 

speed of specimen preparation, ensure high-quality tissue sections, and promote rapid 

and accurate histological assessment of tissue margins are of paramount importance. 

 

Emerging artificial intelligence (AI) technologies have demonstrated the capacity to 

model complex medical processes and may soon fundamentally transform healthcare 

delivery through incorporation of non-autonomous diagnostic decision making. These 

technological advancements have been propelled through the advent of artificial neural 

networks (ANN) including deep learning methodologies 17. ANN are inspired by central 

nervous system processes and represent data input to the algorithm through a 

collection of nodes, where, given the appropriate activation energy, the signal from 

these nodes may be passed or shared to a hidden set of nodes organized into multiple 

processing layers which represent an object through multiple layers of abstraction. For 

instance, ANN have been widely applied to tasks in digital pathology 18–26, from 

simulating application of chemical staining reagents 27–34, to predicting prognostic 

molecular information from digitized representations of tissue slides (Whole Slide 

Images; WSI), and predicting the origin of tumors with unknown primary site 35. Recent 

ANN methods have been proposed for margin assessment across multiple surgical 

subspecialties though have only focused on identifying tumor 36–39 while ignoring other 

issues that are critical to MMS,  including: 1) assessing 100% tissue margins 

intraoperatively, 2) tissue preparation, 3) tissue section quality, 4) mapping findings to 

surgical tumor site, and 5) operational efficiency.  
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We have designed and developed a non-autonomous artificial intelligence driven 

platform (ArcticAI) that can expedite tissue preparation, histological inspection, and 

tumor mapping to improve solid tumor removal (Figure 2) using MMS for removal of 

basal cell carcinoma as a model system. ArcticAI places the surgeon, histotechnician, 

and pathologist in the same virtual space to: 1) reduce the amount of time a 

histotechnician takes to process tissue and generate pathology reports through 3D 

modeling techniques and smart grossing recommendations (e.g., reporting of tissue 

size and where to ink), 2) improve the efficiency of pathologic analysis through a 

collection of sophisticated graph neural networks to map tumor and artifacts on whole 

slide images (WSI) acquired from serial tissue sections, and 3) automatically generate a 

descriptive and visual pathology report easily interpreted by the surgeon either in real-

time or post-operatively.   
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Figure 2: Workflow overview: A) Gross tissue measurements and inking 
recommendations are made using the 3D Model Pane, which reconstructs 3D models of 
tissue from video of tissue rotating around a turntable set up, B) Rapid margin 
assessment is accomplished through the Histology Pane, which localizes holes/tears 
(completeness), tumor, and calculates spatial statistics on ink for orientation (blue is 12 
o’clock, red is 6 o’clock), and C) Mapping Pane maps margin assessment results to 
surgical specimen through morphing to user defined surgical tumor map and by 
leveraging the orientation calculated in the Histology Pane to reorient the results to a 
format understandable by the surgeon 

 
 

 
Results 

Data Collection and Study Population 

After Institutional Review Board approval, we assessed specimens from 194 patients 

undergoing tumor excision in the Mohs Micrographic Surgery (MMS) setting for the 

treatment basal cell carcinoma (BCC). Tissue from 16 patients (17 specimens) were 

used for tissue grossing algorithms, while tissue from the remaining 178 patients were 

used for histological assessment and tumor mapping algorithms. All specimens first 

underwent accessioning and gross measurement. For the tissue grossing algorithm, the 

gross specimen was placed on a turntable and imaged using low resolution video 

capture. The remaining cases underwent grossing, inking, processing, cryoembedding 

(frozen section), sectioning, and staining with hematoxylin and eosin (H&E). From these 

178 cases, 351 slides corresponding to 1,065 serial sections and 1,537 tissue pieces 

were scanned at 20X resolution using the Leica Aperio AT2 scanner and stored as 

Whole Slide Images (WSI) in either SVS or TIFF file format. A total of 3,754,730 image 

patches (256x256 pixels) were extracted from the WSI for further analysis. Using the 

ASAP annotation software (https://computationalpathologygroup.github.io/ASAP/, v1.9), 

all cases were annotated for tumor (BCC), benign structures, inflammatory aggregates, 
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holes/tears, ink color and location, and major compartments (epithelium, dermis, fat, 

etc.). The data was then divided into training/validation sets (65% of cases) responsible 

for algorithm training and finetuning and a held-out test set (35% of cases) (Table 1). 

Follicles and individual nuclei were annotated in a subset of the training/validation slides 

as annotation of these smaller structures on all training/validation slides was 

intractable. BCC subtypes seen in clinical practice were reflected in the 

training/validation and test sets.  

 

Results Overview 

In the following subsections, the impact of an AI-augmented digital assessment on the 

surgical workflow will be demonstrated through description of expected display outputs 

and results from: 1) tumor removal and specimen preparation, 2) histological 

assessment, and 3) tumor mapping. Finally, execution time is recorded for rapid and 

parallel histological assessment. 

 

Tissue Preparation Results 

 
Figure 3: Tissue Grossing Measurement and Recommendations via the 3D Model 
Pane: A) Image of turntable setup, where phone camera is placed on mount to record 
gross specimen revolve around table; B) still frame from phone video of rotating tissue 
specimen; also depicted on the bottom are automated segmentations of the tissue and 
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suture using the 3D Model preprocessing subroutine, images were selected from a 
representative set of still frames to demonstrate multiple object viewpoints; C) these 
viewpoints are integrated together for 3D reconstruction of the gross specimen, pictured 
here are screenshots while using the interactive 3D Model Pane to rotate the specimen 
to various orientations; inking recommendations are deposited via the addition of red/blue  
and black lines, which denote inking of 12 o’clock (blue) near the suture (which has been 
removed) and 6 o’clock (red) after bisecting the tissue (black); ; length, width and height 
measurements are automatically reported on the scale of centimeters while operating the 
display; D) tissue grossing and ink recommendations for radial sectioning of a wide local 
excision specimen 
 

Following tumor removal, a specimen is sent to the pathology laboratory for 

accessioning, grossing, inking, sectioning, and staining. Tissue grossing and inking 

decisions are made by the histotechnician depending on the size and shape of the 

tissue specimen. These decisions are not standardized and require a high level of 

training and rigorous documentation. To determine if tissue characteristics could be 

autogenerated, seventeen surgical specimens were collected, and the superior pole 

was delineated by either tissue ink or placement of a suture. Reconstructions combined 

multiple views of the tissue through captured smartphone videos for one revolution 

around a turn table setup (Figure 3A). These tissue images were cropped using a 

tissue detection algorithm into serial images and photogrammetry techniques were 

applied to reconstruct a 3D model of the excised tissue (Figure 3B; Supplementary 

File 1).  

 

Tissue Size Measurements: Subsequently, additional filtration techniques were applied 

to the model (i.e., suture was automatically segmented and removed from the 3D 

model), and ellipse shape detectors 40 were used to measure the width of the turn table 

to normalize the dimensions of the 3D model to actual tissue proportions (Figure 3C). 
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Automated tissue measurements of the reconstructed tissue varied by 0.25cm on 

average as compared to manual measurements for each tissue dimension (Tables 2-3).  

