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Abstract 

Analysis of host genetic components provides insights into the susceptibility and response 

to viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

which causes coronavirus disease 2019 (COVID-19). To reveal genetic determinants of 

susceptibility to COVID-19 related mortality, we train a deep learning model to identify 

groups of genetic variants and their interactions that contribute to the COVID-19 related 

mortality risk using the UK Biobank data. We refer to such groups of variants as super 

variants. We identify 15 super variants with various levels of significance as susceptibility 

loci for COVID-19 mortality. Specifically, we identify a super variant (OR=1.594, 

p=5.47×10−9) on Chromosome 7 that consists of the minor allele of rs76398985, rs6943608, 

rs2052130, 7:150989011_CT_C, rs118033050 and rs12540488. We also discover a super 

variant (OR=1.353, p=2.87×10−8) on Chromosome 5 that contains rs12517344, rs72733036, 

rs190052994, rs34723029, rs72734818, 5:9305797_GTA_G and rs180899355.  

Keywords: Deep learning, COVID-19, SARS-CoV-2, UK Biobank, TAS2R1. 

Introduction 

Coronavirus disease 2019 (COVID-19) is a pandemic viral disease caused by the 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in 

significant morbidity and mortality worldwide.  

The ongoing research efforts to provide new insights into risk of COVID-19 related 

morbidity and mortality have focused largely on investigating the epidemiological 

characteristics of COVID-19 [1, 2], and genomic characterization of COVID-19 [3]. 

According to a cross-sectional survey conducted in the United Kingdom, among the 

hospitalized COVID-19 patients, those with diabetes, cardiovascular diseases, kidney 

diseases, obesity, or chronic respiratory diseases are tied to high risk of death [4, 5]. In 

addition, several recent papers have revealed that males, older people, Black, Asian and 

Minority Ethnic groups are exposed to an elevated risk of COVID-19 caused mortality [6-
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9]. Recent evidence also suggests that host genetic determinants modulate the risk of 

infection and disease severity [10-13]. Thus, investigating the host genetic basis of 

heterogeneous susceptibility and severity of COVID-19 and identifying genetic risk factors 

will deepen our understanding and facilitate the drug developments of COVID-19.  

Several genome-wide association studies (GWAS) have been performed to 

investigate the genetic contribution to COVID-19 outcomes, including the associations 

between host genetic factors, specifically single-nucleotide polymorphisms (SNPs) and 

infection or respiratory failure [4, 10, 13, 14], but those studies only focus on the effects of 

individual SNPs on phenotypes. While most of the literature mentioned above investigate 

the effects of the variants on COVID-19 susceptibility and severity, few examined 

association between SNPs and COVID-19 mortality. It is important to examine interactions 

between SNPs or genes on COVID-19 mortality. Several works utilizing tree-based method 

have been proposed to overcome drawbacks of traditional GWAS [15-18]. For example, Hu 

et al. combined a local ranking and aggregation approach with random forest to identify 

genetic variants associated with risk of COVID-19 related mortality [17]. Though they 

demonstrated some promising results, including the discovery of some new interacting SNPs, 

they used an earlier release of the UK Biobank data which contained a much smaller sample 

size on the COVID-19 cases and deaths. 

To account for the potential interactions between SNPs or genes, we adopt the idea 

of super variants in Song et al [16]. A super variant is a combination of minor alleles in 

multiple loci throughout a genome in analog to a gene [16]. In contrast to a gene, which is a 

physically connected region on a chromosome, the loci contributing to a super variant might 

be located anywhere in the genome. Recent studies have demonstrated the usefulness of 

super variants in detecting genetic associations with complex diseases [15, 17, 18]. To 

incorporate potentially complex interactions more effectively among SNPs or genes, we 

propose a novel approach, namely deep learning-based ranking and aggregation method for 

identifying genetic variants (DRAG).  

To date, deep learning has been successfully applied to numerous tasks in the 

biomedical domain, such as genomics [19],  promoters [20]. Although deep learning  

methods have been applied in GWAS [21], those methods do not emphasize SNP interaction 

effects. By contrast, our proposed method is capable of detecting the main and interaction 
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effects of SNPs that are entangled in high-dimensional and nonlinear representations. In 

addition, deep learning-based feature selection approaches such as Concrete Auto-encoder 

(CAE) have been studied by [22, 23]. Abid et al. demonstrated the advantages of CAE: 1) 

efficacy on a large-scale gene expression dataset; 2) easily scales to high-dimensional 

datasets; and 3) outperforms a variety of other sophisticated feature selection approaches, 

including principal feature analysis, multi-cluster feature selection and auto-encoder inspired 

unsupervised feature selection [23]. 

