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ABSTRACT 

Background. Radiomics and other modern clinical decision-support algorithms are emerging as the next frontier 

for diagnostic and prognostic medical imaging. However, heterogeneities in image characteristics due to 

variations in imaging systems and protocols hamper the advancement of reproducible feature extraction 

pipelines. There is a growing need for realistic patient-based phantoms that accurately mimic human anatomy 

and disease manifestations to provide consistent ground-truth targets when comparing different feature 

extraction or image cohort normalization techniques. 

Materials and Methods. PixelPrint was developed for 3D-printing lifelike lung phantoms for computed 

tomography (CT) by directly translating clinical images into printer instructions that control the density on a voxel-

by-voxel basis. CT datasets of three COVID-19 pneumonia patients served as input for 3D-printing lung 

phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic 

confidence in a blinded reader study. Linear mixed models were utilized to evaluate effect sizes of evaluating 

phantom as opposed to patient images. Finally, PixelPrint’s reproducibility was evaluated by producing four 

phantoms from the same clinical images. 

Results. Estimated mean differences between patient and phantom images were small (0.03-0.29, using a 1-5 

scale). Effect size assessment with respect to rating variabilities revealed that the effect of having a phantom in 

the image is within one-third of the inter- and intra-reader variabilities. PixelPrint’s production reproducibility tests 

showed high correspondence among four phantoms produced using the same patient images, with higher 

similarity scores between high-dose scans of the different phantoms than those measured between clinical-dose 

scans of a single phantom. 

Conclusions. We demonstrated PixelPrint’s ability to produce lifelike 3D-printed CT lung phantoms reliably. 

These can provide ground-truth targets for validating the generalizability of inference-based decision-support 

algorithms between different health centers and imaging protocols, as well as for optimizing scan protocols with 

realistic patient-based phantoms.    
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INTRODUCTION 

Quantitative imaging is receiving increased interest and acknowledgment from clinicians and healthcare 

providers as a supporting tool for data-driven, patient-specific clinical decision making1–3. Driven by a pursuit for 

precision medicine, developments focus on identifying biomarkers that are invisible to the naked eye but can be 

used for evidence-based inference for clinical decision support or to establish reliable correlations between 

image features and clinical outcomes, prognosis assessments, and treatment response predictions4,5. However, 

variability in image acquisition and reconstruction techniques introduce heterogeneity in image characteristics 

and features that are independent of the underlying biology and pathophysiology6. Modern medical imaging 

modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission 

tomography (PET), allow a wide variety of imaging parameters that are, in general, lacking standardization 

between different health centers and different scanner models. While these differences typically have little clinical 

impacts for routine radiological interpretation, they introduce biases when analyzed numerically to extract 

meaningful data6. This hampers advancement of reproducible feature extraction pipelines, a critical pre-requisite 

for clinical translation7.  

Despite ongoing efforts to account for factors originating from the recognized lack of imaging standardization, 

the problem of biases and variability persists. Experimental validation of image cohort normalization methods, 

such as ComBat8–10, is currently limited due to an inability to repeat patient scans on multiple scanners or with 

multiple imaging protocols given logistical and risk-related considerations, e.g., the risks of ionizing radiation in 

CT and PET. There is therefore a growing need for realistic patient-based volumetric phantoms that can 

accurately mimic human anatomy and disease manifestations to provide consistent imaging ground-truth targets 

when comparing post-processing image cohort normalization and feature extraction techniques. 

Anthropomorphic phantoms are fundamental tools for developing, optimizing, and evaluating hardware and 

software advances in medical imaging research and clinical practice. Such phantoms are typically manufactured 

by machining, casting, or molding homogenous materials that mimic tissue properties relevant for the specific 

imaging modality, e.g., x-ray attenuation coefficients for CT11. Realistic patient-based phantoms have additional 

advantages for clinical and development tasks, such as imaging protocol optimization, and provide ground-truth 

targets for denoising or artifact correction AI algorithms. Despite a wide range of commercially available 

phantoms, there is a lack of patient-based phantoms capable of reliably representing the quantitative imaging 
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characteristics and textures found in clinical patient images. The academic and clinical radiology communities 

would greatly benefit from rapid, versatile, lifelike, as well as inexpensive phantom manufacturing processes, 

compared to commercial solutions currently available. 