 

Inking Recommendations: Taking into account: 1) autogenerated tissue size, 2) 

preferred grossing approach (MMS versus radial) as dictated by surgeon/pathologist, 

and 3) size of a glass slide, automated grossing and inking 

measurements/recommendations were generated to maximize the amount of margin 

per tissue block/slide. This resulted in lines being placed through the 3D model 

recapitulating expert domain knowledge, using suture/ink locations for guidance. For 

MMS specimens, the algorithm placed 3D black lines, which identified the location of 

grossing cuts, and blue and red lines, denoting 12 and 6 o’clock ink placement, 

respectively (Figure 3C). Figure 3D demonstrates tissue grossing and ink 

recommendations for radial sectioning of a wide local excision specimen. Grossing cuts 

are identified by black lines through the body and two tips of the specimen based on 

tissue size. Inking recommendations include unique color combinations for each tissue 

piece allowing multiple pieces to be put into a single cassette, resulting in fewer tissue 

blocks for the histotechnician to section.  

 

Histological Assessment Results 

Tissue Completeness Assessment: Effective histologic analysis of tumor margins relies 

on high-quality tissue sections that are devoid of holes or tears. In the absence of a 

complete tissue section, it is not possible to definitively declare a margin free of tumor. 

To address this, a ‘Tissue Completeness’ algorithm was developed using a combination 
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of convolutional and graph convolutional neural networks (CNN-GNN) 41. The algorithm 

was trained and validated on 381 annotated tissue sections using PyTorch to segment 

holes/tears (tissue artifacts) in the tissue 41,42. The tissue completeness algorithm was 

trained to delineate between the following macro-architectural features: 1) holes/tears, 

2) epidermis, 3) dermis, and 4) subcutaneous fat. The algorithm successfully identified 

tissue defects in our test set with an AUC of 0.84 (Table 3). An example output of the 

‘Completeness’ algorithm is shown in Figure 4A-B, where sporadically placed 

holes/tears are highlighted by the algorithm, while regions of fat or significant gaps 

introduced by hair follicles or less structured dermis are ignored. A few instances where 

holes were missed or overcalled are shown in Supplementary Figure 1.  

 

 
Figure 4: Margin assessment via the Histology Pane for two test cases, A and B for 
three serial sections (1,2, and 3). Results are plotted on top of each WSI for 
assessments of orientation, tissue completeness, and tumor localization. Screenshots of 
WSI from the Histology Pane. For tissue orientation, blue and red lines are drawn over 
center of mass positions to define 12 o’clock and 6 o’clock respectively for each tissue 
section. High resolution completeness and tumor results represented by thresholded 
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heatmaps (where patches removed from display if failing to surpass probability threshold), 
where red indicates whether part of tissue is incomplete or positive margins, and blue 
indicates lower yet non-negligible probability of incompleteness/tumor.  
 

Tumor Localization: To evaluate for the presence or absence of tumor, a CNN-GNN 

was trained and validated on 1,065 tissue sections containing a variety of basal cell 

carcinoma histologic subtypes reflective of clinical practice (Table 1). Annotation 

subgroups included: tumor, benign skin structures (hair follicles), and cell populations 

that may be confused with or a harbinger of tumor (inflammation). Using a small subset 

of WSIs, an image detection model was trained to identify and remove hair follicles from 

tumor-predicted regions that were conflated with follicles (Table 2, Supplementary 

Figure 2, Supplementary Table 1). Inflammation was explicitly modeled to avoid 

calling tumor in pockets of inflammation. On a test set on 121 held out slides, the CNN-

GNN obtained an AUC of 0.97 for the task of tumor localization across sections (Table 

3). Example displays of the tumor detection output across serial sections of two test set 

cases is shown in Figure 4A-B. We have included example displays of hair follicle and 

inflammation-predicted regions on held-out slides in the supplementary materials 

(Supplementary Figures 2-3), which further demonstrate how exclusion of these 

regions can inform tumor localization.  

 

Nuclei Detection and Classification: To rule out rare tumor cells in regions predicted to 

be inflammatory aggregates, a cell detection neural network (Detectron2) was trained to 

provide high-resolution tumor maps designating precisely which cells correspond to the 

BCC annotation subgroup 43,44. Annotation subgroups to train the cell detection 

algorithm included: ‘BCC’, ‘hair follicle’, ‘inflammatory’, ‘fibroblast’, and ‘epidermal 
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keratinocyte’. The model was trained and validated on 32,763 cell annotations 

(polygonal contours). Initial cell assignments were further refined by training a GNN on 

cell graphs (node is cell and spatial proximity to neighboring cells form edges). Results 

demonstrate the ability to accurately localize cells (Dice=0.86) in a small internal test 

set, while predicting with high accuracy the corresponding cell type (F1-Score=0.86) 

(Supplementary Table 1; Supplementary Figure 4).  

 

Mapping Histological Findings to Surgical Tumor Site 

 
Figure 5: Mapping margin assessment results to surgical tumor map via Mapping 
Pane: A-C) Representation of workflow using three separate sections, the first (A) from 
one case, and the second two (B-C) are serial sections in another case; first, margins are 
assessed via Histology Pane and tissue orientation and tumor localization results are 
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plotted over the WSI; then, results are mapped to surgical tumor diagram selected by the 
user (A features top of scalp, while case B-C are of front of face), where circle is drawn 
by user to represent surgical site anatomic location and an arbitrary orientation is defined 
via user drawing of blue/red lines. Note how tumor results are morphed and rotated to 
match circle interior and orientation in surgical tumor maps, where density map in surgical 
tumor map represents tumor at user defined threshold. For B-C, note how tumor is 
automatically rotated close to 180 degrees to preserve orientation of margin on surgical 
map 
 
Tissue Orientation: Histologic ink location is critical to tissue orientation and subsequent 
tumor mapping. In this study, MMS specimens were inked blue (12 o’clock), and red (6 
o’clock) which was reflected in the surgeon’s hand-drawn diagrams. To automate ink 
detection, tissue edges were segmented using a Sobel filter with morphological dilation 
and opening operations. Then, a sensitivity analysis over thresholds in Hue, Saturation, 
Value (HSV) color space yielded optimal color thresholds to detect inks, which were 
paired with a connected component analysis to identify contiguous regions and remove 
spurious applications of ink within the tissue edges (i.e., where ink is erroneously 
applied / seeps) 45. Subsequently, a line was plotted between detected blue and red ink 
on tissue sections and stored for use later to calculate the relative orientation to lines 
drawn either with surgeon annotated inks on histological slides as comparison or to inks 
drawn in the surgical tumor map for mapping histological results back to the specimen 
(Figures 4-5). On a subset of held out test slides, the relative angular difference 
between red and blue ink line was measured and compared to the relative angular 
difference to the blue-red ink line calculated from the surgeon annotation of inks on the 
WSI (center of mass calculations for detected/annotated inks). Findings indicate that 
95% of tissue sections were oriented correctly (i.e., less than 45° difference between 
annotated/predicted lines) with an average relative angular difference of 4% (Table 3, 
Supplementary Figure 5A,C). Sections without correct orientation demonstrated 
relative lack or spurious applications of ink, highlighting the importance of proper tissue 
inking (Supplementary Figure 5B)46.  
 