The DRAG proceeds in three main steps: SNP-set partition, selecting an optimal 

subset of SNPs, and determination of super variants. In the first step, SNPs are first divided 

into consecutive non-overlapping regions with each region consisting multiple SNPs. In the 

next step, an optimal subset of SNPs within each SNP-set is selected using CAE combined 

with Bayesian information criterion (BIC) obtained by training logistic regression. Finally, 

a super variant is formed by the selected subset of SNPs, and the association between the 

super variant and phenotype is tested by performing logistic regression. 

We first apply the DRAG to identify super variants that contribute to the COVID-19 

related mortality risk using the UK Biobank white British data to minimize the race and 

ethnicity impact on our results. We include 18,731 with 8.2 million SNPs as the discovery 

set. The identified super variants are then tested in an independent validation dataset 

(n=9,366). Furthermore, we demonstrate the validity and efficacy of our analytic approach 

through simulation studies.  

 

Results 

DRAG identifies super variants associated with COVID-19 related mortality.  

We include a total of 28,097 individuals infected with COVID-19 (26,441 survived 

and 1,656 died) and of white British ancestry from the UK Biobank in our analyses. We 

consider 8,238,098 SNPs which are divided into 2734 SNP-sets. Each SNP-set is 1Mbp as 

done in Hu et al. [16, 17] for convenience. 

 
The discovery set contains about two thirds of the participants which lead to the 

identification of 15 super variants with p-values at or below 1.83×10−5 (i.e., 0.05/2734) (Fig. 

1).  
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As the next step, we validate the detected super variants in the remaining one third 

of the individuals.  All of the 15 detected super variants have p-values below 0.05 and one 

below 0.003 (0.05/15) (Table 1).  

Table 1 shows the effects of super variants estimated from logistic regression with 

sex, age and top 10 principal components (PCs) of the genomic markers [24-26] in the 

discovery set, as well as the results in the verification and complete sets. The most significant 

signal for complete set is given by chr4_24 (p = 2.40 × 10−9), and the largest odds ratio 

appears at chr7_151 (OR = 1.594). The specific formation of the 15 verified super variants 

and their nearby genes (genes are annotated with ANNOVAR) are given in Table S1 

(Supplementary Table 1) where the odds ratio and corresponding p values are calculated on 

the complete dataset. 

 

Supervariants OR on 
discovery 

p-value on 
discovery 

OR on 
verification 

p-value on 
verification 

OR on 
complete 

p-value on 
complete 

chr2_35 1.401 7.51 × 10ି଺ 1.289 1.87 × 10ିଶ 1.368 4.51 × 10ି଻ 

chr4_24 1.464 7.33 × 10ିଽ 1.214 3.58 × 10ିଶ 1.376 2.40 × 10ିଽ 

chr4_170 1.381 6.11 × 10ି଺ 1.303 9.01 × 10ିଷ 1.354 2.18 × 10ି଻ 

chr5_10 1.343 1.01 × 10ିହ 1.383 6.07 × 10ିସ 1.353 2.87 × 10ି଼ 

chr5_138 1.361 2.59 × 10ି଺ 1.207 4.23 × 10ିଶ 1.306 5.71 × 10ି଻ 

chr6_54 1.395 5.41 × 10ି଻ 1.212 4.24 × 10ିଶ 1.329 1.67 × 10ି଻ 

chr6_163 1.439 1.04 × 10ିହ 1.342 1.31 × 10ିଶ 1.406 5.03 × 10ି଻ 

chr7_43 1.398 1.61× 10ିହ 1.329 1.12× 10ିଶ 1.370 7.61 × 10ି଻ 

chr7_151 1.688 6.74 × 10ି଼ 1.419 1.37× 10ିଶ 1.594 5.47 × 10ିଽ 

chr10_6 1.359 5.72 × 10ି଺ 1.217 4.27× 10ିଶ 1.309 1.12 × 10ି଺ 

chr11_114 1.364 6.07× 10ି଺ 1.242 2.68 × 10ିଶ 1.321 7.03 × 10ି଻ 

chr13_92 1.374 1.05× 10ିହ 1.226 4.94 × 10ିଶ 1.320 2.68 × 10ି଺ 

chr16_57 1.425 4.18× 10ି଺ 1.341 6.98 × 10ିଷ 1.394 1.19 × 10ି଻ 

chr17_49 1.379 1.95 × 10ି଺ 1.209 4.31× 10ିଶ 1.314 5.80 × 10ି଻ 

chr20_15 1.333 1.59× 10ିହ 1.267 1.13× 10ିଶ 1.310 6.40 × 10ି଻ 
Table 1: Marginal effects of 15 verified super variants on the discovery, verification, and complete dataset using DRAG. 

