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Abstract 

Psychotic symptoms occur in a majority of schizophrenia patients, and in approximately 50% 

of all Parkinson´s disease (PD) patients. Altered grey matter (GM) structure within several 

brain areas and networks may contribute to their pathogenesis. Little, however, is known 

about transdiagnostic similarities when psychotic symptoms occur in different disorders, such 

as schizophrenia and PD.  

 

The present study investigated a large, multicenter sample containing 722 participants: 146 

patients with first episode psychosis, FEP; 106 individuals at-risk mental state for developing 

psychosis, ARMS; 145 healthy controls matching FEP and ARMS, Con-Psy; 92 PD patients 

with psychotic symptoms, PDP; 145 PD patients without psychotic symptoms, PDN; 88 

healthy controls matching PDN and PDP, Con-PD. We applied source-based morphometry in 

association with receiver operating curves (ROC) analyses to identify common GM structural 

covariance networks (SCN) and investigated their accuracy in identifying the different patient 

groups. We assessed group-specific homogeneity and variability across the different networks 

and potential associations with clinical symptoms.  

 

SCN-extracted GM values differed significantly between FEP and Con-Psy, PDP and Con-PD 

as well as PDN and Con-PD, indicating significant overall grey matter reductions in PD and 

early schizophrenia. ROC analyses showed that SCN-based classification algorithms allow 

good classification (AUC~0.80) of FEP and Con-Psy, and fair performance (AUC~0.72) 

when differentiating PDP from Con-PD. Importantly, best performance was found in partly 

the same networks including the precuneus. Finally, reduced GM volume in SCN with 

increased variability was linked to increased psychotic symptoms in both FEP and PDP. 

 

Alterations within selected SCNs may be related to the presence of psychotic symptoms in 

both early schizophrenia and PD psychosis, indicating some commonality of underlying 

mechanisms. Furthermore, results provide first evidence that GM volume within specific 

SCNs may serve as a biomarker for identifying FEP and PDP.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.05.06.22274674doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.06.22274674
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Introduction 

Psychotic symptoms, mostly occurring in the form of hallucinations or delusions, are highly 

debilitating; they may be treatment-resistant and often lead to poor functional outcomes 1. 

They become manifest in different psychiatric and neurological disorders. In schizophrenia, 

psychotic symptoms constitute one of the core symptoms occurring in a majority of patients, 

mainly in the form of auditory and visual hallucinations 2,3. Likewise, about 50% of all 

Parkinson´s disease (PD) patients suffer from psychotic symptoms, mainly in terms of visual 

and minor hallucinations 4 that become more prominent during later stages of treated illness 

5,6. Across the different psychotic disorders, the pathogenesis of psychotic symptoms has been 

associated with alterations and altered interactions in a number of neurotransmitter systems, 

such as the dopaminergic, serotonergic, glutamatergic, and cholinergic system. However, little 

is known about the commonalities of the substrates underlying psychotic symptoms in 

different disorders, such as schizophrenia and PD psychosis. Similarities in neurobiology of 

those have been suggested for example in areas of prediction error processing 8,9 and salience 

processing 10,11, both linked to alterations in the dopaminergic systems, as well as in 

mechanisms underlying visual hallucinations 12,13. However, even less is known regarding 

disease-specific alterations in whole brain grey matter (GM) pattern organization. In 

psychosis, alterations in GM structure have been studied intensively, with mainly surface-

based methods (SBM) and voxel-based morphometry (VBM) 14–17. 

 

Although meta-analyses have failed to arrive at any conclusive summary, they do suggest that 

alterations in several frontal and temporal regions, as well as the cingulate cortex and a 

number of subcortical areas, such as the hippocampus and the thalamus are among the most 

consistent findings 14,18,19. These alterations seem to be present in help-seeking patients with 

an increased clinical risk of developing psychosis (i.e., individuals with at-risk-mental state 

for developing psychosis, ARMS) and seem to progress during the course of the illness 20–22. 
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Substantial efforts have been made to unravel GM structural alterations related to the presence 

of psychotic symptoms in PD 5,6,23–29. A recent large-scale mega-analysis applied empirical 

Bayes harmonisation to identify structural alterations in PD patients with visual hallucinations 

compared to PD patients without visual hallucinations. After controlling for several 

influencing factors (i.e., age, gender, TIV, disease onset, medication, PD severity, and 

cognition) they detected differences of cortical thickness and surface area in a wide-spread 

network comprising primary visual cortex and its surrounding areas, and the hippocampus 29. 

The authors concluded that their findings pointed to the involvement of the attentional control 

networks in the pathogenesis of PD visual hallucinations, supporting the attentional network 

hypothesis as proposed by Shine et al. (2011). Findings from a review by Lenka et al. (2015) 

suggested GM alterations in multiple regions of the brain including, in addition to the primary 

visual cortex and hippocampus, frontoparietal regions, as well as the thalamus in PD patients 

with psychotic symptoms compared to those without. Those studies 29–31 suggest that the GM 

alterations might be closely associated with the pathogenesis of psychotic symptoms in PD; 

however, they also illustrate that the overall picture is still heterogeneous, partly due to 

methodological differences between studies, but mostly because PD is regarded as a multi-

systemic brain disease with diffuse alterations in multiple brain structures and functions.  

 

In spite of all heterogeneity, there is a great overlap between those structures reported to be 

altered in psychosis patients and PD patients with psychotic symptoms, indicating that these 

alterations might represent a common underlying substrate of psychotic symptomatology. One 

of the major challenges when relating GM alterations in PD psychosis to those in 

schizophrenia is the difference in age of disease onset, with 60-80 years in PD 32 and early 20s 

in psychosis patients 33. Given the strong association between GM changes and age which, in 

turn, is closely related to illness duration especially in elderly PD patients, age differences 
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usually make it impossible to draw a clear conclusion on psychosis-related commonalities of 

structural alterations in these two disorders.  

 

Based on these considerations, in the present study we applied source-based morphometry 

(SBM) in association with receiver operating curves (ROC) analysis, to isolate common GM 

structural covariance networks (SCN) as a basis for potential diagnostic classification of the 

different patient groups while controlling for the highly relevant influence of age (i.e., by 

adding age as a covariate to the comparison of the different patient groups and having highly 

matched clinical and healthy control groups). More specifically, using this method we aimed 

to identify SCN-related network characteristics that allow classification between ARMS, first 

episode psychosis (FEP) patients and PD patients with psychosis (PDP) versus respective 

controls. Identified networks may be closely related to psychotic symptoms. Importantly, 

networks showing similarly good classification performances for different patient groups 

would indicate potential commonality in underlying mechanisms. This way, we aim to 

explore whether similar networks occur within a disorder and across different stages (i.e., 

across FEP and ARMS), or across different disorders (i.e. across either FEP and PDP, or 

ARMS and PDP). The latter comparison is especially interesting as it explores whether 

psychosis in PD corresponds to a manifest form of psychosis, as in the comparison with FEP, 

to a subclinical form of psychosis as in the comparison with ARMS, or to neither of those.  

 

However, since SCN identified by SBM have been shown to overlap with functional brain 

networks subserving behavioral and cognitive functions they are gaining increasing 

importance as sensitive substrates for the right lingual gyrus, in the left lateral occipital gyrus 

and the right superior parietal lobe investigation of brain network organization in 

neuropsychiatric diseases and are regarded as highly suitable for prediction or classification 

34. Nonetheless, to the best of our knowledge, there are only single studies investigating SCN 
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in patients with psychosis 35–37 and PD patients 38,39, amongst these the above mentioned 

large-scale mega-analysis 29. In addition to the analyses mentioned before, they applied the 

structural covariance method to cortical thickness and surface area in order to investigate grey 

matter network-level organisation in PD patients with vs. without visual hallucinations. They 

found, amongst others, significant differences in interregional surface area covariance and 

centrality in a wide-spread cortical network as well as more specific changes in cortical 

thickness in terms of a greater betweenness centrality in PD patients with visual hallucinations 

compared to those without in the left and right lingual gyrus, in the left lateral occipital gyrus 

and the right superior parietal lobe. 

