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Abstract

Since the start of the COVID-19 global pandemic, our understanding of the
underlying disease mechanism and factors associated with the disease severity
has dramatically increased. A recent report investigated the relationship be-
tween substance use disorders (SUD) and the risk of severe COVID-19 in the
United States and concluded that the risk of hospitalization and death due
to COVID-19 is directly correlated with substance abuse, including opioid use
disorder (OUD) and cannabis use disorder (CUD). While we found this analy-
sis fascinating, we believe this observation may be biased due to comorbidities
(such as hypertension, diabetes, and cardiovascular disease) confounding the
direct impact of SUD on severe COVID-19 illness. To objectively answer this
question, we sought to investigate the causal relationship between substance
abuse and medication-taking history (as a proxy trait for comorbidities) with
the risk of COVID-19 adverse outcomes. Our Mendelian randomization analysis
confirms the causal relationship between SUD and severe COVID-19 illness but
hints at a negative causal effect for cannabinoids. Given that a great deal of
COVID-19 mortality is attributed to disturbed immune regulation, the possible
modulatory impact of cannabinoids in alleviating cytokine storms merits further
investigation.
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Main

Since the start of the COVID-19 global pandemic, our understanding of the
underlying disease mechanism and factors associated with the disease sever-
ity has dramatically increased. In a timely study, Wang et al.[1] investigated
the relationship between substance use disorders (SUD) and the risk of severe
COVID-19 in the United States and concluded that the risk of hospitalization
and death due to COVID-19 is directly correlated with substance abuse, par-
ticularly with opioid use disorder. While we found this analysis fascinating,
we believe this observation may be biased due to comorbidities (such as hyper-
tension, diabetes, cardiovascular disease (CVD), etc.) confounding the direct
impact of SUD on severe COVID-19 illness.

To objectively test whether drug abuse is causally related to an increased
risk of COVID-19 adverse outcomes, we carried out Mendelian randomization
(MR) analysis using available high powered GWAS analysis of substance abuse
(Cannabinoids[2], Opioids[3], Alcohol), medication-taking history[4] (as a proxy
trait for comorbidities such as CVD) and the risk of Covid-19 hospitalization and
respiratory failure5 (COVID-19 Host Genetic Initiative- release 4) (See Supple-
mentary Note). MR uses exposure-associated genetic variants as instrumen-
tal variables to investigate the causal relationship between the exposure and
outcome[5]. Since genetic variants are randomly segregated at conception, MR
resembles randomized controlled trials but is more robust to confounding than
observational studies (See Supplementary Note).

The motivation behind our analysis is to circumvent the confounding im-
parted by unmeasured comorbidities in the investigation of the causal relation-
ship between SUD and COVID-19 adverse outcomes. The major limitation of
Wang et al. study is that they could not control for comorbidities due to the size
limitation. Thus, although they reframed their null hypothesis to test whether
SUD associated comorbidities contribute to patients’ risk of COVID-19 adverse
outcomes, the present observational analysis cannot assess the relationship be-
tween SUD and COVID-19 illness; it is not clear whether the observed relation-
ship is due to the higher prevalence of comorbidities among cases (compared to
controls), or substance abuse has a real causal effect on COVID-19 severe illness.

To answer this question, we investigated the causality between four SUD
classes – i.e., opium use disorder (OUD), cannabis use disorder (CUD), alcohol
use disorder (AUD) – and COVID-19 hospitalization and severe respiratory out-
comes. We also investigated the causal relationship of six medication categories
(including opioids) with COVID-19 outcomes. We carried out the MR analy-
sis using four different methods: LCV[5], Egger regression[6], inverse-variance
weighted (IVW) regression8, and weighted median[7]. MR analysis in this con-
text enabled us to investigate the true nature of causality while controlling for
comorbidities. Presented in Table 1 are exposure traits with a significant causal
relationship with severe COVID-19 indicated by at least one MR method after
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Bonferroni correction.