The chri_j represents the super variant in the j-th set of the i-th chromosome; OR on discovery: odd ratio of super variant 

on discovery set; OR on verification: odd ratio of super variant on verification set; OR on complete: odd ratio of variant on 

complete set.  

Annotation of the identified super variants in their reported roles related to COVID-19  

Our analyses identify 4 genetic variants (in/near TAS2R1, ZBTB16, LINC01320 and 

NCAM1) [11, 27-31] that have been reported with COVID-19 outcomes.  
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First, it is worth noting that super variant chr11_114 (OR=1.321, p=7.03×10−7) is 

composed of 7 SNPs, including the variant rs17115095 in the intronic region of gene 

NCAM1 which encodes a cell adhesion protein belonging to the immunoglobulin 

superfamily. The encoded protein is involved in cell-to-cell and cell-to-matrix interactions 

during development and differentiation [32].  As a binding partner of spike protein, previous 

investigations have revealed that there might exist molecular mimicry between NCAM1 and 

the COVID-19 envelope protein [29, 30]. Furthermore, in the same super variant, we observe 

that the SNP rs73000932 is considered as an intronic variant for gene ZBTB16 (also referred 

to as promyelocytic leukemia zinc finger). This gene plays a critical role in the function and 

development of immune system and may enhance T cell responses [33]. Recent studies have 

reported the upregulation of ZBTB16 in the tears of COVID-19 patients [31]. These findings 

suggest that variations within ZBTB16 is likely to have an effect on the risk of COVID-19 

related mortality.    

      Second, the 7 SNPs in super variant ch5_10 (OR=1.353, p=2.87×10−8), including 

the SNP index rs180899355, and its nearby gene TAS2R1 are mapped to chromosome 5p15. 

This gene encodes a member of the G protein-coupled receptor superfamily that is expressed 

by taste receptor cells of the tongue and palate epithelia. This intronless taste receptor gene 

encodes a 7-transmembrane receptor protein, functioning as a bitter taste receptor [34]. 

Studies have shown that individuals who reported experiencing weak or no bitter tastes were 

considerably more likely to test positive for COVID-19, to be hospitalized, and to be 

symptomatic for a longer duration [35]. In addition, recent studies have been conducted that 

reduced TAS2R expression may influence the response to Chloroquine. COVID-19 infected 

obese patients could respond differently to pharmacological therapy with Chloroquine, with 

side effects occurring more frequently as result of overdosage [27].  Moreover, the 

rs180899355 is in the same region as a variant rs148943015 in TAS2R gene, specifically 

rs148943015, which is reported to be associated with COVID-19 susceptibility and severity 

[11].  

In addition, super variant chr2_35 (OR=1.368, p=4.51×10−7) includes SNP 

rs570706090 whose nearby gene is LINC01320.  Of note, LINC01320 expression is reported 

to be higher in COVID-19 tissue specimens of connecting tubule (CNT) and intercalated cell 
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type A (IC-A) [28].  In addition, a GWAS study has shown that increased expression of 

LINC01320 is associated with testing positive for SARS-CoV-2 [11].  

 

 
Figure 1: (A) Manhattan plot. (B) The set of SNPs in each super variant. The chri_j represents the super variant in the j-th 

set of the i-th chromosome. 
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DRAG identifies novel genes with variants associated with COVID-19 mortality 

We also identify 8 novel genes (DDX60L, HSPA9, LASTR, GLI3, AGAP3, 

MACROD2, NUP93, ELOVL5) may affect COVID-19 related mortality. 

Super variant chr4_170 (OR=1.354, p=2.18×10−7) is composed of 4 SNPs. Variant 

4:169326163_AT_A is located in the intronic region of gene DDX60L which encodes a 

protein that is a member of the DEAD-box (DDX) helicase family. Although the function of 

this gene has not been well characterized, it has been shown that DDX60L is involved in 

anti-viral immunity and acts as a cytosolic sensor of viral nucleic acids [36-38]. The proteins 

responsible for DDX-mediated hijacking mechanisms are highly conserved among 

coronaviruses [39]. These observations suggest variations within DDX60L and the 

interaction between them may contribute to COVID-19 disease severity potentially through 

altered DDX60L involving in COVID-19 hijacking mechanisms. 