Throughout the last decade, three-dimensional (3D)-printing of phantoms that represent the x-ray attenuations 

and textures of various tissues, anatomies, and disease has been widely explored. These studies focused on 

several developmental aspects, including 3D-printing of accurate attenuation profiles12–15, manufacturing 

anatomically-correct organ models16–20, and generation of realistic tissue textures21–23. Novel 3D-printing 

techniques, mainly using fused deposition modeling (FDM), have been proposed to generate variable material 

densities that mimic the imaging features observed in clinical CT images. These methods24–26 include utilization 

of different infill printing patterns27, variable voxel-dependent extrusion rates14,15, or interlacing two different 

materials with dual-extrusion printers28.  

Generation of 3D-printed anthropomorphic phantoms from clinical CT images typically involves19,29–32: (i) 

automated or manual segmentation of specific tissues or organs, e.g., an entire lung or identified findings, (ii) 

conversion of the segmented volumes into triangulated surface geometry models, such as standard 

triangle/tessellation language (STL), and (iii) utilization of printer-specific slicing software to generate instructions 

(e.g., G-code) that determine relevant 3D-printing parameters, such as extrusion rate, printing speed, infill ratios, 

etc. While phantoms produced this way may approximate clinical imaging characteristics, they still have 

shortcomings. Most importantly, due to segmentation of regions followed by conversion to surface models, 

abrupt and unrealistic transitions between homogenous regions of different densities are created within the 

printed products, and spatial resolution and textural information are compromised.  

In this work we evaluate a promising alternative called PixelPrint that we recently developed to overcome the 

limitations described above. PixelPrint directly translates DICOM image data into printer instructions that 

continuously control the printed material density by varying the printer speed on a voxel-by-voxel basis, while 

maintaining a constant filament extrusion rate33. We report on reader studies conducted to assess the 

correspondence between imaging characteristics of three 3D-printed COVID-19 pneumonia lung phantoms with 

those of the original patient images used to produce these phantoms. We also report quantitative comparisons 

between four 3D-prints of the same patient for production reproducibility assessments.  
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METHODS 

Three patient cases were selected from the Hospital of the University of Pennsylvania PACS by a thoracic 

radiologist (LR, four years of experience) under an IRB approved protocol. Patients were selected based on the 

assessed COVID-19 severity level (mild, moderate, severe), patient habitus, and absence of significant metal 

artifacts. For each patient, clinical DICOM images reconstructed with a sharp kernel (Table 1) were converted 

into 3D-printer instructions using PixelPrint software. A complete technical background of the PixelPrint 

algorithm, pipeline, and quantitative evaluation is available in our previous publication33. A primary advancement 

of PixelPrint presented in this study is the 3D-printing of phantoms based on volumetric patient data (Figure 1). 

All phantoms presented in this work were printed using 1.75 mm diameter Polylactic Acid (PLA) filament 

(MakeShaper, Keene Village Plastics, Cleveland, OH, USA) on a Lulzbot TAZ 6 fused-filament 3D-printer (Fargo 

Additive Manufacturing Equipment 3D, LLC Fargo, ND, USA) with a 0.25 mm brass nozzle. Phantoms were 

printed with a constant extrusion rate of 0.6 mm3/sec and a layer height of 0.2 mm. Printing speeds varied from 

3 to 30 mm/s, with acceleration and jerk (threshold velocity for applying acceleration) settings of 500 mm/sec2 

and 8 mm/sec, respectively, producing line widths from 0.1 to 1.0 mm. 

Each phantom was scanned on the same scanner using the same acquisition and reconstruction settings as the 

input patient scan (Table 1). The phantoms were placed within the 20 cm bore of a 300 x 400 mm2 phantom 

(Gammex MECT, Sun Nuclear, Melbourne, FL, USA) to mimic attenuation profiles of a medium sized patient. A 

preprocessing pipeline was developed for preparing images for a reader study using the following steps. First, 

lung segmentations obtained using a pretrained AI34 from each of the original patient scans were dilated by eight 

pixels in every direction and manually positioned on the 3D-printed phantom image volumes. Next, an image 

registration algorithm (Simple-ITK35) was applied to accurately align phantom images with their corresponding 

patient images and a circular binary mask of 18 cm diameter was applied to both the segmented phantom and 

their corresponding patient images to hide their surroundings (patient anatomy or MECT phantom). Finally, 

images from both the phantoms and the corresponding patient images were randomized separately each reader 

evaluation. 