Consistent with the strong and significant impact of opioid use disorders
(OUD) in Wang et al. analysis, we also identified a significant causality es-
timate for the opioid exposure trait (as a proxy for OUD) through the IVW
regression method with a relatively similar effect size on both COVID-19 hos-
pitalization and respiratory failure (Hospitalization: ORIVW = 5.23,PIVW =
1.96e-11; severe respiratory symptoms: ORIVW = 7.71, PIVW = 1.25e-12).
Since IVW causality estimates are sensitive to horizontal pleiotropy, we further
tested whether opioids as a medication (prescribed in the clinical setting) exert
any causal effect on COVID-19 illness. To have a point of reference, we included
medication classes that are primarily prescribed to treat high blood pressure and
cardiovascular diseases (two well-known risk factors for severe COVID-1910).
We observed a significant effect of opioid medications on both COVID-19 hospi-
talization and respiratory failure (Table 1). The comparison of causality odds
ratios suggests that opioid medications have a strong effect on severe respiratory
symptoms (OREgger = 2.68, PEgger = 8.01e-20) while only minimally (up to
∼3%) increase the odds of hospitalization.

Our study showed that two classes of medications, including vasodilators and
statin (used for cardiac diseases) are causally related to the risk of COVID-19
hospitalization (Table 1). The impact of vasodilators on the risk of hospital-
ization was almost negligible (up to 1% increase), but statin showed a stronger
effect on the risk of hospitalization (OREgger = 1.06, PEgger = 3.46e-56). The
positive genetic correlation of both medication classes with COVID-19 hospi-
talization (vasodilators: rg = 0.17, statin: rg = 0.24) confirms the previously
reported higher baseline prevalence cardiovascular conditions among hospital-
ized patients[8]. Neither of the two classes of medication showed a significant
causality relationship with COVID-19 respiratory failure. We also detected a
significant negative causal effect for diuretics and medication class acting on the
renin-angiotensin system (RAAS) with the risk of COVID-19 reparatory failure.
Since both medication classes are primarily prescribed for patients with hyper-
tensive disease, this negative causal effect further underlines the importance of
ACE inhibitors in controlling COVID-19 severe illness (diuretics: ORIVW =
0.47, PIVW = 2.66e-15; RAAS: ORIVW = 0.36, PIVW = 1.87e-17).

Contrary to Wang et al., we detected evidence for a (negative) causal effect
of cannabis abuse with both COVID-19 hospitalization and severe respiratory
symptoms (Table 1). There is no clear mechanistic evidence linking cannabis
use disorder (CUD) to COVID-19 symptoms, but we hypothesize that this neg-
ative causal effect is exerted through immunomodulatory pathways related to
cannabinoid receptors. We found this observation interesting since Wang et al.
also observed a protective association for lifetime CUD and COVID-19 (OR =
0.85, P = 0.006).

In conclusion, our MR analysis confirms the causal relationship between
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opioids and severe COVID-19 illness. However, our MR analysis questions the
validity of the causal relationship between CUD and COVID-19 severe illness.
Recently Anil et al.[9] showed treatment with cannabis compounds significantly
reduces cytokine secretion in lung epithelial cells and, therefore, may be use-
ful in alleviating severe symptoms among COVID-19 patients. The fact that a
great deal of COVID-19 mortality is attributed to the disturbed immune reg-
ulation and cytokine storm, the possible modulatory impact of cannabinoids
merits further investigation.

Competing Interests: The authors declare that they have no conflict of
interest.
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Supplementary Note

To infer the causal relationship between SUD and COVID-19 adverse outcomes
(Hospitalisation and severe respiratory symptom), we carried out a Mendelian
Randomisation (MR) analysis. Unlike randomised trials that are costly, time
prohibitive and, in the case of SUD, unethical to carry out, MR offers an
amenable alternative for inferring causal relationships in a timely manner and ef-
ficiently. Furthermore, the application of MR in inferring causality also circum-
vents the biased conclusions occasionally associated with observational studies
due to confounding and reverse causality.