Super variant ch5_138 (OR=1.306, p=5.71×10−7) consists of 8 interacting SNPs. In 

particular, the variant rs41294550 is within the upstream of gene HSPA9.  The heat shock 

protein encoded by this gene is important for cell proliferation, stress response, and 

mitochondrial maintenance. Recent research indicates that gene HSPA9 knockdown would 

result in declined B cells in animal models, while memory B cell levels are associated with 

protection against COVID-19 delta variant infection [40-42]. These data suggest that 

variations within HSPA9 may affect the severity upon COVID-19 infection.  

Super variant chr6_54 (OR=1.329, p=1.67×10−7) consists of 4 interacting SNPs, 

including rs141615401 that lies in the intergenic region of gene ELOVL5. The gene ELOVL5 

has been shown to be associated to familial squamous cell lung carcinoma by a previous 

GWAS study, and several studies indicates that lung diseases would modestly elevate the 

risk of death after COVID-19 infection [43-45]. In particular, one study notes that patients 

with lung cancer have more severe symptoms related to COVID-19 infection [52]. Our data 

suggest that variations within ELOVL5 and its interaction may result in increased risk of 

death among COVID-19 patients from lung-related disease.  

Furthermore, we capture several SNPs super variants chr7_43 (OR=1.370, 

p=7.61×10−7), chr7_151 (OR=1.594, p=5.47×10−9) and chr10_6 (OR=1.309, p=1.12×10−6). 

They are rs7918112 rs78659910 and rs6943608 and their nearby genes are LASTR, GLI3, 

and AGAP3, respectively. The genes LASTR and AGAP3 have been reported to be associated 
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with pulmonary function (FEV1/FVC), while the gene GLI3 has also been found to be 

related to the pulmonary function (FVC) [46]. COVID-19 virus has been shown to affect 

many organs, with the lung being one of the most affected [47, 48]. In particular, one study 

find that severe COVID-19 patients had an abnormal FVC over a half-year following 

discharge [49]. These findings suggest that future analysis of LASTR, GLI3, and AGAP3 

gene expression in lung tissues may provide a better understanding on the molecular 

pathogenesis of COVID-19. 

Super variant chr16_57 (OR=1.394, p=1.19×10−7) is composed of 9 SNPs. Among 

them, rs12596894 is inside an intron of gene NUP93.  Previous studies reported that severe 

acute respiratory syndrome coronavirus (SARS-CoV) protein nsp1 disrupts localization of 

NUP93 from the nuclear pore complex, and the SARS-CoV-2 virus could have the similar 

disruption on NUP93 [50]. These observations suggest that a further investigation on the 

gene NUP93 may provide a new insight on COVID-19 pathophysiological mechanisms. 

Super variant chr20_15 (OR=1.310 p=6.40×10−7) includes 8 SNPs. They are all 

located in the intronic regions of nearby gene MACROD2. Recent evidence has shown that 

genetic polymorphisms in the gene MACROD2 are linked to pulmonary function test 

parameters [51] , and the MACROD2 is the closest human homolog of COVID-19 with 

approximately 30% sequence identity and a similar 3D structure [52]. In addition, the 

MACROD2 expression is reported to be associated with the removal of mono (ADP- 

ribosylation), and COVID-19 encodes a nonstructural protein 3 (nsp3) that contains an ADP-

ribose phosphatase domain for immune response [53]. Therefore, our results suggest that 

variations within MACROD2 is likely associated with COVID-19 related infection and 

inflammation, potentially due to alterations in the immune response regulating infection and 

inflammation. 

Comparison with traditional GWAS 

We compare super variants identified by DRAG with SNPs identified by traditional 

GWAS. Again, the same white British ancestry samples with sex, age and 10 PCs are used 

for GWAS. Through the traditional method, we identify 5 loci (Fig. 2 A) associated with 

COVID-19 mortality with commonly used threshold of 5 ×  10ି଼.  We find an association 

at chromosome 5q32, with the index SNP rs7447800 (p = 2.66 × 10ି଼). This index SNP is 

in the same region as a functional variant in JAKMIP2 gene, specifically rs10477338, which 
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is reported to be associated with testing positive for COVID-19  by a GWAS study conducted 

on approximately1,000,000 individuals [11].  Fig. 2B shows the location of variants on 

chromosome 5 identified by both methods and suggests that both strategies should be used 

in tandem to boost the strength of each method. 

 
Figure 2: (A) Manhattan plot of traditional single SNP association analysis based on samples with white British ancestry 
only and controlled for gender, age and 10 PCs. The red dashed horizontal line corresponds to the commonly adopted 
genome-wide significant level at 5 × 10ି଼. (B) The location of SNPs on chromosome 5 identified by DRAG (green) and 
traditional GWAS (blue). 
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DRAG increases detection power compared to tree-based model on simulated data 

Finally, we perform simulation studies to demonstrate the efficacy of our approach, 

by comparing it to an established method, tree-based analysis of rare variants (TARV), in 

various settings. We refer the readers to [20] for more details about TARV implementation. 