The reader study consisted of two parts. In the first part, radiologists were asked to review 120 randomized slices 

from patient and phantom scans, reconstructed with either a sharp or smooth kernel, and answer four questions 

regarding whether the presented slice had realistic imaging, contrast, noise, and resolution characteristics of a 
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diagnostic quality CT lung scan. In the second part, radiologists were asked to review 90 randomized slices from 

patient and phantom scans, all reconstructed with a smooth kernel, and for each slice rate the severity of COVID-

19 consolidations (none, mild, moderate, severe) and whether there are sufficient details (e.g., resolution, 

contrast-to-noise ratios) for a confident COVID diagnosis. To simplify the analysis of the reader study, a higher 

rating indicates a better review score for all questions except for the COVID-19 severity question. A dedicated 

user interface was implemented to simplify the review process and to record the radiologists’ replies. Importantly, 

the participating radiologists were told that they were taking part in a “CT lung image evaluation study” and were 

completely unaware of the fact that the reviewed datasets included phantom images, which is why this study 

can be considered a “completely blinded” reader study. 

Statistical analysis was performed to assess the mean difference in responses between patient and phantom 

images with the aid of linear mixed models. For this, each question was modeled (separately) using the following 

equation: 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑖𝑗 = 𝛽0 + 𝛽1𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝑖𝑗 +𝜑𝑖 + 𝜀𝑖𝑗 

 

where 𝑖 denotes the reader and 𝑗 denotes the image, 𝛽0 and 𝛽1 denote the mean response across readers for 

patient scans and difference in mean response between patient and phantom across readers, respectively. The 

model allows estimation of the mean rating difference between phantom and patient images, while controlling 

for potential differences between readers in their responses through 𝜑𝑖 and 𝜀𝑖𝑗. 𝜑𝑖, which represents reader-

level differences in mean response for a given question, and 𝜀𝑖𝑗 , which represents the remaining model errors, 

are assumed to be independent across scans and readers with equal variance and zero mean, as well as 

normally distributed. 

Along with statistical significance, which was assessed through standard hypothesis testing, a measure of 

“clinical significance” is important to quantify the estimated difference between the two set of images, i.e., 

phantom vs. patient, with respect to different measures of variance. This is because while differences may be 

“statistically” significant based on the resulting p-values, at the same time they may be clinically insignificant in 

terms of their magnitude relative to inter- and intra-observer variabilities. Moreover, if sample sizes are large, 

arbitrarily small differences will often be statistically significant36.  Thus, assessments of effect sizes are critical 
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to fully assess the mean difference37. In the two-sample context, Cohen’s 𝑑 is a commonly used measure of 

effect size38.  However, in the context of clustered data, where in this case readers are the clusters, a different 

estimate for the pooled standard deviation is needed.  An alternative for this context, proposed in Westfall et al., 

is 𝑑 = 𝛽1 (𝜎𝜀
2 + 𝜎𝜑

2)
1 2⁄

⁄ , where 𝜎𝜀
2 denotes the variance in the error terms (within-reader variance) and 𝜎𝜑

2 

denotes the between-reader variance39.  Another similar effect size measure is the ratio between the mean 

difference and within-reader variability, given by 𝑑′ = |𝛽1|/𝜎𝜀 .  Both effect size calculations were assessed here 

as part of our analysis, together with R2 calculations to measure the proportion of response variation that is 

associated with the scanned object type (patient vs. phantom). 

Finally, to assess the robustness and reproducibility of PixelPrint’s phantom production process, three additional 

phantoms were 3D-printed based on the moderate COVID-19 patient images. The four theoretically equivalent 

phantoms were scanned on a dual-energy CT scanner (IQon, Philips Healthcare, Cleveland, OH, USA) using 

an axial protocol at 120 kVp and 0.75 seconds rotation time, both at clinical dose exposure levels (6 mGy CTDIvol) 

and at high dose exposure levels (18 mGy CTDIvol), and reconstructed with a smooth kernel and a 250 mm field 

of view at 1.0 mm slice thicknesses. Correspondence between the four phantoms was evaluated with the 

structural similarity index measure (SSIM). 

 

RESULTS 

To visualize the data, frequency of reader ratings and mean response values are provided in Figures 2 and 3. 

Figure 2 provides the counts of each response score as values between “1” and “5”, where a higher rating 

indicates a better score, across all questions and separated between readers.  The figure reveals similar counts 

between the patient and phantom images, with a response of “4” being most common in both cases for both 

scan types.  Figure 3 presents calculated mean ± one standard deviation (SD) response values for each reader 

and question, separated by the patient COVID-19 severity. Visually, the patient scans have a higher mean 

response across the different severity levels, however, these differences are small in all cases (<0.5), and are 

mainly driven by the responses of the first reader. 