Tumor Mapping: Accurate tumor mapping is critical to inform additional tumor removal if 

needed. Tumor mapping relies on anatomic identification of surgical site, accurate 

tissue size measurement, tissue orientation, and tumor identification.  To build a tumor 

map, a template is selected by the surgeon based on the anatomical surgical site with 

blue and red lines used to indicate 12 o’clock and 6 o’clock, respectively 

(Supplementary Figure 6).  The tissue sections are then fit to the tumor map through 

an algorithm that morphs the WSI histologic tissue sections into the shape of the map 

using an optimal transport method and rotating the map such that orientation (blue-red 
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ink line) predicted using the inks aligns with the blue and red surgical map lines (Figure 

5A-C illustrates how histological results can mapped to any arbitrary orientation, 

Supplementary File 2 demonstrates concordance between hand-drawn and digital 

tumor maps) 47–49. Both tumor and tissue completeness are mapped and can be viewed 

separately or overlapping. For each tumor removal stage, information across multiple 

serial sections is integrated together or can be viewed separately after registering the 

histological findings to the surgical tumor map. To determine the accuracy of automated 

tumor mapping, 28 test set cases (selected at random from cases with known positive 

margins) were used to compare platform generated tumor maps to the surgeon hand 

drawn maps. Maps corresponding to first stage removals were assessed as most 

second stage removals were clear at the margin. This showed 99.2% (95% CI: 91.5%-

99.9%) correspondence between the surgeon and algorithm generated maps, 

respectively (Supplementary Figure 7, Table 2).   

 

Margin Assessment Speed 

Local anesthesia is used during MMS. For broad applicability of this approach for 

tumors in patients where general anesthesia is required, the platform must perform with 

efficiency and speed. The platform workflow 50 includes an initial preprocessing step to 

separate tissue sections and then parallel execution of all subroutines (Supplementary 

Figure 8A) across separated sections within the WSI (Table 4).  Overall, margin 

assessment using the ArcticAI platform across the entire test set (n=41 cases, 121 

slides) had an average execution time of 72 seconds per slide and 78 (95% CI: [66 - 

88]) seconds per case (i.e., many slides/sections per case), consisting of 48 seconds for 
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preprocessing and 24 seconds for parallel performance of image stitching, CNN-GNN 

analysis, and tissue orientation (Supplementary Figure 8B). Execution of the platform 

in series would take five to seven times longer than parallelized, 494 (95% CI: [367 - 

553]) seconds per case.  

 

Discussion 

Tumor excision with real-time intraoperative 100% margin assessment results in low 

recurrence rate and efficient delivery of surgical care in MMS. Real-time margin analysis 

or increased percentage of margin analysis has the potential to decrease true positive 

or false negative margins across surgical oncology procedures. However, broad 

applicability of real-time total margin analysis is relatively limited outside the MMS 

setting. There are several logistical constraints that contribute to this including 

separation of multiple experts in time and space, inefficient manual laboratory 

processes, and labor-intensive pathologic analysis of histologic specimens. In this study 

a rapid tissue margin assessment tool was designed and tested to address the rate 

limiting steps in the current surgical tumor removal workflow.   

 

The ArcticAI platform performs automated tissue measurements aimed at improving 

laboratory workflow through efficient grossing and inking recommendations. These 

recommendations aim at maximizing the amount of tissue per block while decreasing 

the number of tissue blocks to be cut by the histotechnician. Additionally, unique 

predetermined ink combinations allow the tissue sections to be reconstructed and 

mapped to the 3D tissue model. These features have the potential to standardize 
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grossing and inking in the surgical pathology laboratory thereby decreasing the time of 

processing and required level of expertise. Histotechnicians are highly trained and 

currently in high demand in our healthcare system. Increasing the efficiency of the 

histotechnician as well as decreasing the training required to expertly process and 

section a tissue excision specimen are two solutions to address the demand for more 

histotechnicians51. In addition to the importance of the ‘Completeness’ algorithm for 

tumor margin analysis, ArcticAI can also be used as a training tool to assess the 

competency of histotechnicians either in training or as part of an annual review of 

performance. Taken together, the platform provides significant support in training, 

standardization, and workflow efficiency for histotechnicians.  

 

The current study resulted in an AUC of 0.97, which is anticipated to increase with 

subsequent and expanded training sets. Identification of specific histologic BCC 

subtypes or normal structures that present particular challenges for the CNN-GNN will 

help to identify surgical cases that will be most impactful for further improvement of the 

algorithm. Interestingly, this study elucidates the importance of the relationship between 

tumor and additional cell populations including surrounding inflammation as an indicator 

of the presence of tumor. Further delineation of the tumor niche may provide additional 

important information to delineate tumor from surrounding benign tissue or structures 

such as hair follicles which can have similar structures and nuclear morphologies to 

BCC. The creation of CNN-GNN for the margin analysis of other solid tumors will 

require the identification of both varied histologic tumor types and tissue specific cell 

populations or tissue structures that aid in tumor identification.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.06.22274781doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.06.22274781


 

 

 

MMS is possible because the surgeon removes the tumor and reads the slides in a 

laboratory in close proximity to the operating room. In other surgical settings, performing 

frozen section margin analysis requires an onsite pathologist to read the slides and 

relay the results back to the surgeon in the operating room.  In these settings the 

laboratory and operating room are separated by time and space. This prevents the use 

of frozen sections in many healthcare settings, particularly smaller rural hospitals, where 

caseload or demand may not support the presence of an on-demand highly trained 

expert pathologist. By creating an algorithm that enables rapid and accurate 

identification of tumor combined with a virtual platform allowing for remote whole slide 

imaging and result viewing, the ArcticAI platform obviates the pathologist being in 

physical proximity to the operating suite. This allows a pathologist with expertise in one 

particular tumor type or organ system to maintain a high case load while providing 

highly specialized pathologic care to healthcare settings that might not otherwise have 

such access. Integration of the ‘Completeness’ algorithm will identify low quality or 

incomplete sections prior to pathologic analysis and allow the histotechnician to create 

additional sections as needed, prior to final pathologist review. This will minimize recuts 

and allow rapid sign out and reporting. Integration of the vast amount of data present in 

a pathology report through automation will decrease the amount of work on the back 

end and also provide both written and visual outputs that can be used either in real-time 

or post-operatively. Excessive charting and documentation result in pathologist burnout, 

limiting the amount of manual documentation will both increase productivity and 

decrease administrative burden 52–54.  
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For skin cancer of the head and neck, which is more challenging to assess than the 

model system featured in this work (BCC) due to increased tissue size and complexity, 

decreased positive margin and recurrence rates have been shown with real-time 

complete margin analysis 55,55–62. As many healthcare systems are functioning with 

decreased staffing and disruption of supply chains, delivery of efficient surgical care is 

critical for patient access and maximizing hospital resources. Limiting positive margins, 

tumor recurrence, or the need for adjuvant treatments will decrease the burden on the 

surgical and medical system 63–65. Access to remote pathologists using AI augmented 

platforms will allow both hospitals that may otherwise not be able to offer a surgical 

service to do so and increase the productivity of remote pathologists. Providing 

histotechnicians with a platform that automates their tedious tasks and makes 

grossing/inking recommendations that are reflected in the pathology report will allow 

them to focus their time and energy on embedding and sectioning the tissue, thereby 

increasing the number of specimens processed. Taken together, the use of technology 

in the delivery of surgical care will not just provide better outcomes for the patients, but 

also improve the efficiency of surgical care delivery in an unprecedented time of 

resource shortages (e.g., access to care).  