 

Only one of these studies employed SCN-based classification in PD patients (without 

psychotic symptoms), and they reported an overall moderate SCN-related classification 

accuracy 38. Thus, the present study aimed at investigating SCN-related GM alterations in 

patients with first episode psychosis, ARMS as well as PD patients with and without 

psychotic symptoms to evaluate their suitability to identify psychosis-related characteristics 

considering age as a possible confounder. Finally, we aimed at exploring SCN-associated GM 

pattern organization with regard to disease-specific characteristics in whole brain GM patterns 

and their clinical relevance. 

 

Methods      

Participants 

In this study, we used a cross-sectional dataset to investigate early schizophrenia and 

Parkinson’s disease, combining imaging data from six original projects: the Early Psychosis 

Human Connectome Project (EP-HCP, https://www.humanconnectome.org/study/human-

connectome-project-for-early-psychosis), an early schizophrenia dataset collected in 

Cambridge, UK 9,11, an at-risk for psychosis dataset collected in Singapore 40, and three PD 
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psychosis datasets, from Cambridge, UK 8,10, Sydney, Australia 41 and Bangalore, India 25. 

The final dataset included 722 participants, consisting of: individuals with an at-risk mental 

state for developing psychosis (ARMS), showing sub-threshold positive and negative 

symptoms of schizophrenia; individuals with a first episode of psychosis (FEP), consisting of 

first episode of schizophrenia and first episode of schizoaffective disorder; healthy controls 

matching FEP and ARMS (Con-Psy); PD without psychosis (PDN); PD with psychosis 

(PDP); healthy controls matching PDN and PDP (Con-PD). Various clinical scores were 

recorded. Symptoms related to psychosis and schizophrenia were measured using the 

Comprehensive Assessment of At-Risk Mental States (CAARMS) in ARMS 42 and the 

Positive and Negative Syndrome Scale (PANSS) in FEP 43. In PD, the Hoehn and Yahr scale 

44 was used to assess the disease stage, and the Unified Parkinson's Disease Rating Scale 

(UPDRS, 45) item 2 to assess psychotic symptoms and hallucinations. In PD, both the Mini-

Mental State Examination (MMSE 46) and the Montreal Cognitive Assessment (MoCA, 47) 

were used to assess cognitive decline. MoCA scores were converted to MMSE using a 

validated conversion table 48. Demographic and clinical details, as well as corresponding 

statistics are described in Table 1.   

 

Ethical approval was obtained from local ethical committees for each original studies: The 

studies were approved by the Cambridgeshire 3 National Health Service research ethics 

committee 8,10; by the ethics review board of the Singaporean National Healthcare Group 40;  

by the ethical committee of the University of Sydney 41;  and by the Institute Ethics 

Committee of NIMHANS, Bangalore 25. Furthermore, freely available data was used from the 

Human Connectome Projects (https://www.humanconnectome.org/study/human-connectome-

project-for-early-psychosis), for which ethical approval was waived by the Ethical 

Commission Board of the Technical University Munich. All subjects gave written informed 

consent in accordance with the Declaration of Helsinki.  
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MRI acquisition, image preprocessing and Independent component analysis 

T1-weighted structural images were acquired for all individuals, at a field strength of 3T. The 

different MRI sequences are detailed in Supplementary Table 1. T1-weighted structural 

images were bias field corrected and segmented into grey matter, white matter, and CSF using 

Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), 

running on MATLAB version 2018b. Diffeomorphic Anatomical Registration through 

Exponentiated Lie Algebra toolbox (DARTEL)101 was applied to grey matter images. This 

procedure created a sample-specific template representative of all 722 subjects by iterative 

alignment of all images. Subsequently, the template underwent non-linear registration with 

modulation for linear and non-linear deformations to the MNI-ICBM152 template. Each 

participant’s grey matter map was then registered to the group template and smoothed with an 

8 mm3 isotropic Gaussian kernel. 

 

Independent component analysis 

The independent component analysis (ICA) was conducted according to 49–51. As a first step, 

all individually modulated and smoothed grey matter maps were concatenated to create a 4D 

file, which served as the basis for the independent component analysis (ICA). To ensure that 

only grey matter voxels were retained for the ICA, an absolute grey matter threshold of 0.1 

was applied to all images. ICA was performed using the Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC) method 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) as implemented in the FSL analysis package 

102 version 6.0. To derive data-driven population-based networks of grey matter covariance, 

the ICA was performed on all subjects (n=722) thus identifying common spatial components 

based on the covariation of grey matter patterns across all participants. In line with previous 
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work which employed similar methods, we chose 30 components 50,51,103 which allows for the 

investigation of a relatively detailed organization and represents one of the most frequent 

choices in resting state ICA analyses. To avoid spurious results, each of the 30 components or 

30 morphometric networks was thresholded at z = 3.5 and binarized 49-51. Finally, each 

participant’s grey matter volume was extracted from each of the 30 morphometric networks. 

 

Statistical analyses 

Grey matter volume 

To investigate group differences in GM volume across brain networks, we used repeated-

measures ANCOVA with grey matter volume in the 30 networks as within-subjects factor and 

group as between-subjects factor. In post-hoc analyses, we performed comparisons between 

patient groups and their matched control groups (i.e., Con-Psy vs. FEP, Con-Psy vs. ARMS, 

Con-PD vs. PDN, Con-PD vs. PDP) and between all patient groups (i.e., FEP vs. ARMS, FEP 

vs. PDP, FEP vs. PDN, PDN vs. PDP, ARMS vs. PDN, ARMS vs. PDP). As a proof of 

principle analysis, we conducted comparisons between young and elderly controls. Age, TIV, 

gender and scan site as covariates in all repeated-measures ANCOVAs, except for the 

comparison of elderly and young adults for which age was removed as a covariate.  

 

We applied binary logistic regression models to examine the classification performance of the 

morphometric networks for those groups showing a significant group difference in the 

ANCOVA. Previous studies showed that highly non-linear algorithms do not improve 

predictive performance when building a classifier based on image-derived brain data and for 

data sets in the size of the current one 104. Therefore, a logistic regression model was used. 

The logistic regression models were controlled for age, gender, TIV and scan-site for all 

group comparisons, except for young versus elderly healthy controls (Con-Psy vs. Con-PD), 

which excluded age as a covariate. We then performed receiver operating characteristic 
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(ROC) analyses, and assessed the area under the curve (AUC) to evaluate the classification 

performance of each network. Logistic regressions, AUC and ROC analysis were computed 

using the glm and roc functions of the r-packages ‘stats’ and pROC 105 respectively. We 

created a training and validation-dataset by splitting the data using a 60:40 ratio. This ratio 

accounted for the different group sizes and allowed a minimum N=50 in the training set, and 

furthermore avoided overfitting by allowing a minimum of N=40 in the model evaluation. We 

generated the logistic regression model using the training data, and tested the model using the 

validation data. AUC thresholds for classification were defined as follows: excellent = 0.90–

1, good = 0.80–0.89, fair = 0.70–0.79, poor = 0.60–0.69, or fail = 0.50–0.59 52. 

  

 

Whole-brain grey matter pattern and intra-network variability 

To investigate potential group differences in grey matter pattern similarity or homogeneity for 

those groups showing a significant group difference in the ANCOVAs, we correlated the grey 

matter volume in the 30 morphometric networks of each individual to the grey matter volume 

in the 30 brain networks of every other subject of the respective group 50,51. Thus 

homogeneity indicates the similarity of the whole-brain network profile from one subject with 

the whole-brain network profile of all other subjects in the group. To investigate whether 

groups differed in grey matter pattern similarity, we computed the Fligner-Killeen test of 

homogeneity of variances, using the fligner.test function of the r package ‘stats’. 