Figure 4 presents differences in reader ratings between phantom slices that have corresponding (paired) patient 

slices, i.e., differences in rating between a phantom slice and its matching patient slice: same reader, COVID-

19 severity, slice location, and convolution kernel (sharp/smooth), together with Gaussian fits to the data. In 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.06.22274739doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.06.22274739


 8 

general, the data indicates rating differences that are centered between -0.04 and 0.38, implying that on average 

differences in reader ratings between phantom and patient images are much smaller than a single rating point. 

Modeling results for the six questions that compose both parts of the reader study are provided in Table 2. Each 

row in the table reports the mean rating (𝛽0), rating difference between patient and phantom images (𝛽1), and R-

squared values that were obtained for each question separately. Within a question, for a given parameter the 

estimate, 95% CI, and p-value are provided. Since the rating scores are categorical, p-values for this parameter 

are not included.  In all cases, while the estimated mean differences between patient and phantom were 

statistically significant (p<0.005), these differences were very small in magnitude, ranging from 0.03 to 0.29. The 

magnitude of the difference was also evaluated using R2 measures, resulting in low values for all questions, with 

a maximum of 0.02 maximum, indicating that a low proportion of response variation is associated with replacing 

a patient image with a phantom image. 

Assessment of effect sizes with respect to both inter- and intra-reader variabilities are presented in Table 3. The 

two calculated ratios that were used to estimate the clinical significance of the effect of having a phantom in the 

image, |𝑑′| and |𝑑|, are reported for each question separately. For each question, both resulting ratios have 

similar small magnitudes, with a maximal difference of 0.03, and none surpassing a maximal value of 0.31. 

Results for the reproducibility of PixelPrint’s production process are presented in Figure 5 and Table 4. Figure 5 

presents images of two phantoms that were 3D-printed separately using the same patient input (the moderate 

severity patient), the difference image, and histograms of HU distribution within each image. As can be seen 

from the figure, differences in HU mainly arise from minor misalignments between the phantoms rather than 

offsets in attenuation of geometry (Figure 5C). This can also be observed by the excellent overlap of histograms 

(Figure 5D). Table 4 summarizes SSIM comparisons between the four 3D-printed phantoms. Normalized SSIM 

values, which were calculated by dividing SSIM values by the ratio of SSIM between the second high-dose scan 

of phantom #1 and the two other high-dose scans of the same phantom, were between 0.928 and 0.979 with an 

average of 0.965. This value is higher than the normalized SSIM value of the low-dose scan for phantom #1 

(same phantom that was used for normalization).   

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.06.22274739doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.06.22274739


 9 

DISCUSSION 

PixelPrint was developed to provide ground-truth targets for validating the generalizability of inference-based 

decision-support algorithms between different health centers and imaging protocols, e.g., by imaging the same 

phantom on multiple scanners, as well as for disease-targeting imaging protocol optimization with realistic 

patient-based phantoms.  We previously assessed the geometrical and attenuation accuracy of our 3D-printed 

phantoms for CT lung imaging33. Here we validated the adequacy of our phantoms for a specific clinical 

indication, i.e., diagnosis of COVID-19 consolidations, through a “completely blinded” reader study. Statistical 

analysis of image quality ratings, e.g., imaging characteristics, diagnostic outcome, and diagnostic confidence, 

revealed that difference in replacing a patient image with a phantom image is, on average, smaller than one-

third of a single rating point. Importantly, when examining the clinical significance of these differences by relating 

them to inter- and intra-reader variability with effect sizes (Table 3), we conclude that the impact of reading a 

phantom image rather than a patient image is clinically insignificant. Additionally, tests of PixelPrint’s production 

reproducibility resulted in very high correspondence between phantoms that were 3D-printed using the same 

patient input. This is based on the higher normalized SSIM values that were measured between high-dose scans 

of four different phantoms (0.965 ± 0.022), compared to those measured between clinical-dose scans of a single 

phantom (0.953 ± 0.000). 