 

Limitations of this study include that it was performed at a single site. Whole slide 

images in the training, validation, and test set were generated in a single laboratory with 

a standardized sectioning and staining protocol. Therefore, the next steps will include 

creation of an external test set from outside MMS units. Finalized tumor detection and 
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completeness algorithms will likely require an input of whole slide images from multiple 

laboratories. Alternatively, sites aiming to use the platform could adopt a standardized 

workflow including reagents and process similar to those used to generate the tissue 

sections incorporated into the algorithms in this study.  Obstacle to the usage of the 

platform include the availability whole slide scanners, as these are currently costly, and 

have large file uploads requiring a robust computing infrastructure or workstation 

capable of handling high throughput assessment. With time, the cost of scanners will 

decrease, and computing power will increase using graphics processing units (GPUs). 

Timely tissue processing and analysis is critical to seamless integration of the platform 

into the surgical workflow. The timing featured in this study considers parallel execution 

of workflow elements in optimal computing infrastructure. However, many high-

performance computing environments are bottlenecked by the time it takes to submit 

and start simultaneous compute jobs as well as communication bottlenecks which may 

be workflow specific. In future studies, all aspects of the surgical workflow and platform 

including: 1) tissue transport and processing 2) slide scanning 3) image upload and 

processing of the ArcticAI platform and 4) pathologist review, via a simulated clinical 

trial will be timed to provide practical time estimates.  

 

Conclusion 

Complete surgical removal of solid tumors remains most patients’ best chance at 

achieving a cure. In this study, MMS removal of BCC is used as a model system to 

highlight the integration of artificial intelligence and machine learning into the surgical 

workflow to address critical bottlenecks that might otherwise prevent real-time and/or 
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complete tumor margin analysis. This model has the ability to improve surgical care 

delivery through technology driven standardization and automation as one approach to 

solve the significant labor and resource shortages and mismatches in the current 

system. This can be accomplished by: 1) improving the efficiency of the individuals and 

processes within the system and 2) increasing the number of individuals capable of 

performing a critical task. Nonetheless, adopting a digital aid requires stakeholder buy-

in and a readiness for changing established practices, which carries significant barriers 

for entry. Dissemination and implementation of such technologies requires educational 

alignment and qualitative assessment of stakeholder interests and values. In order for 

such technology to be adopted, it will need to demonstrate significant improvement in 

efficiency over traditional methods while meeting the needs of surgeons, pathologists, 

and histotechnicians. 
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Methods 

Technology Overview 

ArcticAI is an AI-based software platform for the rapid assessment of tumor margins. The 

functions of ArcticAI are encapsulated in several modules including: 

 

Tissue grossing via the 3D Model Pane (Figure 2A): When tissue arrives at the pathology 

laboratory, it undergoes accessioning, description, measurement, grossing, inking, 

processing, embedding, sectioning, and staining prior to pathologic analysis. To expedite 

this process, we have prototyped a mobile application that takes multiple images / video 

of the tissue and synthesizes them to form a 3D model of the tissue. This allows the 

system to: 1) determine tissue size (e.g., length, width, height) and orientation 

automatically and add this data to the pathology report, 2) create optimal grossing guides 

for the histotechnician, and 3) create optimum inking diagrams for the specimen (e.g., 

blue ink indicates piece is at 12 o’clock; ink used to establish a “coordinate system” for 

tissue “map”). 

 

Histological Assessment via the Histology Pane (Figure 2B): Following tissue processing, 

slides are scanned to generate high resolution WSIs which are uploaded into the ArcticAI 

platform where they are assessed for 1) tissue orientation by detecting inking patterns, 2) 

tissue quality assessment (e.g. holes and tears from processing and sectioning), and 3) 

presence or absence of tumor, where 4) tumor confounders (e.g., identification of hair 

follicles) and 5) nuclei are classified to provide further clarification of histological findings 

(e.g., residual tumor within large pockets of inflammation). 
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Mapping of Results to Surgical Specimen via the Mapping Pane (Figure 2C): Outputs of 

data from the aforementioned algorithms, notably tissue inking/orientation and the 

presence or absence of tumor, are used to automatically transpose tumor predictions 

onto hand-drawn surgical maps. Automated mapping has the advantage of providing the 

precise location of remaining tumor to inform the surgeon if and where additional tumor 

needs to be removed. A pathology text report with information on tissue preprocessing is 

automatically generated and piped to the patient’s electronic health record. This 

information is communicated back to the surgeon, and tumor mapping results (graphics 

which resemble surgeon drawn tumor maps) are exported to the EHR system to update 

the automatically generated pathology report. 

 

Workflow automation: Intraoperative resection with 100% margin analysis typically 

involves the inspection of 6-10 serial tissue sections and can take upwards of 30 minutes 

per patient under general/local anesthesia. ArcticAI was optimized to reduce histological 

inspection and tumor mapping time using a sophisticated workflow engine that can be 

executed in both high performance computing environments and local workstations using 

Toil and Singularity. The pipeline is additionally capable of processing multiple tissue 

sections across multiple whole slide images in parallel. 

 

Web Application: Histotechnicians, pathologists, and surgeons can interact with the 

results in real-time as an interactive/exportable pathology report through a dynamic web 

application which contains the following panes: 1) Case upload and execution (Selection 
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Pane), 2) 3D specimen modeling and pathology report generation (3D Model Pane), 3) 

histological findings and quality report (Histology Pane), 4) tumor mapping and orientation 

to surgical specimen (Mapping Pane). 

 

ArcticAI Software Framework 

The aforementioned functionality of ArcticAI is accomplished through a self-contained 

software framework, comprised of: 

1. A pip-installable Python package (arctic_ai) which contains an Application 

Programming Interface (API) and command line interface (CLI) that are organized 

into a collection of modules: 

a. 3D tissue modeling via photogrammetry (arctic_ai.model_3d) 

b. Tissue Preprocessing (arctic_ai.preprocessing) 

c. Histological Findings 

i. Tissue Quality Prediction (arctic_ai.cnn_embeddings, 

generate_graph, gnn_prediction, set to macro_map mode) 

ii. Tumor Margin Assessment (arctic_ai.cnn_embeddings, 

generate_graph, gnn_prediction, set to tumor_map mode) 

iii. Ink detection and spatial statistics for tissue orientation 

(arctic_ai.ink_detection) 

d. Tumor Confounder Identification 

i. Follicle detection (arctic_ai.follicle_detection) 

ii. Cell classification (arctic_ai.nuclei_detection) 

e. Tumor and quality mapping onto surgical specimen (arctic_ai.tumor_map) 
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f. Image stitching (arctic_ai.image_stitch) 

2. A collection of docker and singularity containers that host various subcomponents 

of the software to enable interoperability and ease installation/dependency 

conflicts through self-contained linux subkernels. 

3. Toil job scheduling tool and workflow engine for massive parallelization across 

local and cloud computing clusters (arctic_ai.workflow). 