The same procedure for both methods is repeated 200 times in each setting, and the pool of 

200 results is summarized in Fig. 3. We evaluate the performance by detection rate, which 

is defined as the number of correct detections divided by the total number of repeated 

experiments.  

Fig 3.A and Fig 3.B exhibit the comparisons between DRAG and TARV in single 

SNP detection and interacting SNPs detection, respectively. DRAG achieves higher 

detection rates than TARV in both single SNP detection and interacting SNPs detection. For 

example, the DRAG on SNP B_411 achieves detection rate of 99% for Case 1, which is 

better than the TARV on the same SNP (i.e.,12.5%).  In addition, DRAG for interacting 

terms (B_31, B_201) has a detection rate of 32.5% for Case 1 and 69.5% for Case 2, while 

the TARV only achieves detection rate of 10.5% and 12% respectively, which suggests that 

DRAG performs better on detecting interactions. Overall, the DRAG outperforms TARV in 

detecting interacting terms.  

Fig 3.C summarizes the performance of DRAG and TARV in the third setting. Both 

DRAG and TARV work well on detecting individual SNP B1_1 and interactions (B2_51, 

B3_201), as evidenced by respective similar detection rate for DRAG and TARV of 97% on 

B1_1 and 97% on (B2_51, B3_201). It is noteworthy that DRAG generates similar results 

when detecting single SNP B1_1, B2_31 and B2_51 as TARV. However, DRAG on single 

SNP B2_31 achieves detection rate of 100%, which is significantly superior to the TARV 

(i.e., 43%). Similarly, as with the DRAG, the observed detection rate for interaction term of 

(B2_31, B2_51) and (B2_31, B3_201) (100% and 92%, respectively), are superior to TARV 

from (B2_31, B2_51) with 42.5% and (B2_31, B3_201) with 42.5%. The results suggest 

DRAG outperforms the TARV by a large margin, which implies that deep learning-based 

model is superior to tree-based model at detecting complex interacting SNPs when large 

amounts of data are presented. 
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 (A) Case 1      (B) Case 2                 (C) Case 3 

Figure 3. Detection rate of true signal and interaction in different cases. The x-axis of panels (A) through (C) represents 

the index of SNP. The y-axis of panels (A) through (C) represents the detection rate (%). Blue and red bars represent DRAG 

and TARV, respectively. The B_k represents the kth SNP for first two cases and the Bj_K represents the kth SNP in the 

SNP set j for the third case, 1 ≤ 𝑖 ≤ 1,0000, 1 ≤ j ≤ 30, 1 ≤ k ≤ 500. 

Discussion 

In summary, we train deep learning to learn the association between genetics variants 

and COVID-19 related mortality using genotyping data from the UK-biobank white British 

cohort. We identify 15 super variants and explored their relationships to COVID-19 related 

mortality. We also report 54 genes related to detected super variants, many of these genetic 

variants overlap with previously reported associations with lung-related phenotypes or 

COVID-19 outcomes or inflammatory diseases. 

In addition to novel genetic discoveries in COVID-19, our approach is also novel in 

several statistical aspects and possesses unique strengths: the ranking and aggregation 

strategy by an iterative super variant search enables us to capture complex non-linear 

interacting SNPs and consequently and obtain group of interacting SNPs with high COVID-

19 related mortality risk potential. In contrast to the classic CAE approach, the DRAG 

incorporates two innovative processes: iteratively running CAE procedure and model 

selection through BIC. These steps enable the user to explore various combinations of SNPs 

and select the optimal one. Finally, we demonstrate in simulation study that DRAG is 

superior to tree-based model by a significant margin when we detect complex interacting 

SNPs that are entangled in high-dimensional nonlinear representations. We believe this is a 

significant advantage of our strategy since host genetic factors that account for disease risk 

frequently include multiple complex interactions. Together, our findings provide timely 
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clues and prospective directions for better understanding the molecular pathogenesis of 

COVID-19, which may have implications for clinical treatment of this disease.  

 

Limitations 

Our study is subject to several limitations. The study population largely consisted of 

white British ancestry UK Biobank participants, limiting generalizability to other 

populations. Because only about 5% of the UK Biobank population had COVID-19 data 

available, it will be interesting to explore our findings when additional data and populations 

of diverse ancestry become available. Although one can vary the degrees of non-linearity 

and flexibility in the model by tunning hyper-parameters like K0, learning rate and the 

number of layers, etc., the computation cost of DRAG would increase dramatically as the 

value of 𝐾଴ increases. We expect to implement parallel computation in future work to make 

our procedure more user-friendly. Finally, the roles of the identified super variants and 

associated genes are not substantiated by functional validation. Still, our findings warrant 

future investigation to learn the associations between genetic variants and the COVID-19 

outcomes. 