With many novel modern pattern recognition tools, the improvement in image quality, and the increase in dataset 

sizes, the field of medical image analysis has grown exponentially in the past decade4. Radiomics and clinical 

decision-supporting AI are emerging as the next frontier for diagnostic and prognostic medical imaging in the 

new era of precision medicine2. The aim of these tools is to automatically extract quantitative information from 

medical images for assisting evidence-based clinical decision-making4–6,8. However, several major challenges 

hamper the widespread clinical translation of these promising new capabilities. The problem of data variability , 

which stems from differences in image acquisition and reconstruction settings among medical institutions, and 

scanner models, is recognized by many as a critical hurdle that requires dedicated solutions to enable the 

scalability of developed algorithms6–8. While recent studies made significant progress with solutions to account 

for some of the data variability, i.e., normalizations of image quality or imaging features, there is a critical need 

for lifelike phantoms that will enable the affirmations of these solutions without introducing additional risk to 

patients or logistical restrictions. 
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Our study does have limitations. First, while the reader study included a large sample size of images (210 per 

reader), these images originated from only three clinical patient scans representing three levels of COVID-19 

severity. Second, our study focused on a specific clinical indication, i.e., diagnosis of COVID-19 pneumonia. 

Further studies are required to validate the adequacy of PixelPrint for other lung imaging indications, e.g., lung 

nodule detection. Nevertheless, our results provide compelling evidence that PixelPrint can readily serve as an 

accurate tool for optimization of disease-targeting protocols and for experimental validation of novel inference 

algorithms, such as radiomics and predictive AI. 

In conclusion, we have demonstrated PixelPrint’s ability to produce realistic 3D-printed phantoms reliably. As 

the utilization of these phantoms will grow, they will become more beneficial to the entire community and enable 

standardization of tests and comparisons of evaluation of advanced medical inference algorithms. For this, we 

offer copies of the phantoms presented in this study, as well as phantoms based on specific CT images, for the 

larger medical, academic, and industrial CT community (visit www.pennmedicine.org/CTResearch/PixelPrint). 
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Figure 1: Comparisons between clinical CT lung images of a mild COVID-19 patient (left) and images of a 

corresponding 30 mm thick 3D-printed volumetric phantom (right), acquired with the same CT scanner and 

imaging parameters. Presented in two orthogonal views: axial (top), sagittal (bottom). Window level/width are -

500/1400 HU. 
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Figure 2: Counts of responses for phantom and patient images by reader (rows) and question (columns): (1a-

d) Imaging, contrast, noise, and resolution characteristics; (2a) COVID-19 severity; and (2b) diagnostic 

confidence. Except for the COVID-19 severity question, higher ratings indicate better review scores. Overall, the 

count frequencies portray a high correspondence between phantom and patient images. 
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Figure 3: Mean ± standard deviations (SD) of responses for different COVID-19 severity levels on phantom and 

patient images by reader (rows) and question (columns): (1a-d) Imaging, contrast, noise, and resolution 

characteristics; (2a) COVID-19 severity; and (2b) diagnostic confidence. 
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Figure 4: Rating difference frequencies between corresponding (paired) patient and phantom images that were 

reviewed by the same radiologist, together with gaussian fits to the distributions (red curves). The analysis 

reveals average differences that are much smaller than a single rating point for all questions and nearly zero 

points for the COVID-19 severity question (2a). 
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Figure 5: Comparison between two 3D-printed phantoms (A,B), both based on the moderate COVID-19 patient, 

scanned separately at a high (non-clinical) dose level show high structural similarities and imaging features, 

implying high reproducibility of the PixelPrint phantom production process. Window level/width are -400/1000 

HU. (C) Difference image between the two sets of images reveal that most of the difference between the images 

are mainly due to slight misalignments between the two phantoms. Window level/width are 0/200 HU. (D) 

Histograms of HU values within the entire phantom volume demonstrate excellent reproducibility. 
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COVID-19 severity Mild Moderate Severe 

Patient sex Male Female Male 

Patient age range 71-75 years 56-60 years 66-70 years 

CT manufacturer Siemens GE Siemens 

CT model Sensation 64 Revolution CT Definition Edge 

Tube voltage 120 kVp 100 kVp 120 kVp 

Collimation 19.2 mm 80 mm 38.4 mm 

Rotation time 0.5 seconds 0.5 seconds 0.33 seconds 

Spiral pitch factor 1.5 0.992 1.45 

Dose modulation XYZ XYZ XYZ 

Exposure (at lungs) 55-64 mAs 75-90 mAs 75-77 mAs 

CTDIvol (at lungs) 4.213-4.953 mGy 5.081-6.125 5.112-5.219 mGy 

Recon. kernel B31f, B70f CHEST, LUNG Bf37f/3, Br51f/2 

Slice thickness 1.0, 1.0 [mm] 0.977, 0.625 [mm] 1.0, 1.0 [mm] 