4. A dockerized dynamic web framework that can be hosted online and interacts with 

the aforementioned software elements and results output through Plotly Dash, 

which contain the following panes: 

a. Patient selection and workflow job submission (Selection Pane) 

b. 3D tissue model, size and orientation measurements, smart grossing 

recommendations and report generation (3D Model Pane) 

c. Histological findings–tumor and tissue quality (e.g., holes and tears), 

optional nuclei/follicle detection results, and detected inks placed atop slide 

images (Histology Pane) 

d. Mapping of tumor and/or hole/tear results back to original specimen via 

computer generated surgical maps (Mapping Pane) 

In the following sections, we will elaborate on the functionality of each of the ArcticAI 

modules, with reference to supplementary methods if necessary. 

 

Patient Selection Pane 

 A log-in pane allows for the selection of a patient/case. A database containing the 

patient and file paths to existing results data are searched and if results do not exist for 
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the patient, the user is prompted to upload data for the 3D Model and Histology panes, 

whichever may exist. Upon uploading, jobs are deployed to a high-performance 

computing cluster or within a GPU-capable device for parallel execution, which 

dynamically updates the database as results become available. If results exist, the 3D 

Model, Histology, and Mapping panes become available for navigation. Here, the user is 

also instructed to supply the number of sections and tissue pieces per WSI based on their 

placement prior to image scanning. 

 

3D Tissue Modeling and Grossing Recommendations in 3D Model Pane 

Three-dimensional tissue modeling prior to histological assessment provides 

smart grossing recommendations while automating the report of tissue size and 

orientation 66. We utilized photogrammetry techniques which triangulate image features 

across multiple viewpoints/images to 3D coordinates in order to generate a 3D model of 

the tissue. We developed a low-cost photogrammetry studio using a phone camera 

placed at a fixed distance away from a turntable. Immediately after resection, the tissue 

is placed on a turntable, from which a video of the tissue is recorded on a smart phone 

as it revolves around the table for one revolution. The video is then uploaded to the 

ArcticAI web app interface. Three-dimensional modeling is accomplished using:  

1. Tissue Localization: First, the area of the turntable is approximated using 

RANSAC-based ellipse finding algorithm, which defines a static search area for 

tissue across the video frames. Then, image segmentation is performed on each 

video frame, which separates tissue from background using intensity thresholding, 

a connected component analysis for image labeling and an object size filter 
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(Supplementary Figure 9A) with background removal using the grabcut algorithm 

67,68. Under diverse imaging conditions, intensity thresholding can return many 

objects; however, only the gross specimen should follow an elliptical pattern as it 

completes a revolution. As such, RANSAC ellipse fitting and various fit statistics 

are again used to remove non-specimen objects through consideration of gross 

specimen’s temporal trajectory. Alternatively, segmentation neural networks, 

which return pixelwise coordinates of the tissue location, can also accomplish this 

task given training data. Here, only one-tenth the number of segmented still frames 

are selected for inclusion in the reconstruction algorithms to reduce the compute 

time. This limits reconstruction quality, but the number of frames used for 

reconstruction can be varied based on speed/accuracy preferences. 

2. Feature Matching: Is accomplished with image matching (e.g., SIFT, SURF, 

ORB, deep feature matching 69,70), which can find correspondent features across 

different viewpoints. We utilized colmap’s SIFT implementation, which was 

accelerated using graphics processing units 71–73. 

3. 3D Reconstruction: Three-dimensional scene reconstruction using colmap’s 

structure from motion (SFM) framework after image pairing (i.e., match features 

between images from similar perspective), registration, and triangulation of pixel 

coordinates in a 3D cartesian coordinate system, which yields a sparse point cloud 

74, after which a dense point cloud is generated using a Multi-View Stereo (MVS) 

framework via depth estimation. 

4. Distance Calibration: Distance calibration (i.e., conversion of pixel distance to 

physical distance) by measuring the diameter of the turntable and fitting an ellipse 
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(RANSAC) to the edges of the turntable, where edges were detected using a 

scharr filter (Supplementary Figure 9B) 40,75,76.  

5. Measuring orientation: Since the 3D model is oriented randomly upon creation, 

the 3D model is reoriented such that the flat surface at the tissue bottom is fixed in 

the downward (“negative-z” direction) position and the tissue is translated to the 

(0,0,0) cartesian coordinate system. First, a k-nearest neighbor’s outlier detection 

subroutine is used to refine the point cloud. Calculation of the bottom tissue surface 

is accomplished through RANSAC plane fitting, where the normal plane vector is 

used to calculate a rotation matrix 77. Finally, the tissue’s 12 o’clock is calculated 

through segmentation of the tissue suture as a point of reference, which is used to 

rotate the tissue such that 12 o’clock aligns with the “positive-y” direction 

(Supplementary Figure 9C). In the absence of the suture or potential slight 

misalignment, the web application features a slider to allow minor rotational 

adjustments. 

6. Measuring Tissue Size: Measurements of tissue size (e.g., length, width, height) 

are captured by calculating the maximal x-y-z extents of the tissue respectively 

after tissue orientation (Supplementary Figure 9D). 

7. Further Model Refinement: The output 3D model retains the original color and 

texture of the excised tissue. The model is further refined using a Radius 

Neighbor’s regression algorithm, which interpolates color and texture from 

adjacent points while estimating the z-coordinates from a closely spaced x-y grid. 

Alternatively, Poisson mesh reconstruction after estimation of triangle normals 
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and/or Delauney triangulation and alpha hull construction present alternative 

refinement approaches (Supplementary Figure 9E) 78. 

It should be noted that the 3D Modeling step does not model or image deep margins since 

the bottom of the tissue sits on the turntable, though this modeling step is entirely separate 

from the histological findings (which do model deep margins) and mapping those results 

to the surgical tumor map but may be integrated with the other two modules in future 

iterations. 

 

Grossing Recommendations and Size Report in 3D Model Pane. The 3D tissue model is 

displayed using an interactive web application using the dash_vtk package along with 

exportable technical readouts on the tissue size measurements (3D Model Pane) 79,80. 

ArcticAI features two grossing recommendation tools, one for Mohs and another for 

traditional excisions with breadloafing. For the Mohs configuration, a 3D line is drawn from 

12 o’clock to 6 o’clock in the web application. The 12 o’clock portion of the line is colored 

blue while the 6 o’clock portion is colored red. If the tissue is to be bisected, two pairs of 

blue-red lines are drawn parallel to a black line, which is drawn in the middle of the 

orientation lines. For breadloafing, the surgical excision is arranged such that the Burow’s 

triangles/cones (i.e., superior/inferior or lateral/medial triangular excisions adjacent to 

resection used as a skin graft to repair surgical defects) point in the forward/backward 

(“positive/negative-y”) direction. Colored lines are placed across the specimen in the side-

to-side direction at regular 0.5 to 1-centimeter increments (or set by the user; based on 

distance to the center) to represent placement of the breadloaf section cuts. Lines to the 

left of the specimen are colored blue to maintain orientation, while lines to the right are 
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colored red, yellow, green, purple and orange to denote unique sections. The tissue can 

be inked in accordance with grossing recommendations.  

 

Whole Slide Image Preprocessing 

After uploading tissue image sections in Whole Slide Image (WSI) format (TIFF/SVS file 

format, unsigned 8-bit color), slide images are prepared for both tumor and hole/tear 

prediction subroutines. First, tissue mask is created using a collection of image filters via 

the PathFlowAI package 81. The tissue mask is generated using the following subroutine: 

1. Using an intensity threshold filter, where objects of too high intensity are 

removed/set to white and filtering out large gray objects which may be artifactual 

(e.g., image scanner text, background black pen, etc.). 