 

Finally, for those groups showing a significant group difference in the ANCOVAs, we 

investigated potential differences in the intra-network variability of grey matter volume 

between the groups by calculating the coefficient of variation (i.e., standard deviation divided 

by mean of grey matter volume) in each of the 30 networks. The intra-network variability of 

grey matter volume between the groups in each of the 30 networks indicates the variability of 
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the grey matter volume of each network between subjects. We calculated the modified signed-

likelihood ratio (MSLR) test using the mslr function of the R-package ‘cvequality’ 

(https://cran.r-project.org/web/packages/cvequality/index.html) version 0.1.3 58 with 100000 

simulations to test for significant differences in the coefficients of variation of grey matter 

volume between groups.  

 

Correlations with clinical scores 

We computed Pearson correlations between grey matter volume of individual NWs (which 

showed significant differences in variability in group comparisons) and clinical scores, 

PANSS total and MMSE for FEP and PDP, respectively. We furthermore investigated 

associations between grey matter volume with the MDS-UPDRS Item 2 “Hallucination and 

Psychosis” score in PDP, which is a categorical score, using the Kruskal-Wallis test. 

   

Results 

The 30 morphometric networks are shown in Figure 1 and their anatomical description as 

determined by the probability maps implemented in the JuBrain Anatomy toolbox 53 can be 

found in the Supplementary Materials. The majority of morphometric networks showed a 

bilateral, mainly homotopic distribution. The 30 networks described clearly involve separate 

areas consisting of a large part of subcortical regions. Mean GM values extracted from each 

network and group are plotted in Figure 1. 

 
Grey matter volume differences between groups 

Results of the repeated-measures ANCOVA, with GM volume of the 30 networks as the 

within-subject factor, group as the between-subject factor and age, TIV, gender and scan site 

as covariates, showed a significant main effect of group (F(1, 712)=11.55, p<0.001), 

significant main effect of network-related GM volume (F(8, 5826)=33.87, p<0.001), and 
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significant interactions of network-related GM volume with age (F(8, 5826)=12.79, p<0.001), 

TIV (F(8, 5826)=36.98, p<0.001), gender (F(8, 5826)=5.29, p<0.001), scan site (F(8, 

5826)=8.78, p<0.001) and group (F(41, 5826)=2.23, p<0.001). All within-subject effects were 

Greenhouse-Geisser corrected due to a significant result in the Mauchly sphericity test. The 

repeated-measures ANCOVA comparing FEP vs. Con-Psy, Con-PD vs. PDN, Con-PD vs. 

PDP, FEP vs. PDN, ARM vs. PDN, as well as young vs. elderly controls (Con-Psy vs. Con-

PD) showed a significant main effect of group. Details of these results are presented in the 

Supplementary Materials.  

 

The AUCs from the ROC analyses, representing the overall classification performance of 

each population-derived morphometric network to differentiate the different groups, are 

presented in Figure 2 and Table 2. Classification performances differed depending on group 

comparison. The Con-Psy were differentiated from FEP with an overall good performance in 

the training and in the validation (AUCs average: 0.80). The Con-PD were differentiated from 

PDN with a fair performance (AUCs average: 0.72) in the training set and a poor performance 

(AUCs average: 0.65) in the validation. Similarly, Con-PD were differentiated from PDP with 

a fair performance (AUCs average: 0.71) in the training, but also a fair performance (AUCs 

average: 0.71) in the validation. Classification of elderly (Con-PD) from young controls (Con-

Psy), however, produced a mainly good to excellent performance in the training set (AUCs 

average: 0.94) and validation (AUCs average: 0.89; see ROC curves in Figure 2). These 

results indicate that morphometric networks are suitable parameters to differentiate Con-Psy 

from FEP, as well as younger (Con-Psy) from elderly controls (Con-PD), and to a lesser 

degree also for the differentiation of Con-PD from PDP. The best classifying networks for the 

comparison FEP vs. Con-Psy and PDP vs. Con-PD are presented in Figure 3, showing an 

overlap in the NW14, the precuneus. 
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We computed a control analysis, in which we trained our model on one comparison (e.g., FEP 

vs. Con-Psy) and tested on another comparison (e.g., PDP vs. Con-PD). We conducted three 

main models, using the complete sample: Model 1 - FEP vs. Con-Psy, Model 2 PDN vs. Con-

PD, Model 3 PDP vs. Con-PD. We then used Model 1-3 to predict the other two comparisons. 

Interestingly, while Model 1 (FEP vs. Con-Psy) itself classified well, it failed to classify PDP 

vs. Con-PD and PDN vs. Con-PD; Model 2 (PDN vs. Con-PD) also classified with fair  

performance, but the model performed poorly or failed in the classification of the other group 

comparisons; Model 3 (PDP vs. Con-PD) produced not only fair to good classification in 

itself, but also when classifying FEP vs. Con-Psy (see Supplementary Figure 1 and 

Supplementary Table 3).  

 

Whole-brain grey matter pattern differences between groups 

Assessment of GM pattern similarity (i.e., homogeneity) indicating how similar one’s whole-

brain organization is with every other individual of the respective group revealed a lower 

homogeneity in all patient groups (Con-Psy vs. FEP (�2(59)=689.59, p<0.001); Con-Psy vs. 

ARMS (�2(59)=440.69 p<0.001); Con-PD vs. PDN (�2(59)=532.95, p<0.001); Con-PD vs. 

PDP (�2(59)=417.01, p<0.001)). 

 

Differences in intra-network variability between groups 

The MSLR test assessing differences in the coefficients of variation of GM volume between 

groups showed a highly significant group effect between psychosis controls and FEP 

(�2(1)=18.57, p<0.0001),  Con-PD and PDN (�2(1)=15.63, p<0.0001),  as well as  Con-PD 

and PDP (�2(1)=15.61, p<0.0001), indicating a higher variability in all patient groups across 

all networks (Figure 4). We furthermore assessed differences for each network using a 

Bonferroni corrected threshold for multiple comparisons (p<0.002), see Supplementary Table 

2 for details. In summary, for the comparison between Con-Psy and FEP, we found significant 
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differences in NW13, NW15 and NW23; between Con-PD and PDN in NW5, NW19, NW26, 

and NW28; and between Con-PD and PDP in NW19, NW21, and NW 28. All differences 

were based on an increased coefficient of variation (i.e., variability) in patients relative to 

healthy controls (see Figure 4).  

 

Association with clinical scores 

In FEP, we found a significant correlation between the GM volume of NW23, and PANSS 

(r=-0.21, p=0.017, corrected for multiple comparison), indicating reduced GM volume with 

higher clinical scores. Correlations between NW13, and NW15 and clinical scores did not 

reveal any significant effects (p=0.1-0.17). Similarly, in PDP, we found a significant 

interaction between the GM volume of both NW21 and NW28 and psychosis severity 

(Hallucination and Psychosis, MDS-UPDRS, item 2; X2=11.26, p=0.0104, X2=11.31, 

p=0.0102, respectively and corrected for multiple comparison), which showed reduced GM 

volume with increasing psychosis severity. Furthermore, in PDN, but not in PDP, we found a 

significant correlation between the GM volume of NW5, 19, 26, 28, and MMSE in PDN, 

corrected for multiple comparison (r=0.24, p=0.0085; r=0.23, p=0.012; r=0.26, p=0.0053, 

r=0.3, p=0.00092, respectively). The correlation implies lower GM volume with lower 

cognitive scores. In Con-PD, the correlation between GM volume of NW19 and 28 and 

MMSE produced a trend towards significance for the GM (r=0.26, p=0.021, r=0.23, p=0.045, 

respectively), indicating the same relationship as in PDN – greater GM volume with higher 

cognitive scores. Importantly, Con-PDs show a smaller range of cognitive scores, pointing 

towards less cognitive decline. All clinical associations are presented in Figure 5. 