 

 

Method 

Data and preprocessing 

 

Cohort dataset. The data used in the preparation of this study were obtained from the UK 

Biobank (project ID: 42009) [54, 55].  The UKB was launched in 2006, led by Heart 

Foundation Professor Sir R. Collins. The primary goal of UKB has been to help researchers 

to better understand a range of common and life-threatening diseases. The UKB cohort 

recruited 500,000 individuals aged 40–69 in the UK via mailer from 2006 to 2010. In total, 

we analyze 148,654 participants with COVID-19 data (Field ID: 40100) as of late December 

2022. Out of these participants, 28,652 (19.27%) had the positive polymerase chain reaction 

(PCR) test result.  
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Data preprocessing. We first discard the UKB samples for which age or sex was missing. 

Second, we remove samples identified as outliers in heterozygosity and missing rates. We 

then delete samples which were identified as putatively carrying sex chromosome 

configurations that are not either XX or XY. These were identified by looking at average 

log2Ratios for Y and X chromosomes. Next, we remove the participant who are excluded 

from kinship inference process. Finally, we only consider white British participants to limit 

the potential effect of population structure. After standard sample quality controls, there 

remain 28,097 of COVID-19 infected participants in our final analyses, of which 1,656 are 

deaths (5.89%) and 26441 are survivors (Fig 4.A). 

 

Definition of Phenotype. To detect the genetic variants associated with the risk of COVID-

19 related mortality, we define a death as a person who died due to COVID-19 infection and 

a survivor as a person who had the positive polymerase chain reaction (PCR) test result but 

survived. 

 

Demographic variables.  Age and sex (Field ID: 31, 34) are used as confounding variables 

in regression analyses to eliminate potential bias when testing the significance of association 

between super variants and the phenotype (Fig 4 B&C). For sex, we used the genetic sex 

when available, and the self-reported sex when genetic sex was not available. 

 

Genotype data and quality control. We use imputed genotyping data (Field ID: 22801-22822) 

from UK Biobank as genetic predictors in the present study. SNPs with duplicated names 

and positions are deleted. In addition, we remove variants with minor allele frequency (MAF) 

≤ 0.05 and disrupted Hardy-Weinberg equilibrium (p value < 10−6). We retain in total 

8,238,098 SNPs. We next divide the whole SNP dataset into 2734 non-overlapping local 

SNP-sets according to the physical position so that each SNP-set consists of SNPs within a 

segment of physical length 1Mbp (Fig 4.D). 
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Figure 4: (A) Overview of the participants included and the samples and data collected. (B) Sex distribution in both 

survivor and death group. (C) Age distribution in both survivor and death group. The mean of age for death group is around 

75 years old. (D) The SNP dataset are divided into 2734 non-overlapping local sets according to the physical position and 

each set consists of SNPs within a segment of physical length 1 Mbp. 

 

 

Study design 

All analyses are conducted in the UK Biobank unless otherwise stated. We first adopt 

the concept of super variants. In contrast to a gene, which refers to a physically connected 

region of a chromosome, the loci contributing to a super variant can locate in any part of the 

genome. Since the super variant aggregates the strength of distinct signals, it has been shown 

that it is both powerful and stable in association studies [17, 18]. Furthermore, super variants 

take into consideration the potential complex interactions among loci. 

Our design considers the following discovery-validation procedure (Fig. 5). The whole 

dataset is partitioned into two sets, one for discovery and the other for verification with ratio 

of 2:1. A total of 1,104 fatalities and 17,627 survivors are included in the discovery set, 

whereas 8,814 deaths and 552 survivors are included in the verification set. We train the 
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DRGA to find the initial candidate super variants in the first half of discovery set, the logistic 

regression is then applied to the second half of the data from discovery set to find initial 

optimal super variants, permitting us control for Type I error. The SNPs contributing to the 

initial optimal super variants are extracted and aggregated into super variants on the 

verification datasets. We validate their associations with the COVID-19 related mortality 

through logistic regression on the verification set. We use 1.83× 10ିହ  (i.e., 0.05/2734, 

adjusted for the number of super variants) as the Bonferroni-corrected cut-off p-value for 

one super variant on the discovery dataset. A super variant is verified if its logistic regression 

coefficient achieves the level of 0.05 significance on the verification dataset. Statistical 

analyses were conducted with Python 3.9.0. 