The premise of MR relies on the association of exposure and outcome with
genetic variants. Furthermore, MR can be carried out using only the GWAS
summary statistics from the exposure and outcome traits. Since genetic variants
are randomly segregated at conception, in MR analysis, genotypes are used as
naturally occurring instruments. As such, a valid instrument is a variant as-
sociated with the exposure, but it is not associated with confounders of the
exposure-outcome association. This instrumental variable is exclusively asso-
ciated with the outcome via its effect on the exposure, revealing the causal
relationship between the exposure and the outcome (Figure S1).

Figure S1: Schematic representation of assumptions underlying MR analysis.

The target of inference in MR analysis is βEO (i.e. the causal effect of the
exposure trait on the outcome). To circumvent the confounding effect of un-
measured traits (such as cardiovascular disorders and hypertension) that may
be correlated with both the exposure and outcome (identified by grey arrows),
we use genetic variants associated with both the exposure and outcome as the
naturally randomized instruments. In this causal diagram, βEGj is the measure
of association between the genetic variant Gj and the exposure trait (SUD in
our analysis), βOGj

is the association of Gj with the outcome (i.e. COVID-19
hospitalization or severe respiratory symptom) and βEO is the causal effect of
exposure trait on the outcome. In our analysis, we make two important as-
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sumptions; 1) we assume that genetic variant Gj affects both the exposure and
outcome through the same causal pathway, and 2) our randomized instrument
Gj is not associated with any unmeasured confounder (i.e. there is no correlated
pleiotropy).

Mendelian Randomisation methods:

In an MR analysis, in principle, we derive the causal effect (for each SNP)
as the ratio of SNP-outcome association to SNP-exposure association. Specifi-
cally, the hypothesized relationship between the exposure and outcome for each
instrumental variable j (out of J) is given by:

βOGj
= βOE ∗ βEGj

(1)

where βOGj
is the effect size of instrumental variable (SNPj) association

with the outcome (in the case of our analysis covid-19 hospitalization or severe
respiratory outcome), βEGj is the effect size of the association between the
instrumental variable (SNPj) and the exposure (for example OUD or CUD in
our analysis), and βOE is the causal effect of E (exposure) on O (outcome). In
GWAS summary statistics, all variants have been coded to reflect the positive
SNP-exposure association; hence βOGj

is always non-zero. Derivation of causal
effect βOE motivates the use of ratio so that for each instrumental variable j,
the causal effect can be estimated by:

βOEj
= βOGj

/βEGj
(2)

The WM (or IVW) method estimates the causal effect simply as a variance
weighted (or an inverse variance weighted) average of all instrumental variable
ratios (βOEj1 , βOEj2 , βOEj3 , . . . ; j ∈ J). The Egger method extends this basic
principle of MR to allow all variants to exert a pleiotropic effect on the outcome
via the regression model based on:

βOGj
= αj + βOE ∗ βEGj

(3)

where αj is the pleiotropic effect of instrumental variable SNP j.

The LCV method principally follows a similar framework as the Egger re-
gression, but it is more mathematically involved and relies on the estimation
of the Latent Causal Variable (LCV) that mediates the genetic correlation (rg)
between the E and O traits. Under the LCV model, the relative proportions
of heritability (between the exposure and outcome) that is attributable to the
shared factor is calculated. To quantify the magnitude of heritability explained
by the shared factor, O’Connor and Pric[5] introduce the “genetic causality pro-
portion (GCP)” that ranges from -1 to 1 depending on the direction of causality.
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Under this model, a fully genetically causal relationship (defined as ( ̂|GCP | =1)
is inferred when the entire effect of the exposure trait on the outcome is derived
from the genetic component underlying the shared factor (βOE =

∑
βOEj

).
The LCV method computes the significance of GCP against the null hypothe-
sis where ĜCP= 0. According to O’Connor and Pric[5], GCP estimates larger

than 0.6 ( ̂|GCP | > 0.6) suggest a plausible causal relationship.