2. Morphology (binary closing) and blurring operations to smooth out the mask. 

3. Removal of small objects and small holes. 

 

Patch Extraction and Assignment of Tissue Piece and Section Identifier. WSI are typically 

partitioned into patches/subimages because they are too large to predict on using modern 

high performance computing resources with limited GPU memory. Therefore, subimages 

(256-pixel by 256-pixel) were extracted from the source image. Patches were extracted 

given that they had a significant overlap with the tissue mask as defined by a set threshold 

of tissue present. Patches were appended with patch metadata (e.g., x-y coordinate in 

WSI). The patch metadata also contains which serial section the patch belongs to 

(multiple serial sections per WSI). Oftentimes, each of the tissue sections were bisected 

or cut into four quadrants and inked separately. We refer to the resulting fragments as 
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tissue pieces (one or more pieces per section). Each piece was placed separately in the 

WSI and physically close to other pieces in the same section, though there were instances 

where pieces either overlapped or highly separated which made it difficult to properly tag 

a patch with the relevant section. Tagging patches with the section they belong to is 

essential for tumor mapping, such that each section can be isolated from the others and 

then mapped by itself to the surgical tumor map after predicting the histological findings. 

As many WSI may be extracted per excision stage/depth, and multiple stages may be 

extracted during the excision procedure, the naming convention for each section denotes 

the depth in the specimen. Inadequate separation of sections and/or tissue pieces by 

failing to tag patches with the correct section identifier may degrade the performance of 

the tissue completeness, orientation and mapping algorithms because patches will be 

extracted from the space between the two conjoined section, which may contain excess 

whitespace and distort the ink and shape statistics. However, estimating which sections 

certain tissue pieces belong to is non-trivial since neighboring pieces may be conjoined, 

which resembles a section with fewer pieces that may fail to map well. To this end, the 

preprocess module features a robust automated section/piece splitting algorithm which 

can assign patches to the appropriate tissue piece/section using the following subroutine 

(Supplementary Figure 10A): 

1. Tissue patches are connected based on spatial proximity, building a radius nearest 

neighbors graph. Sections comprised of patches are established using a 

connected component analysis that finds and labels contiguous sets of patches. 

Sections are assigned based on a large neighborhood of patches, large enough 

(within a 4096-pixel radius) to connect patches between neighboring tissue pieces 
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within the section but small enough to not incorporate adjacent sections. At this 

point, it is difficult to delineate pieces from the section especially if they are 

conjoined, because what constitutes a contiguous element is defined at a large 

distance, and it is assumed that tissue pieces are the tissue sections, which now 

must be further subdivided. Then, pieces are initially broken based on connectivity 

at a smaller distance (within a 512-pixel radius), small enough to break apart 

pieces when they are separable in a section but not small enough to separate 

conjoined pieces. This will generate in most cases multiple pieces per section. 

2. For each tissue section, if the number of tissue pieces for the section matches 

expectations (input parameter), then piece/section assignment for that section is 

complete. If the number of pieces per section does not match expectations, then 

the algorithm would divide largest candidate piece into the expected section pieces 

using Spectral Clustering, a technique that divides conjoined sections into 

separate areas by regions of weak connectivity between conjoined pieces. Repeat 

this step until optimal results are achieved. 

The initial set of tissue subimages that remain after the above procedure serve as input 

to the tumor prediction algorithm i.e., tumor_map configuration), which predicts presence 

of tumor on a patch-by-patch basis. This configuration defines areas on a section where 

tissue is present from which to predict location of tumor but purposefully omits candidate 

holes and tears to avoid predicting those regions as benign. Thus, this set of patches is 

insufficient to predict where tissue is absent or incomplete (i.e., tissue quality, location of 

holes and tears that determine whether the section should be assessed) since patches 

are, by definition, absent.  
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Patches correspondent to candidate holes and tears are extracted for each section piece 

using an alpha shape object finding algorithm which outlines the section piece in a way 

that is both tightly fit to the piece while also bridging tears that are connected to the 

exterior of the object and thus are not normally estimated using traditional hole finding 

algorithms (Supplementary Figure 10B) 78. These patches are added to the tumor_map 

patches to form the macro_map configuration for tissue quality / tissue completeness 

assessment. If tissue is incomplete, it is inadvisable to assess margins. All tissue piece 

subimage patches, tissue masks and their corresponding metadata are written to NPY 

format (numpy array 82) and serialized into pickle format respectively for storage. 

 

Feature Extraction using Convolutional Neural Networks 

We trained ResNet-50 convolutional neural network (CNN) models to extract predictors 

from the tissue subimages to be used in our prediction workflow 83. First, convolutional 

neural networks were trained and internally validated on a subset of image patches 

(n=122 WSI; 1,988,841 patches) for the following prediction tasks, with a batch size of 32 

patches, learning rate of 1e-4, modulated with a cosine annealing learning rate scheduler 

for 100 training epochs: 

1. Tumor CNN: Tumor localization, where regions of tumor were delineated from 

benign structures and inflammation. If a patch contained both malignant and 

inflammatory cells, the patch was labeled as having contained tumor. 

2. Completeness CNN: Delineation of macro-architectural subcompartments, 

including: 1) hole/tear, 2) fat, which if not explicitly annotated, could closely 
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resemble hole/tears, 3) epidermis and 4) dermis. Here, patches of dermis 

containing wispy white patterns were removed from the training/validation set to 

avoid conflating regions of dermis with hole/tear. 

After training, the two ResNet50 CNN models were used to extract embeddings of image 

features from the penultimate layer of the model as images passed through the neural 

networks. CNNs were organized into multiple processing layers, each of which represent 

objects/images at increasing levels of abstraction (i.e., each input register corresponds to 

a more complex image feature at a deeper layer). Whereas the final CNN layer is used 

to output the probability of the presence of a specific tissue architecture, the penultimate 

layers output a rich feature set (embeddings) which can be used as a generic 

representation of the image features and if plotted could demonstrate how specific images 

cluster together with dimensionality more expressive than the output layer alone. The 

trained CNN models, Tumor CNN and Completeness CNN, are configured to output 

2048-dimensional embeddings for all tumor_map and macro_map patches respectively 

for a given tissue section. CNN models were configured using the PyTorch package 

(v1.8.0) using Python v3.7 84. 

 

Graph Neural Networks for Final Histological Assessment 

WSI contain significant white space and the placement of tissue on a slide is relatively 

arbitrary.  The dimensions of WSI are typically very large which necessitates dividing the 

tissue into smaller subimages (tiles). However, prediction using a CNN assumes that 

neighboring image patches are unassociated, which undervalues their spatial context 

within the surrounding tissue architecture. Graphs represent image patches and their 
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spatial dependencies as nodes and edges, capturing both feature and spatial information.  