 

Figure 5. Overview of discovery-validation procedure. Complete dataset is partitioned into two sets, one for discovery and 

the other for verification. Discovery set is used to find optimal super variants and verification set is used for evaluating the 

selected super variants. 

 
Machine learning algorithms 

 

Overview of DRAG algorithm.  DRAG algorithm consists of three main steps as summarized 

in Fig 6. In the first step, chromosomes are divided into different non-overlapping local 

genomic sets according to their physical positions. In the second step, the CAE is utilized 

within each set to select a subset of k SNPs, where k is user-specified and spans a certain 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2022. ; https://doi.org/10.1101/2022.05.05.22274731doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.05.22274731


range, e.g., (1, 𝐾଴), 𝐾଴ is a hyper-parameter. For each chosen k, we train a CAE model. Later, 

these CAE models will be evaluated based on some criteria, and a best k will be picked.  In 

another words, 𝐾଴ different subsets of SNPs are selected for each genomic set by iteratively 

training CAE. In the third step, a super variant is formed by a subset of SNPs that indicates 

whether any minor allele is present [16]. A total of 𝐾଴ super variants are formed. We use 

logistic regression combined with BIC to identify the optimal super variant among the 𝐾଴ 

super variants with each genomic set. The optimal super variant is the set of SNPs that 

minimizes the BIC value.  

 

Figure 6: Visual representation of the proposed SNP selection approach using DRAG. (A) An overall flowchart of the 

approach for selecting of super variant. (B) CAE model training and finding the selected subset of user-specified SNPs. (C) 

Logistic regression training and finding BIC value. 

Concrete Auto-encoder architectures. We design a deep neural network architecture to learn 

complex relations between genetic variants and phenotypes (Fig 7.A). Let vector 𝒙 ∈ 𝑅௣ be 

a collection of SNPs and y be a phenotype which is a binary random variable taking value 0 

or 1. We first use a user-specified set of k SNPs denoted by z. We have the z = 𝑩୘𝒙, where 

z ∈ 𝑅௞and 𝑩 ≡ [𝜷1 ,.., 𝜷 k] ∈ 𝑅௣×௞  denotes the parameters between SNPs layer and user-

specified subset layer. Thus, 𝑧௜  = 𝜷௜
Tx = 𝑥ଵ 𝛽௜ଵ+...+𝑥௣𝛽௜௣, 𝑖 = 1, … , 𝑘, is referred to as to the 
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𝑖𝑡ℎ  nodes in user-specified subset layer. Decoder layers consist of hidden layers and 

phenotype layers and serve as the reconstruction function. Decoder layers take the outputs z 

from user-specified subset as its inputs. A decoder with h hidden layers is defined as f(z) = 

𝑓(௛)(...𝑓ଶ(𝑓ଵ(z))), where 𝑓(௜)(·) represents the 𝑖𝑡ℎ hidden layers and the output f(z) consists 

of the predicted phenotype for an individual. The loss function for binary classification is 

given by: 

 l = −y logf(z) - (1 − y) (1 − logf(z)) (1) 

In our specific application, we let h = 2, n1 and n2 denote the number of nodes in each layer, 

and Γଵ  ∈ 𝑅௡భ×௞  Γଶ   ∈ 𝑅௡భ×௡మ , b1 ∈ 𝑅௡భ  and b2 ∈ 𝑅௡మ denotes the weights and bias term 

attached to each hidden layer j (j = 1,2). Then the outputs in each hidden layer are 𝑓ଵ (z) = 

ϕ1(Γଵ z +𝒃ଵ) and 𝑓ଶ (z) = ϕ2(Γଶ 𝑓ଵ (z)+ 𝒃ଵ), where ϕj are activation functions of each layer. 

In particular, the activation functions for the hidden layers are ReLU: ϕ(x) = max (0,𝑥). The 

predicted 𝑦෤ can be written as f(z) ≡ 𝑦෤ = ϕ3(Γ3𝑓ଶ (z) + b3), where ϕ3 is the activation function, 

which is typically a logistic function for dichotomous traits, Γଷ ∈ Rn2 and b3 are the weights 

and bias in phenotype layer. Therefore, the optimization function for the data under the truth 

can be written as: 

 𝑅(𝑓) = −
ଵ

௡
∑ 𝑦௜

௡
௝ୀଵ log𝑓൫𝒙𝒋൯ − (1 − 𝑦௝)(1 − log𝑓൫𝒙𝒋൯) (2) 

where n is the total number of subjects and 𝑥௜  and 𝑦௜  are set of SNPs and phenotype of 𝑖𝑡ℎ 

subject, respectively.  