Slice increment 1.0, 1.0 [mm] 1.0, 0.625 [mm] 1.0, 1.0 [mm] 

Recon. field of view 425 mm 500 mm 365 mm 

Matrix size 512 x 512 512 x 512 512 x 512 

Pixel spacing (x / y) 0.83 / 0.83 mm 0.98 / 0.98 mm 0.71 / 0.71 mm 

 

Table 1: Patient information together with the scan and reconstruction parameters that were used to generate 

the original diagnostic CT images and the images of the three corresponding 3D-printed phantoms. 
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Question Synopsis Parameter Estimate 95% CI P-value 

1a 

Imaging 
characteristics 

 

Patient Mean 3.71 (3.21, 4.21)  

Phantom Eff. -0.29 (-0.45, -0.13) <0.005 

R-squared 0.02   

1b 

Contrast 
characteristics 

 

Patient Mean 3.85 (3.52, 4.19)  

Phantom Eff. -0.27 (-0.42, -0.11) <0.005 

R-squared 0.02   

1c 

Noise 
characteristics 

 

Patient Mean 3.53 (3.03, 4.03)  

Phantom Eff. -0.20 (-0.35, -0.06) 0.006 

R-squared 0.01   

1d 

Resolution 
characteristics 

 

Patient Mean 3.50 (2.95, 4.05)  

Phantom Eff. -0.22 (-0.39, -0.06) 0.006 

R-squared 0.01   

2a 

COVID-19 
severity 

 

Patient Mean 2.77 (2.49, 3.05)  

Phantom Eff. -0.03 (-0.2, 0.14) 0.756 

R-squared 0.00   

2b 

Diagnostic 
confidence 

 

Patient Mean 3.56 (3.1, 4.02)  

Phantom Eff. -0.29 (-0.47, -0.12) <0.005 

R-squared 0.02   

 

Table 2: Modeling results for mean ratings and mean differences due to having a phantom in the images, rather 

than a patient, for each of the reader study questions. Results are accompanied by 95% confidence intervals 

(CI), p-values, and R-squared values.  
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Q Synopsis 
Phantom 

effect (𝛽1) 

Inter-reader 

(𝜎𝜀
2) 

Intra-reader 

(𝜎𝜑
2) 

|𝛽1|

√𝜎𝜀
2
 

|𝛽1|

√𝜎𝜀
2 + 𝜎𝜑

2

 

1a 
Imaging 

characteristics 
-0.29 0.99 0.31 0.29 0.26 

1b 
Contrast 

characteristics 
-0.27 0.96 0.13 0.27 0.25 

1c 
Noise 

characteristics 
-0.20 0.83 0.31 0.22 0.19 

1d 
Resolution 

characteristics 
-0.22 1.01 0.37 0.22 0.19 

2a 
COVID-19 

severity 
-0.03 0.83 0.09 0.03 0.03 

2b 
Diagnostic 

confidence 
-0.29 0.87 0.25 0.31 0.28 

 

Table 3: Assessment of effect sizes with respect to both inter- and intra-reader variabilities, reveal that the effect 

of having a phantom in the image, rather than a patient, are all smaller than one-third of inter/intra-reader 

uncertainty, indicating the clinical insignificance of this effect. 
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Phantom # mAs Scan # SSIM Norm. SSIM Mean ± StdDev 

1 

160 

 

1 0.776 0.953 

0.953 ± 0.000 2 0.776 0.953 

3 0.777 0.953 

480 

 

1 0.811 Used for normalization 

2 1.000 → Reference scan 

3 0.819 Used for normalization 

2 480 

1 0.776 0.953 

0.965 ± 0.022 

2 0.756 0.928 

3 0.757 0.929 

3 480 

1 0.798 0.979 

2 0.797 0.978 

3 0.798 0.979 

4 480 

1 0.797 0.978 

2 0.798 0.979 

3 0.797 0.978 

Table 4: Comparisons of structural similarity index measures (SSIM) between four 3D-printed phantoms that are 

al based on the same clinical images. Normalized SSIM values, calculated by dividing SSIM values by the ratio 

of SSIM between the second high-dose scan of phantom #1 and the two other high-dose scans of the same 

phantom were between 0.928 and 0.979, with an average of 0.965. This value is higher than the normalized 
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SSIM value of the low-dose scan for phantom #1 (same phantom that was used for normalization), demonstrating 

the high production reliability of PixelPrint.   
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