 

Discussion 

This study aimed at investigating transdiagnostic GM differences and similarities between 

early schizophrenia and Parkinson’s Disease (PD) psychosis, in a unique sample that controls 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.05.06.22274674doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.06.22274674
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

for age differences and disease stages, potentially shedding light on the development of 

psychotic symptoms in schizophrenia and PD. We present an SBM analysis, demonstrating 

widespread differences between patients and controls, with a general reduction of grey matter 

(GM) volume across the morphometric networks (NW), with a reduced inter-subject 

homogeneity, and increased intra-network variability in patients with both primary disorders. 

Importantly, we did not find differences in GM volume, the homogeneity or variability 

between early schizophrenia and PD psychosis. Furthermore, data revealed that morphometric 

network-based classification algorithms show good performance when differentiating 

individuals with early schizophrenia (FEP) from healthy controls (Con-Psy), and a fair 

performance when differentiating individuals with PD psychosis (PDP) from healthy controls 

(Con-PD), with the best performance in partly overlapping clusters.  

 

Global group differences in grey matter pattern 

The ICA analysis identified 30 morphometric networks which clearly circumscribe cortical 

and subcortical areas using individual GM maps of all subjects. The structural covariance 

analysis revealed significant differences between patients and controls across both disorders - 

FEP vs. Con-Psy, PDN vs. Con-PD, PDP vs. Con-PD. Interestingly, the comparison between 

psychosis-risk (ARMS) and Con-Psy, as well as comparisons between the patient groups 

(FEP vs. PDP, ARMS vs. FEP, ARMS vs. PDP, and PDP vs. PDN) remained non-significant, 

potentially indicating similarities in the GM alterations across disease stages and disorders. 

Comparisons between ARMS vs. PDN, and FEP vs. PDN were conducted for completeness. 

As expected, those comparisons revealed significant results, most likely due to age related 

alterations. GM alterations across the whole brain found in FEP compared to Con-Psy are in 

line with the literature reporting GM reductions across large areas of the brain 1,54, including 

areas such as the anterior cingulate cortex (ACC), thalamus, insula and inferior frontal gyrus 

(IFG), superior temporal gyrus (STG), middle temporal gyrus (MTG), precuneus, and 
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dorsolateral prefrontal cortex (DLPFC). They are in line with previous studies using SBM in 

patients with psychosis 35–37,55. These studies reported decreased grey matter volume in 

mainly frontal, temporal and parietal regions, although it should be noted that methodological 

details of the SBM approaches differed between the studies and only two of those (Kasparek 

et al., 2010; Li et al., 2019) investigated patients with a first episode psychosis. Similarly, we 

found global, not NW specific, reductions of GM volume across all NW in PDP and PDN 

compared to Con-PD. Psychosis, especially hallucinations in PD are associated with GM 

alterations in temporal and visual areas compared to non-psychotic PD patients  23 and in the 

dorsal visual stream, the midbrain, cerebellar and limbic and paralimbic structures compared 

to healthy controls 26,29,31. In this study, the structural covariance analysis did not reveal 

differences between PDN and PDP, as PD-associated changes might be prevailing and 

analysis was conducted at the network level such that the sensitivity to highly localised effects 

may have been reduced. Partly localised GM alterations, in PD in general, have been reported 

in fronto-temporo-parietal and occipital areas, as well as subcortical areas like the caudate, the 

putamen and limbic areas 38,56–58. Interestingly, there are no overall differences between FEP 

and PDP or PDN in the age-corrected GM NWs, potentially indicating similarities in 

structural changes 59,60. 

 

In our study, we did not find GM differences between ARMS and Con-Psy, despite several 

studies indicating such differences, especially in the insula, prefrontal and temporal brain 

regions 61–64. The following considerations may explain the lack of findings in our sample. 

First of all, GM changes especially in temporal and frontal areas have been linked to symptom 

severity particularly attenuated psychotic symptoms 65, our sample of ARMS individuals is 

relatively mildly affected. Secondly, our sample combines European and Asian individuals 

(ratio 1:2); while all studies that report grey matter differences assess European, North-

American or Australian participants 61–64, a recent study reported no regional grey matter 
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differences in an Asian sample 66, discussing lower prevalence of illegal drug use as a 

potential reason 67. While this might provide a potential explanation, the general heterogeneity 

of this group might be equally likely. In the ARMS group, we did not differentiate between 

those who transition, or have an increased genetic risk, and those who remit. A meta-analysis 

22, however, showed that grey matter differences are more pronounced not only in high-risk 

individuals who transition into frank psychosis but also in those with a genetic risk compared 

to those who remitted, for whom it may also normalise. Thirdly, a recent meta-analysis in 

ARMS reported both increased and decreased GM volumes in different regions compared to 

healthy controls 68. Given these inconsistent findings, it is possible that we did not find a 

significant overall (i.e., across all NW) group difference in GM volume in the current study 

for these reasons. As a proof of concept, we observed a strong decrease of GM volume, 

between young individuals and elderly individuals across all networks; as well as good to 

excellent classification performances 50. 

 

ROC-Classification using grey matter networks for FEP and PDP 

Is GM volume in NWs a suitable characteristic to identify individuals with early psychosis 

(i.e., FEP) or Parkinson’s psychosis (i.e., PDP)? Using logistic regression analysis, we found 

that morphometric NW patterns are suitable for classification of FEP and Con-Psy with an 

overall good performance (AUC>0.8). Networks that discriminated best (NW3, 8, 14, 16, 21, 

30) included the thalamus, putamen, insula, hippocampus, amygdala, n. accumbens, 

precuneus, temporal pole, parahippocampal gyrus, orbitofrontal cortex, posterior cingulate 

gyrus, and lingual gyrus. Those regions are highly relevant for the psychopathology in 

psychosis, and structural alterations are well described in these areas 14,18,19,69–71. Also, 

functional alterations have been detected in those areas, with regard to functional connectivity 

in general and in the default and salience networks specifically 72–76, as well as cognitive, 

reward and salience processing 9,11,77–79.   
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Importantly, GM NWs also allowed fair classification performance when discriminating PDP 

from Con-PD (AUC>0.73). Brain regions of the best classifying networks (NW 8, 14, 18, 19, 

23, 24, 28) include the middle temporal gyrus, postcentral gyrus, parahippocampal gyrus, 

hippocampus, precuneus, thalamus, n. accumbens, putamen, insula, temporal fusiform cortex, 

lateral occipital cortex, cerebellum crus I, II, cerebellum VIIb, VIIIa, frontal pole, and the 

Heschl’s gyrus. Again, these regions have been discussed reliably in the literature as core 

structures for functional and structural alterations in PD with psychotic symptoms 

23,25,26,29,31,80,81.  

 

Interestingly, the only study 29 applying the structural covariance method to cortical thickness 

and surface area in PD patients with vs. without visual hallucinations found, amongst others, 

significant differences in interregional surface area covariance in frontal and inferior-superior 

parietal regions, temporal fusiform areas, the lateral occipital gyrus, and insula as well as 

differences in betweenness centrality in PD patients with visual hallucinations compared to 

those without in the left and right lingual gyrus, in the left lateral occipital gyrus and the right 

superior parietal lobe. Particularly the overlap in lateral occipital regions, middle temporal 

areas, fusiform cortex, and the insula between these findings and our results are of notice and 

point to alterations in areas critically involved in visual perception in PD patients with 

hallucinations that seem to manifest both in comparison to healthy controls as well as when 

compared to PD patients without hallucinations or psychotic symptoms.  