Implementation of the MR analysis:

We explored the causal relationship between the SUD and COVID-19 adverse
outcome under four models, including LCV, Egger regression, inverse-variance
weighted linear regression (IVW) and weighted median (WM).

We implemented our workflow in R. For investigating the causal relationship
in LCV we used the R implementation of the model available at:

https://github.com/lukejoconnor/LCV.

For the remaining models we used the TwoSampleMR package (v.5.6)[6] and
MRPRESSO[10].

Codes underlying our analysis is available at:

https://github.com/RezaJF/COVID19MR.

Description of data source:

We collected the summary statistics from published and ongoing GWAS
studies across multiple resources. For each trait analysed in our study, a brief
description of the data source is provided below:

1. COVID-19 host genetics initiative (HGI):
We obtained GWAS summary statistics for “hospitalised COVID-19 cases
vs. not hospitalised patients” and “very severe respiratory confirmed
COVID-19 cases vs. population” from the meta-analysis round 4 of the
COVID-19 host genetics initiative (https://www.covid19hg.org/about/).
The COVID-19 host genetics initiative (HGI) is a collaborative project
to identify genetic determinants of COVID-19 susceptibility, severity, and
outcomes. Results from the GWAS analysis are available to download
freely from the project website.

The summary statistics for the hospitalisation record (B1 ALL) include
meta-analysed GWAS weights across the 14,901,153 loci obtained from
the analysis of 2,430 cases and 8,8478 controls with primarily European

8

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2022. ; https://doi.org/10.1101/2022.05.06.22274584doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.06.22274584
http://creativecommons.org/licenses/by-nd/4.0/


ancestry.

The summary statistics for the severe respiratory symptom (A2 ALL) in-
clude meta-analysed GWAS weights across the 11,830,413 variants ob-
tained from the analysis of 4,933 cases and 1,398,672 controls with pri-
marily European ancestry.

2. Psychiatric Genomics Consortium (PGC):
We obtained the GWAS summary statistics for opioid dependence, alcohol
dependence and cannabis use disorder from the Psychiatric Genomics Con-
sortium (https://www.med.unc.edu/pgc/download-results). These sum-
mary statistics are ascertained from the relevant studies carried out under
the PGC auspice and are briefly described below:

• Opioid use disorder (OUD)
The GWAS summary statistics for “opioid dependence” include GWAS
weights across 5,986,961 loci obtained from the analysis of 4,503
opioid-dependent, 4,173 opioid exposed and 32,500 opioid-unexposed
controls. Details pertaining to the analysis and GWAS results are
provided in the paper by Polimanti et al.[3].

• Alcohol use disorder (AUD)
We used the GWAS summary statistics for “alcohol use disorder”
from Sanchez-Roige et al.[11]. The summary statistic includes meta-
analyzed GWAS weights across 16,213,999 obtained from the analysis
of 121,604 individuals in the UK biobank and 20,328 cases from the
23andMe. The authors used quantitative measures from the Alcohol
Use Disorders Identification Test (AUDIT) to categorize participants
as case and control.

• Cannabis use disorder (CUD)
The GWAS summary statistic for CUD includes meta-analysed GWAS
weights across 11,535,788 variants from the analysis of 20,916 case
samples and 363,116 controls from three cohorts, including the Psy-
chiatric Genomics Consortium Substance Use Disorders working group,
iPSYCH, and deCODE. For details related to the analysis, please see
Johnson et al.[2].

3. UK Biobank medication-use
We used GWAS summary-statistics across six categories of medication
use from Wu et al.[4] (Table S1). These summary statistics are obtained
from the analysis of self-reported medication use across 23 medication
categories among the participants of the UK Biobank.
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