As such, graph-based neural networks (GNN) have emerged as premier methods for 

histological assessment. Using GNN’s, predictions are invariant to the positioning and 

orientation of the tissue and are enhanced by the incorporation of spatial information 

encoded in the edges. We fit two GNN models corresponding to the following prediction 

tasks, with a batch size of 16 WSI graphs, learning rate of 1e-2, modulated with a cosine 

annealing learning rate scheduler for 1,500 training epochs: 

1. Tumor GNN: Analogous to Tumor CNN.  

2. Completeness GNN: Analogous to Completeness CNN. However, all patches are 

included in this analysis, including wispy dermis which is now contextualized by 

the surrounding dermis and not subject to conflation with holes/tears. 

Graphs were defined using a radius neighbors algorithm, which connected patches 

(nodes) to their immediate neighbors (edges) using their positional x-y coordinates 41. 

Attributes of the graph nodes were set to the embeddings extracted by the relevant CNN. 

Node attributes (CNN features) were shared/passed to adjacent patches using three 

graph attention layers of dimensionality 32, 32, and 64. The graph convolution layers were 

interspersed with DropEdge and Dropout layers, which randomly pruned patch-wise 

connections and graph-learned node features during training (to enhance model 

robustness to noise 

). After running the graph convolutional layers, these features were piped to a prediction 

output layer that would return predicted probabilities (and their logits) of each class for 

the respective tasks. GNN models were configured using the PyTorch-Geometric 

package (v1.7.1) using Python v3.7 42. 
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Ink Detection and Calculation of Spatial Statistics for Tissue Orientation 

The orientation of the WSI tissue section with respect to the original specimen / surgical 

tumor map was inferred using spatial statistics / tissue orientation algorithms. These 

algorithms were developed to automatically identify ink colors and orient a WSI tissue 

section based on a collection of applied inks: blue and red, though subroutines exist in 

ArcticAI to additionally calculate: yellow, green, orange, purple, and black. First, tissue 

edges were segmented using a Sobel filter with morphological dilation and opening 

operations. Then, sensitivity analysis over thresholds in Hue, Saturation, Value (HSV) 

color space yielded optimal color thresholds to detect inks, which were paired with a 

connected component analysis to identify contiguous regions and remove spurious 

applications of ink within the tissue edges (i.e., where ink is erroneously applied / seeps). 

Alternatively, semantic segmentation algorithms based on annotations, and conditional 

random field 85 can further improve ink detection. After detecting ink, orientation of the 

WSI section piece is inferred through calculation of the center of mass of the x-y 

coordinates of each detected ink color (using either the mean, median, or trimmed mean 

of each pixel coordinate). In our practice setting blue defines 12 o’clock, red defines 6 

o’clock, in accordance with the 3D model of the Mohs specimen and with the surgical 

tumor map. The line between the blue and red ink defines tissue orientation relative to 

blue and red locations defined in the surgeon’s hand-drawn tumor map, where the relative 

angular difference between the blue-red lines from the histology and blue-red lines from 

the tumor map dictate the relative rotation required for the histology results to match the 

same angle of the tumor map. 
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Image Stitching 

Input WSI are prepared for viewing using a subroutine which converts the images of 

individual sections, extracted using the preprocessing workflow, to a “Deep Zoom Image” 

(DZI) format, a pyramidal file format which interfaces with openseadragon, a WSI viewer. 

The aforementioned rapid histological assessment steps (Preprocessing, CNN-GNN, Ink 

Detection) return positional predictions for their respective coordinates. These positional 

predictions are piped and prepared for display through a dynamic json export of the 

histological results and imported into an openseadragon SVG overlay component for 

viewing across the slide 86. 

 

Removal of Potential Tumor Confounders and Identifying Residual Tumor in 

Regions of Predominant Inflammation 

Two R101-FPN neural network models using the computer vision framework detectron2 

(for panoptic segmentation) were trained for the task of localizing follicles across a slide 

and residual tumor within pockets of inflammation as an added layer of auditing. Panoptic 

segmentation models can detect objects in an image and their image class through 

proposals of bounding boxes using neural network detected features while 

simultaneously segmenting the object using a segmentation architecture which operates 

dynamically on the proposed regions 43,44.  

 

First, 672 follicles were annotated across 16 WSI from the ArcticAI training/validation sets, 

where 595 non-overlapping 1024 pixel by 1024-pixel subimages were extracted and 
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assigned to training and validation sets whether they belonged to WSI of the training or 

validation set for the CNN-GNN algorithms. A panoptic segmentation network was fit to 

the data at a starting learning rate of 1e-3 and was trained for 1000 epochs. The trained 

neural network was applied to patches suspected to contain tumor in the test set WSI to 

eliminate patches with significant confounding. This was done using an adjustment 

scheme in which tumor scores were reduced more for patches with greater proximity to 

the follicle based on the overlap between the predicted follicle and three concentric circles 

(128, 256, 512-pixel radii respectively) around each patch. The percentage overlap with 

the follicles and each circle multiplied by a circle specific penalty (higher for the 128-pixel 

circle and lower for the 512-pixel radius circle), normalized to a scale between zero and 

one was used to determine the tumor prediction probability to dock from the original score. 

 

Inflammatory patches were assessed at the level of individual nuclei via the creation of a 

workflow to detect, classify, and segment nuclei. Using the nuclei annotations that were 

manually annotated by four pathologists using the Automated Slide Analysis Platform 

(ASAP), we extracted 795 patches of size 128 by 128, correspondent to approximately 

32,763 nuclei, across three whole slide images (WSI) from the training/validation set. The 

model was trained to detect and delineate the following cell types: 1) fibroblasts, 2) hair 

follicles, 3) inflammation, 4) malignant basal cells, and 5) benign epidermal keratinocytes. 

For our train-validation split, 80% of these patches were randomly chosen for our training 

dataset and the algorithm was validated using the remaining 20% of the image patches 

prior to prediction on the test WSI. We reported the predictive statistics for detection 

accuracy on an internal validation set using the Dice score (related to Intersection over 
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Union). Predicted cell types were refined from the detected nuclei using a CNN 

(ResNet50 architecture) and GNN model using the same training/validation sets. F1-

score statistics were recorded as a final measure of fit across the test set cells, separately 

comparing the detection, CNN and GNN models for their prediction accuracy, 

bootstrapping on the patch and slide level since the nuclei are nested within patches.  

 

Here, the validation set was not used for optimal hyperparameter scanning nor model 

early stopping criterion, so we evaluated results on this held out validation set prior to 

application across test slides. We timed both algorithms through evaluation across test 

set WSI and similarly recorded the uncertainty through non-parametric bootstrapping 

while accounting for clustering on the WSI level. 

 
 
Compilation of Histological Assessment Results into Histology Pane  

The results from the histological assessment models (Tumor CNN-GNN, Completeness 

CNN-GNN) are passed to an OpenSeadragon plugin that features the DZI image 

correspondent to the selected case, resection site/stage and section depth. This plugin 

operates within a plotly dash environment that interfaces the WSI viewer with the results 

data 87. The user has the option of selecting whether to display a heatmap containing the 

tumor or completeness (holes/tears) prediction results over the slide using the SVG plugin 

as aforementioned. A slider controls the minimal prediction probability for inclusion in the 

heatmap to filter out irrelevant regions. The patches’ color intensity (blue to red and 

opacity) is determined by their prediction scores. The predictions from image patches can 

be optionally refined using an interpolation method which uses a custom prediction 
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propagation GNN to yield refined predicted probabilities that exist between the original 

patches (e.g., if we had four patches in locations (1024,256), (1024,512), (1024,768), 

(1024, 1024), we could infer information at tile position (1024, 640) by leveraging 

information from all four tiles, though primarily from adjacent tiles) 88. The SVG display 

can be toggled on and off. The tissue orientation may also be toggled on and off, where 

red and blue lines may be automatically placed on the slide based on detected inking 

patterns and associated spatial statistics.   