 

There is a strong overlap in fairly well classifying regions between FEP and PDP, especially 

in the putamen, insula, hippocampus, parahippocampal gyrus precuneus, and thalamus. The 

presence of psychotic symptoms in this group of PD patients might introduce additional 

differentiating structural characteristics allowing for a better classification. Still, the 
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specificity and sensitivity are reduced compared to the classification of early psychosis, which 

may result from a close association between age and illness duration in this particular group 

56,58. In a recent meta-analysis 82 investigating progressive grey matter atrophy in individuals 

with PD, significant grey matter reductions were detected in mainly in the caudate, putamen, 

n. accumbens, and amygdala. Our work shows that these regions overlap with areas affected 

and used for the classification not only in PD with psychosis but also in early psychosis.   

The classification of PD alone, without psychotic symptoms, was poor (max. AUC 0.68) in 

our sample. This is in contrast to a recent study by Lee and colleagues 38, who were able to 

classify between PD patients and healthy controls with an accuracy of 0.75 in the validation 

sample. This study, however, did not differentiate between PD patients with and without 

psychotic symptoms. Therefore, improved performance in Lee and colleagues 38 compared to 

our work, could result from the inclusion of individuals with psychotic symptoms. Taken 

together, our results suggest that the presence of psychotic symptoms allows for a more 

precise differentiation between patients and healthy control subjects in general, independent 

of their primary diagnosis. Despite the overlap in brain regions involved that seem to link to 

the presence of psychotic symptoms, it is not possible in this dataset to differentiate the 

contribution of specific psychotic symptoms, e.g. visual vs. auditory hallucinations. 

Importantly, however, functional alterations in the precuneus has been associated with visual 

hallucinations in PD (see reviews 83,84) as well as with auditory hallucinations in 

schizophrenia 85,86, suggesting potential unifying mechanisms underlying hallucinations in 

both disorders.  Larger studies with distinguishable subgroups of symptom expression are 

needed to fully understand this potential target area. 

 

Decreased homogeneity and increased variability in patients links to symptoms 

As expected, when investigating correlations of individual’s GM NW volumes to every other 

individual’s GM NW volumes, we found smaller homogeneity – or, in other terms, decreased 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.05.06.22274674doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.06.22274674
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

inter-individual correlation in whole brain grey matter patterns – in all patient groups 

compared to healthy controls. This decreased homogeneity may be linked to clinical 

symptomatology. These results are in line with findings in schizophrenia 87–89 or Alzheimer’s 

Disease using a similar approach 50. Both, Parkinson’s disease and Psychosis are 

neurobiologically heterogeneous disorders 88,90, having multiple clinical subtypes, occurring 

with co-morbidities, and diverse representations across behavior, genetics and brain 

morphometry. Relating to this, we, therefore, explored interindividual GM volume variability; 

the variability was increased globally in FEP, PDP and PDN compared to their control 

groups. Additionally, we found specific NWs that showed increased variability. Within the 

FEP patient group GM volume was significantly more variable in NWs 13, 15 and 23 

comprising the temporal lobe, amygdala, n. accumbens, large areas of the cerebellum, 

occipital lobe and the frontal pole. In a meta-analysis Brugger and Howes 88 investigated GM 

variability in specific regions and found increased variability in the putamen, thalamus, 

temporal lobe, and third ventricle, providing some overlap, but also decreased variability in 

the anterior cingulate cortex. Although the increased variability may be partially caused by 

secondary factors like medication, illness duration or comorbidities, inherent to all case-

control, the most likely cause for the increase variability is, however, the heterogeneity of the 

neurobiological processes underlying the illness. This heterogeneity furthermore indicates that 

individuals develop different psychopathological profiles. In support of the latter explanation, 

we found an association between GM volume in NW 23, comprising temporal lobe, cerebellar 

areas, fontal pole, postcentral gyrus and occipital lobe, and symptom strength as measured by 

PANSS, indicating that the increased variability in this region may be explained by symptom 

expression 65,91.   

 

Findings in the PD group are consistent with this account. Here we found overall increased 

variability in PDP as well as PDN compared to Con-PD. In PDP compared to Con-PD 
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variability was significantly greater in NW 19, 21, and 28, comprising areas such as the n. 

accumbens, putamen, insula, posterior cingulate gyrus, and temporal lobe, showing strong 

overlap with more heterogeneous areas in the FEP sample. Interestingly, GM volume in NW 

21 and 28 showed an association with psychotic symptom strength measured using the MDS-

UPDRS, but no correlation with cognitive decline. In contrast, PDN had increased variability 

in NW 5, 19, 26, and 28, including areas such as the cerebellum, n. accumbens, putamen, 

insula, thalamus and temporal lobe, which was, in turn, correlated with cognitive performance 

(i.e., MMSE score), indicating that reduced GM volume in PDN in these areas might be 

closely related to cognitive decline. Interestingly, in Con-PD, a trend for the same association 

was detected. Considering that the cognitive decline is lower in Con-PD and therefore the 

range decreased, the slightly lower correlation seems plausible. These findings are intriguing 

as they show that, while in FEP and PDP GM volume reduction in NWs with increased 

variability is linked to increased psychotic symptoms but not cognitive decline, in individuals 

not affected by psychotic symptoms, such as PDN and Con-PD, GM volume reduction in 

NWs with increased variability is linked to cognitive decline. Interestingly, one of the 

overlapping areas is the cerebellum, which has been reported in multiple studies discussing 

GM alterations in psychiatric and especially psychotic disorders 89,92–94, but which has also 

been linked to symptom expression and development 95. Temporal lobe alterations are 

common findings in psychosis, especially in the lateral 62,96 and medial parts 97,98, which have 

been linked to the neurobiological basis of psychosis 99,100, providing some commonality with 

PD psychosis, as alterations in these areas may be linked to developing psychotic symptoms.  

 

Limitations 

Potential limitations need to be considered for this study. First, in a multi-cohort study, 

individuals from different studies are pooled together. Parameters like scan-sites, imaging 

protocols, selection criteria might introduce additional variance. In the ANCOVA and ROC 
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analysis we controlled for age, gender, scan site, and TIV to allow maximal comparability. 

However, a correction for age always entails removing the influence of disease (duration) to a 

limited degree, potentially reducing differences between patient and control groups. This 

constitutes a confound often present in PD and psychosis research. As each contributing study 

includes patients and controls assessed under identical circumstances, and each subject group 

consists of at least two different studies, intrinsic confounds are maximally controlled for. 

Second, the clinical assessment varied across the different centers as well as across the 

different diseases. Therefore, no clinical score has consistently been used across all patient 

groups to assess psychotic symptoms in detail. We, however, made sure that each patient 

group, consisting of participants from multiple sites, had one identical clinical score, which 

unfortunately was a sum score, combining different psychotic experiences. Therefore, the 

main disadvantage of this shortcoming is that symptom correlation cannot be studied in detail, 

and, thus, potential differences between the groups - such as a higher prevalence of visual 

hallucinations in PD, a higher percentage of auditory hallucinations in schizophrenia or the 

differentiation between illusions or hallucinations - cannot be considered. Third, as we are 

dealing with two different psychiatric diseases, schizophrenia and PD, with different 

medication strategies, for which a conversion into an equivalent dose is not possible, it is 

impossible to control for medication effects in the analysis. Therefore, the results could 

potentially be confounded by medication effects and/or duration of illness effects.  

 

Conclusion 

In this study, we were able to show that alterations in GM volume allow for the fair to good 

classification of individuals with early psychosis and Parkinson’s psychosis. Furthermore, we 

found that there was reduced homogeneity and increased variability in patients compared to 

controls, potentially revealing those areas involved in the neurobiological processes 

underlying disease development. Importantly, we found that reduced GM volume in areas 
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with increased variability was linked to increased psychotic symptoms in both FEP and PDP, 

but not to cognitive decline in PDP, indicating that these areas, mainly the cerebellum and the 

temporal lobe, may contribute to the development of psychotic disorders. Generally, a SCN 

approach may therefore not only be a powerful tool for the identification of individuals at risk 

for a disorder, but also in the understanding of transdiagnostic similarities and differences 

contributing to the development of certain symptoms.  
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Figure legends 

 

Figure 1. Mean GM values extracted from the 30 networks presented by group. Line plot 

represents mean and variance of each group. Dots and solid lines represent group mean, thin 

and vertical lines represent individuals and group distribution respectively. the median (black 

dot), the interquartile range (white bar in the center), the lower and upper adjacent values, and 

the sample distribution for each NW and group. 

 

Figure 2. Classification performance of group differentiation. The 30 anatomically 

derived morphometric areas from the ICA networks thresholded at z=3.5 and overlaid on the 

ROC curves for each group differentiation. Model training results are presented in solid lines, 

model evaluation in dotted lines. Black ROC: Con-Psy vs. Con-PD, red ROC: Con-Psy vs. 

FEP, blue ROC: Con-PD vs PDP; purple ROC: Con-PD vs. PDN. 

 

Figure 3. Best classifying networks for FEP and PDP versus controls, with overlap in the 

precuneus. A. NW14 and NW16 produced the best classification performance (AUC=0.82) 

to discriminate FEP from Con-Psy; these NWs consist of the precuneus, temporal pole, 

parahippocampal gyrus, the orbitofrontal cortex, and the lingual gyrus. B. NW 14 and 18, 

consisting of the precuneus and the thalamus, produced the best classification performance 

(AUC>0.73) to discriminate PDP from Con-PD. 

 

Figure 4. A. Homogeneity of GM volume per network and individual, across all groups. 

The GM volume of each network for each individual is correlated with the GM volume of 

each NW of any other individual. Lighter colours indicate lower correlations. Black squares 

indicate groups. B-D. Network-specific variability as assessed by the coefficient of 

variation for different group comparisons: B) Con-Psy versus FEP; C) Con-PD vs. PDN; 
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D) Con-PD vs. PDP. Group differences were investigated using the modified signed-

likelihood ratio (MSLR) test; * significant at p<0.002 corrected for multiple comparisons (i.e., 

30 networks).  

Figure 5. Correlation of clinical and cognitive scores with specific GM NWs which 

showed significantly different variability between controls and patients. A. shows a 

significant negative correlation between GM NW 23 and PANSS total, indicating lower GM 

volume with higher symptoms in FEP. B. reveals a significant interaction between both GM 

NWs, 21 and 28, and the Hallucination and Psychosis, MDS-UPDRS score, also showing 

reduced GM volume with higher psychotic symptoms. C/D/E show correlations of GM NWs 

and MMSE in Con-PD (C), PDN (D) and PDP (E). While there are significant positive 

correlations in PDN and Con-Psy, indicating higher GM volume with less cognitive decline, 

there is no such correlation in PDP (E). D. the violin plot shows the distribution of the MMSE 

scores across PDP, PDN and Con-PD, the box plots show individual scores, the median as a 

line and the mean as a dot. All analyses are controlled for multiple comparisons.  
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Table 1. Group demographics and clinical scores of the final sample. 

Psychosis 
 Con-Psy ARMS FEP Group 

compar
ison 

 Cambri
dge 

HCP Singa
pore 

Total Cambri
dge 

Singapore Total Cambri
dge 

HCP Total KW-
X2/P-
X2, 

X2(df), 
p-value 

n  49 57 (2x*) 39 
(***
*) 

145 32 74 (****) 106 23 123 146 n/a 

Age, 
mean/SD 
(range)  

23.18/3
.37 

(18-33) 

24.88-
4.08 (17-

36) 

22.51
-3.96 
(14-
29) 

23.67/
3.93 
(14-
36) 

21.44/3.
29 (18-

29) 

21.46/3.43 (14-
29) 

21.45/
3.38 
(14-
29) 

22.78/5.
18 (17-

32) 

22.84/3.86 (17-35) 22.83-
4.07 (17-

35) 

22.15(2
), 

<0.001 

Sex, 
female 

23 20 16 59 13 22 35 10 48 58 1.72(2), 
0.4 

CAARM
S 

n/a 16.56/7.
57 (4-

29) 

16.05/7.47 (3-38) 16.21/
7.47 

(3-38) 

- - - n/a 

PANSS n/a 20.13/5.
46 (14-

38) 

- 20.13/
5.46 
(14-
38) 

25.62/7.
67 (16-

51) 

49.91/11.04 (30-78) 46.10/13
.78 (16-

78) 

n/a 

Medicate
d(any 
current 
antipsych

 0 (1 
missing

) 

2 2 1 (1 
missing

) 

90 (2 missing) 91 n/a 
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otic 
treatment)
, yes (N)  

Parkinson's Disease 
 Con-PD PDP PDN  
 Cambri

dge 
Bangalor

e 
Sydn

ey 
Total Cambri

dge 
Bangalo

re 
Sydne

y 
Total Cambri

dge 
Bangalore Sydney Total  

n  25 
(***) 

41 22 88 15 42 35 
(**,**

*) 

92 28 49 (*) 68 
(2x*,**

**) 

145 n/a 

Age  62.2/5.
92 (46-

72) 

55.42/5.2
3 (44-66) 

67.73
/8.17 
(52-
87) 

60.42/
8.03 
(44-
87) 

61.93/7.
47 (44-

73) 

58.43/8.
54 (38-

69) 

65.83/
7.02 
(52-
82) 

61.82/
8.45 
(38-
82) 

63.07/9.
58 (43-

74) 

57.87/6.8
4 (42-70) 

66.84/8.
66 (45-

87) 

63.08/9.
14 (42-

87) 

7.27(2), 
0.03 

Sex, 
female 

13 10 12 35 7 8 12 27 10 3 16 29 10.74 
(2), 

0.005 
Hoehn&

Yahr  
mean/SD 
(range) 

n/a 1.71/0.9
1(1-3) 

2.35/0.2
5(2-3) 

2.09/0.
46 (1-

3) 

2.16/0.
53 (1-

3) 

1.48/0.9
0(1-5) 

2.32/0.30(
1.5-3) 

2.11/0.7
6(1-5) 

2.08/0.7
2(1-5) 

n/a 

UPDRS, 
modified 
Psychosis 
Severity 
Scale,  

mean/SD 
(range)  

n/a 1.53/0.7
8 (1-3) 

2.21/1.2
2 (1-4) 

1.37/0.
65 (1-

3) 

1.78/1.
04 (1-

4)  

n/a n/a 

MMSE, 
mean/SD 
(range) 

29.5/07
9 (27-

30) 

29.15/
0.91 
(27-
30) 

29.74/0
.56 (28-

30) 

29.37/
0.84 

(27-30 

28.00/1.
75 (24-

30) 

28.32/1.
47 (26-

30) 

28.74/
1.28 

(7-30) 

28.37/
1.49 
(24-
30) 

28.74/1.66 
(25-30) 

28.06/1.
30 (25-

30) 

29.40/1.05 
(27-30) 

28.70/
1.42 
(25-
30) 

19.38 
(2), 

<0.001 
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Medicate
d 

(Levodop
a / 

antipsych
otic), yes 

(N)  

n/a 15/0 42/0 34/0 91/0 28 49 63 140 n/a 

Exclusion criteria from original data: * Missing files; ** faulty scan; *** listed multiple times; **** excluded during segmentation; 
KW-X2 = Kruskal-Wallis rank sum test, P-X2=Pearson’s Chi-squared test; bold=significant 
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Table 2. ROC diagnostics in percent (%) for classifications using training and test data sets per network 
and group comparison. 
 

 Diagnostics 
(in %) Con-Psy vs. FEP Con-PD vs. 