 

Mapping Tumor and Completeness Results to Surgical Specimen using the 

Mapping Pane 

Results (tumor/completeness) from user selected tissue sections for each case can be 

mapped to the surgical specimen that is featured on a hand-drawn surgical tumor map at 

arbitrary locations using an interactive image display. First, the user selects from a set of 

prepopulated surgical map templates representing various anatomical positions (e.g., 

back of hand, neck). After selecting the position template, the user draws a black ellipse 

on the image template representing the removal site. The user also defines tissue 

orientation by drawing blue and red inks at the circle’s edge to define 12 o’clock and 6 

o’clock respectively, which is correspondent to inking patterns recommended/selected 

from the 3D Model and Histology panes. Tissue sections comprised of 1-2 tissue pieces 

are represented by a 2D point cloud or a collection of points, where each point is tagged 

with positional x-y coordinates within the WSI, the tumor/hole/tear predicted probabilities 

and ink locations. These points are “morphed” or registered to locations in the interior of 

the circle using an optimizer for optimal transport, which minimizes the cost or effort 
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required to match the points to the interior of the circle while maintaining the relative 

positioning of the coordinates comprising the histological section. The distributional 

difference between the histological section and surgical mapping ellipse is estimated 

using the sliced Wasserstein (“Earth Movers”) distance and minimized using gradient 

descent via pytorch and python optimal transport (POT) libraries 47–49,84. In sum, this 

methodology morphs the arbitrary shapes of the histological specimen, which are 

dependent on serial sectioning of the gross specimen, to the elliptical shape drawn by the 

Mohs surgeon. The relative positioning of ink is preserved during this transformation and 

the angular difference between the ink after tissue morphing and that defined via the 

Mapping pane are used as a final rotational adjustment to match the surgical tumor map. 

Finally, the histological section results are placed in the circle on the Mapping pane in the 

correct orientation, where a kernel density contour map defined over the 

tumor/completeness results is placed to highlight tumor/holes/tears. Like the Histology 

pane, the density map can be thresholded with arbitrary probability cutoffs by the user to 

yield specific tumor locations and the finalized map can be exported to the pathology 

report.  

 

Workflow Specification 

All aforementioned ArcticAI jobs execute using a Toil job executor 50, which can run jobs 

in parallel either locally (on a GPU-capable machine) or in an HPC environment using a 

Slurm or alternative job submission system. Here, we will enumerate which components 

execute in parallel based on their respective workflows, where we have denoted which 

set of subcomponents execute in series or parallel.  
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1. 3D Model Pane (series): 

a. Tissue preprocessing (series) 

b. 3D Reconstruction (series) 

c. Final tissue filtering (series) 

2. Histology Pane (series): 

a. Tissue preprocessing and section assignment (series) 

b. Parallel components, where final subworkflow time is assessed by the 

subcomponent and tissue section which took the longest time to execute 

(below subpoints are parallel) 

i. CNN-GNN subcomponents for tumor/completeness prediction, 

comprised of CNN embedding creation, graph generation and GNN 

prediction (parallel) 

ii. Ink detection and orientation (parallel) 

iii. Image stitching (parallel) 

c. Based on CNN-GNN results (parallel) 

i. Follicle detection (parallel) 

ii. Nuclei detection (parallel) 

Finally, we have included a Histology workflow diagram which illustrates how results from 

various workflow components feed into subsequent steps (Supplementary Figure 8). It 

should be noted that after tissue preprocessing, tissue pieces/sections all execute in 

parallel, from which the aforementioned subworkflows also execute in parallel. 

 

Experimental Objectives 
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Tissue Grossing Measurement Concordance: Length, width and height measurements of 

the 3D reconstruction of resected tissue was compared to hand measurements of the 

original specimen using median absolute deviation and spearman correlation statistics. 

These statistics were also recalculated under the assumption that the calculated tissue 

dimensions were off on all 3 dimensions by a proportional constant (i.e., improper 

calibration of the video with distance measurements).  

 

Concordance of Algorithm to Hand-Drawn Maps from Surgeon: To assess the accuracy 

of the Arctic grossing, completeness, and tumor detection algorithms and mapping of 

histological findings to the surgical tumor map, we included the following comparisons, 

assessing accurate: 1) calculation of tissue size, 2) analysis of tissue quality or 

completeness of tissue as judged by the localization of holes and tissue tears, common 

to frozen specimens,  3) localization of tumor in WSI, 4) orientation of tissue section, 5) 

mapping of tumor to surgical tumor map, and 6) a prediction of whether and where 

additional tumor removal is required.  

 

In comparison to previous studies which examine the diagnostic significance of positive 

margins on post-operative BCC sections, we assessed whether pathologists would 

manually map tumors similarly in digital versus analog mediums by comparing hand-

drawn tumor maps to digital ones. After establishing concordance between histological 

findings via pathologist annotations and BCC predictions, we established the 

concordance between the automated tumor map with the intraoperative hand generated 

map that was produced by the Mohs Micrographic Surgeon at the time of surgery. If there 
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were discrepancies between surgeon-generated and ArcticAI-generated tumor maps, 

both the original glass slides and WSI were manually reviewed.  

 

A receiver operating characteristic curve (ROC; sensitivity analysis) was performed to 

establish predictive probability cutoffs which result in high sensitivity to minimize the 

potential for false negatives.  Results are reported with a 1000-sample non-parametric 

bootstrap 95% confidence interval with bootstrapping performed on the WSI level to 

capture clustering on the slide level (i.e., variation in performance statistics between and 

across slides). 

 

Separately, concordance between hand-drawn and digital tumor maps was calculated 

based on the proportion of cases the surgeon subjectively rated as equivalent (orientation 

of map and position of tumor) to the original map. Uncertainty in this proportion was 

assessed through calculation of the 95% credible interval (CI; like the confidence interval) 

of a Beta posterior distribution (𝐵𝑒𝑡𝑎(𝑎 = 0.5 + 28, 𝑏 = 0.5 + 0)), updated through a beta-

binomial conjugate prior, with a Jeffrey’s prior (𝐵𝑒𝑡𝑎(0.5,0.5)) and Binomial likelihood 

(𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 = 28, 𝑝 = 1.0); 28 cases with positive margin, 28 successful trials; three 

cases had clear margins). 

 

Execution Time: To demonstrate the timely execution of the ArcticAI system, the following 

steps in the process were precisely timed: 1) image preprocessing; 2) tissue quality and 

tumor CNN-GNN prediction; and 3) tumor mapping and pathology report output. We 

report median times across slides to account for outliers, with 1000-sample 
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nonparametric bootstrap 95% confidence intervals. Details on the calculation of timing 

given optimal parallelization can be found in the methods section, section “Workflow 

Specification”. Test cases were evaluated using four compute nodes in the Dartmouth 

Discovery computing cluster which shared between them 13 Nvidia v100 GPUs (32 Gb 

memory each), 272 CPUs, and 1.9 TB RAM. 
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