PDN Con-PD vs. PDP Con-Psy vs. Con-
PD 

 NW   Training Test Training Test Training Test Training Test 

1 
  
  
  

Accuracy  0.70 0.75 0.62 0.60 0.61 0.66 0.90 0.87 

Sensitivity 0.57 0.76 0.62 0.57 0.60 0.63 0.90 0.90 

Specificity 0.82 0.74 0.62 0.62 0.63 0.69 0.91 0.83 

AUC 0.79 0.79~ 0.71 0.66 0.68 0.68 0.94 0.94* 

2 
  
  
  

Accuracy  0.73 0.74 0.64 0.59 0.61 0.68 0.91 0.86 

Sensitivity 0.70 0.74 0.64 0.57 0.64 0.71 0.91 0.91 

Specificity 0.75 0.74 0.63 0.60 0.59 0.64 0.92 0.77 

AUC 0.82 0.79~ 0.71 0.63 0.70 0.72~ 0.98 0.93* 

3 
  
  
  

Accuracy  0.70 0.75 0.64 0.60 0.71 0.63 0.84 0.78 

Sensitivity 0.62 0.74 0.70 0.57 0.70 0.69 0.82 0.83 

Specificity 0.78 0.76 0.60 0.62 0.71 0.58 0.87 0.71 

AUC 0.80 0.81* 0.73 0.67 0.76 0.71~ 0.93 0.87* 

4 
  
  
  

Accuracy  0.70 0.73 0.63 0.59 0.61 0.70 0.91 0.90 

Sensitivity 0.63 0.74 0.64 0.57 0.58 0.66 0.92 0.93 

Specificity 0.76 0.72 0.62 0.60 0.64 0.75 0.89 0.86 

AUC 0.81 0.79~ 0.71 0.64 0.68 0.67 0.97 0.96* 

5 
  
  
  

Accuracy  0.71 0.73 0.63 0.59 0.63 0.65 0.86 0.81 

Sensitivity 0.61 0.74 0.62 0.57 0.64 0.63 0.85 0.83 

Specificity 0.82 0.72 0.63 0.60 0.63 0.67 0.89 0.77 

AUC 0.79 0.79~ 0.71 0.66 0.69 0.70~ 0.95 0.90* 

6 
  
  
  

Accuracy  0.70 0.73 0.61 0.59 0.61 0.66 0.89 0.84 

Sensitivity 0.61 0.74 0.66 0.54 0.58 0.63 0.87 0.91 

Specificity 0.80 0.72 0.59 0.62 0.63 0.69 0.91 0.71 

AUC 0.80 0.79~ 0.71 0.66 0.68 0.67 0.94 0.93* 

7 
  
  
  

Accuracy  0.69 0.74 0.63 0.59 0.61 0.68 0.75 0.78 

Sensitivity 0.60 0.74 0.64 0.57 0.58 0.66 0.75 0.83 

Specificity 0.78 0.74 0.62 0.60 0.63 0.69 0.75 0.71 

AUC 0.80 0.80* 0.71 0.65 0.68 0.67 0.88 0.85* 

8 
  

Accuracy  0.72 0.75 0.65 0.60 0.64 0.69 0.93 0.89 

Sensitivity 0.66 0.76 0.66 0.57 0.66 0.71 0.93 0.93 
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Specificity 0.78 0.74 0.64 0.62 0.63 0.67 0.92 0.83 

AUC 0.82 0.81* 0.71 0.65 0.73 0.73~ 0.98 0.95* 

9 
  
  
  

Accuracy  0.70 0.78 0.64 0.57 0.61 0.68 0.84 0.73 

Sensitivity 0.63 0.81 0.64 0.54 0.62 0.63 0.83 0.76 

Specificity 0.76 0.76 0.63 0.59 0.61 0.72 0.87 0.69 

AUC 0.80 0.79~ 0.71 0.63 0.69 0.69 0.93 0.86* 

10 
  
  
  

Accuracy  0.71 0.74 0.65 0.57 0.61 0.66 0.81 0.75 

Sensitivity 0.60 0.76 0.66 0.60 0.60 0.63 0.83 0.83 

Specificity 0.83 0.72 0.64 0.55 0.63 0.69 0.79 0.63 

AUC 0.79 0.80* 0.71 0.66 0.68 0.68 0.90 0.83* 

11 
  
  
  

Accuracy  0.71 0.74 0.64 0.59 0.61 0.65 0.86 0.83 

Sensitivity 0.60 0.74 0.66 0.60 0.58 0.66 0.85 0.86 

Specificity 0.83 0.74 0.62 0.59 0.64 0.64 0.89 0.77 

AUC 0.79 0.80* 0.71 0.67 0.70 0.70~ 0.94 0.91* 

12 
  
  
  

Accuracy  0.70 0.73 0.63 0.61 0.63 0.68 0.87 0.88 

Sensitivity 0.61 0.76 0.68 0.57 0.64 0.66 0.85 0.93 

Specificity 0.80 0.71 0.60 0.64 0.63 0.69 0.91 0.80 

AUC 0.80 0.79~ 0.72 0.69 0.70 0.72~ 0.95 0.93* 

13 
  
  
  

Accuracy  0.72 0.74 0.66 0.58 0.63 0.69 0.92 0.85 

Sensitivity 0.66 0.78 0.72 0.63 0.66 0.69 0.92 0.90 

Specificity 0.78 0.71 0.63 0.55 0.61 0.69 0.92 0.77 

AUC 0.82 0.79~ 0.74 0.63 0.71 0.70~ 0.98 0.93* 

14 
  
  
  

Accuracy  0.71 0.75 0.64 0.61 0.74 0.65 0.84 0.71 

Sensitivity 0.63 0.76 0.64 0.57 0.70 0.69 0.85 0.79 

Specificity 0.78 0.74 0.63 0.64 0.79 0.61 0.83 0.57 

AUC 0.80 0.82* 0.73 0.68 0.75 0.74~ 0.93 0.84* 

15 
  
  
  

Accuracy  0.70 0.74 0.62 0.59 0.62 0.65 0.95 0.83 

Sensitivity 0.59 0.72 0.66 0.60 0.58 0.57 0.93 0.86 

Specificity 0.82 0.76 0.60 0.59 0.66 0.72 0.98 0.77 

AUC 0.80 0.79~ 0.71 0.66 0.69 0.69 0.99 0.92* 

16 
  
  
  

Accuracy  0.73 0.76 0.66 0.61 0.72 0.66 0.85 0.81 

Sensitivity 0.66 0.78 0.66 0.66 0.68 0.66 0.85 0.84 

Specificity 0.81 0.74 0.67 0.59 0.75 0.67 0.85 0.74 

AUC 0.81 0.82* 0.73 0.66 0.72 0.71~ 0.93 0.89* 

17 
  
  
  

Accuracy  0.73 0.74 0.66 0.59 0.65 0.68 0.91 0.84 

Sensitivity 0.67 0.74 0.68 0.57 0.68 0.66 0.91 0.91 

Specificity 0.80 0.74 0.66 0.60 0.63 0.69 0.92 0.71 
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AUC 0.81 0.80* 0.72 0.66 0.71 0.72~ 0.99 0.92* 

18 
  
  
  

Accuracy  0.70 0.76 0.70 0.58 0.68 0.72 0.87 0.82 

Sensitivity 0.60 0.76 0.75 0.49 0.70 0.71 0.86 0.79 

Specificity 0.81 0.76 0.67 0.64 0.66 0.72 0.89 0.86 

AUC 0.79 0.80* 0.74 0.68 0.75 0.75~ 0.94 0.90* 

19 
  
  
  

Accuracy  0.70 0.76 0.66 0.60 0.66 0.73 0.85 0.86 

Sensitivity 0.61 0.78 0.68 0.57 0.70 0.74 0.83 0.88 

Specificity 0.80 0.74 0.66 0.62 0.63 0.72 0.89 0.83 

AUC 0.80 0.79~ 0.72 0.65 0.72 0.73~ 0.93 0.91* 

20 
  
  
  

Accuracy  0.71 0.74 0.64 0.58 0.66 0.65 0.90 0.78 

Sensitivity 0.66 0.72 0.64 0.57 0.68 0.66 0.92 0.78 

Specificity 0.77 0.76 0.64 0.59 0.64 0.64 0.87 0.80 

AUC 0.81 0.77~ 0.71 0.64 0.72 0.73~ 0.97 0.90* 

21 
  
  
  

Accuracy  0.71 0.75 0.64 0.59 0.61 0.70 0.90 0.86 

Sensitivity 0.64 0.74 0.66 0.57 0.58 0.66 0.90 0.90 

Specificity 0.78 0.76 0.63 0.60 0.63 0.75 0.91 0.80 

AUC 0.80 0.79~ 0.71 0.64 0.68 0.67 0.97 0.93* 

22 
  
  
  

Accuracy  0.73 0.75 0.64 0.59 0.59 0.66 0.79 0.75 

Sensitivity 0.63 0.76 0.64 0.57 0.57 0.57 0.79 0.84 

Specificity 0.83 0.74 0.64 0.60 0.61 0.75 0.77 0.60 

AUC 0.79 0.81* 0.71 0.63 0.68 0.65 0.87 0.81* 

23 
  
  
  

Accuracy  0.73 0.76 0.69 0.60 0.69 0.62 0.86 0.78 

Sensitivity 0.67 0.79 0.72 0.63 0.68 0.69 0.85 0.86 

Specificity 0.80 0.72 0.67 0.59 0.70 0.56 0.87 0.66 

AUC 0.82 0.80* 0.81 0.65 0.74 0.73~ 0.95 0.88* 

24 
  
  
  

Accuracy  0.74 0.72 0.66 0.63 0.66 0.63 0.89 0.86 

Sensitivity 0.69 0.71 0.74 0.63 0.64 0.69 0.90 0.90 

Specificity 0.80 0.74 0.62 0.64 0.68 0.58 0.89 0.80 

AUC 0.81 0.78~ 0.74 0.65 0.73 0.73~ 0.97 0.92* 

25 
  
  
  

Accuracy  0.71 0.76 0.69 0.61 0.67 0.65 0.73 0.69 

Sensitivity 0.62 0.76 0.70 0.54 0.64 0.63 0.71 0.71 

Specificity 0.81 0.76 0.68 0.66 0.70 0.67 0.75 0.66 

AUC 0.80 0.81* 0.74 0.65 0.74 0.70~ 0.86 0.78~ 

26 
  
  
  

Accuracy  0.70 0.75 0.65 0.58 0.62 0.70 0.86 0.83 

Sensitivity 0.66 0.78 0.66 0.57 0.64 0.66 0.83 0.84 

Specificity 0.75 0.72 0.64 0.59 0.61 0.75 0.91 0.80 

AUC 0.81 0.79~ 0.71 0.65 0.70 0.72~ 0.94 0.89* 
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27 
  
  
  

Accuracy  0.74 0.74 0.61 0.61 0.64 0.68 0.91 0.82 

Sensitivity 0.69 0.74 0.60 0.57 0.66 0.69 0.91 0.86 

Specificity 0.78 0.74 0.62 0.64 0.63 0.67 0.92 0.74 

AUC 0.81 0.79~ 0.72 0.65 0.70 0.70~ 0.98 0.93* 

28 
  
  
  

Accuracy  0.73 0.76 0.66 0.62 0.67 0.66 0.84 0.80 

Sensitivity 0.66 0.74 0.66 0.60 0.66 0.66 0.83 0.83 

Specificity 0.81 0.78 0.66 0.64 0.68 0.67 0.87 0.74 

AUC 0.80 0.79~ 0.74 0.65 0.73 0.73~ 0.94 0.89* 

29 
  
  
  

Accuracy  0.73 0.75 0.62 0.59 0.62 0.63 0.76 0.75 

Sensitivity 0.62 0.76 0.62 0.60 0.64 0.63 0.76 0.81 

Specificity 0.83 0.74 0.62 0.59 0.61 0.64 0.77 0.66 

AUC 0.79 0.81* 0.71 0.66 0.70 0.71~ 0.89 0.83* 

30 
  
  
  

Accuracy  0.72 0.76 0.67 0.62 0.64 0.68 0.78 0.82 

Sensitivity 0.64 0.79 0.68 0.60 0.66 0.66 0.79 0.84 

Specificity 0.80 0.72 0.67 0.64 0.63 0.69 0.75 0.77 

AUC 0.80 0.82* 0.73 0.66 0.71 0.72~ 0.90 0.86* 
Note: * Identifies networks with good classification performance or better in the validation (>=0.80); ~ 
identifies networks with fair classification performance in the validation (>=0.70). 
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Figure 1. Mean GM values extracted from the 30 networks presented by group. Line plot 

represents mean and variance of each group. Dots and solid lines represent group mean, thin 

and vertical lines represent individuals and group distribution respectively. the median (black 

dot), the interquartile range (white bar in the center), the lower and upper adjacent values, and 

the sample distribution for each NW and group.  
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Figure 2. Classification performance of group differentiation. The 30 anatomically 

derived morphometric areas from the ICA networks thresholded at z=3.5 and overlaid on the 

ROC curves for each group differentiation. Model training results are presented in solid lines, 

model evaluation in dotted lines. Black ROC: Con-Psy vs. Con-PD, red ROC: Con-Psy vs. 

FEP, blue ROC: Con-PD vs PDP; purple ROC: Con-PD vs. PDN. 
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Figure 3. Best classifying networks for FEP and PDP versus controls, with overlap in the 

precuneus. A. NW14 and NW16 produced the best classification performance (AUC=0.82) 

to discriminate FEP from Con-Psy; these NWs consist of the precuneus, temporal pole, 

parahippocampal gyrus, the orbitofrontal cortex, and the lingual gyrus. B. NW 14 and 18, 

consisting of the precuneus and the thalamus, produced the best classification performance 

(AUC>0.73) to discriminate PDP from Con-PD. 
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Figure 4. A. Homogeneity of GM volume per network and individual, across all groups. The 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.05.06.22274674doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.06.22274674
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 

GM volume of each network for each individual is correlated with the GM volume of each 

NW of any other individual. Lighter colours indicate lower correlations. Black squares 

indicate groups. B-D. Network-specific variability as assessed by the coefficient of variation 

for different group comparisons: B) Con-Psy versus FEP; C) Con-PD vs. PDN; D) Con-PD 

vs. PDP. Group differences were investigated using the modified signed-likelihood ratio 

(MSLR) test; * significant at p<0.002 corrected for multiple comparisons (i.e., 30 networks).  
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Figure 5. Correlation of clinical and cognitive scores with specific GM NWs which 

showed significantly different variability between controls and patients. A. shows a 

significant negative correlation between GM NW 23 and PANSS total, indicating lower GM 

volume with higher symptoms in FEP. B. reveals a significant interaction between both GM 

NWs, 21 and 28, and the Hallucination and Psychosis, MDS-UPDRS score, also showing 

reduced GM volume with higher psychotic symptoms. C/D/E show correlations of GM NWs 

and MMSE in Con-PD (C), PDN (D) and PDP (E). While there are significant positive 

correlations in PDN and Con-Psy, indicating higher GM volume with less cognitive decline; 

there is no such correlation in PDP (E). D. the violin plot shows the distribution of the MMSE 
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scores across PDP, PDN and Con-PD, the box plots show individual scores, the median as a 

line and the mean as a dot. All analyses are controlled for multiple comparisons.  
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