In practice, the user-specified subset layer generally outputs weighted linear combination 

of input variants. We next describe how the user-specified subset layers works, that is, how 

each variant is selected (Fig 7.B). To preform the variant selection, the element of 𝜷 has be 

to either 0 or 1. We now only consider 𝑖𝑡ℎ node in user-specified subset layer and sample p-

dimensions vector 𝜷௜  using the proposed technique in [23, 56, 57]: 

 𝛽௜௝ =
ୣ୶୮ ((୪୭୥ఈೕା௚ೕ)/்)

∑ ୣ୶୮ ((୪୭୥ఈ೟ା௚೟)/்)
೛
೟సభ

 (3) 

where 𝛽௜௝  refers to the 𝑗𝑡ℎ element in 𝜷௜, T ∈ (0,∞) is the so-called temperature parameter, 

α ∈ 𝑅௣ is a p-dimensional vector which all the elements are strictly greater than zero and g 

∈ 𝑅௣ is a p-dimensional vector which all elements are generated from 
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Figure 7: (A) An overall of representation of the Concrete auto-encoder approach. 𝑥 and 𝑦 are the set of SNPs and the 

phenotype, respectively. 𝑧 denotes the set of top identified SNPs and f(i)(·) represents the outputs in each hidden layers. (B) 

A mathematical overview of SNP selection procedure using CAE on SNPs selector layers. (C) The identified SNPs from 

(A) and confounding covariates are then used for logistic regression to facilitate the identification of super variants. 

a Gumbel distribution [58]. In this way, we obtain the 𝜷௜  smoothly approaches the discrete 

distribution as T → 0, outputting one hot vectors with βij = 1 with probability 
ఈೕ

∑ ఈ೟೟
. That is 

lim
்⟶଴

𝛽௜ = [0,0, … 1,0,0, … ,0]୘ . Therefore, the 𝑖𝑡ℎ node in user-specified subset layer outputs 

exactly one of the variants when T → 0. Using the same logic we sample a p-dimensional 

random vector 𝜷  for each of the k nodes to perform variant selection. Note, for the 

initialization of T, Abid [23] claimed that the model is unable to explore different feature 

combinations and converges to a poor local minimum if the initial value of T is set to be 

extremely low. We apply their work and use the varying temperature T(e) = T1(T2/T1)e/E, 

where T(e) is the temperature at epoch number e, and E is the total number of epochs to train 

the model, T1 and T2 are tuning parameters which are usually set to be a high value for T1 and 
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a low value for T2. With such a choice of 𝜷, the optimization function (2) can be minimized 

with respected to 𝜶,𝚪௝  and 𝒃௝  (j = 1,2,3) using the backpropagation algorithm and the user-

specified set of k SNPs are selected afterwards. 

 

Identification of super variants through logistic regression. Since the optimal number of 

SNPs remains unknow, the super variants learned by CAE may be sub-optimal. To resolve 

this issue, we use a model selection technique with BIC in logistic regression, in which the 

target is the phenotype and the main effect estimated by super variant that consists of selected 

SNPs (Fig 7.C). To facilitate the identification of super variants, all possible values for the 

number of nodes in user-specified set layer with observations z are inspected using logistic 

regression. The range of values to consider for the k is greater than 1 and less than 𝐾଴, where 

𝐾଴ ≤ p and p is the total number of variants. For each candidate value k ∈ [1, 𝐾଴], the model 

with smallest BIC value is selected and the corresponding variants aggregated to form the 

optimal super variants. As an illustration, let 𝑧ଵ,...𝑧௞  be the variants selected by CAE and 

𝑧௞തതത denote super variant and 𝑤௜௤  denote the 𝑞𝑡ℎ covariate of subject 𝑖. A general model is 

given by 

 g (𝜇௜) = ∑ 𝛾௤௤ 𝑤௜௤ + ω𝑧ప௞തതതത (4) 
 

where 𝜇௜  = E (𝑦௜), 𝑦௜  is the phenotype for subject 𝑖, and 𝑔 is a link function which is logit 

function for binary classification, 𝑧௞തതത =I (∑ 𝑧௥
௞
௥ୀଵ > 0), and 𝛾௤  and ω are coefficients for 

covariates and genetic variants, respectively. We next apply model (4) on formed super 

variant and confounding variables to find the BIC value denoted by 𝐵𝐼𝐶 . The importance 

of each model can be evaluated based on the magnitude of 𝐵𝐼𝐶. Finally, we choose the super 

variant which consists of kb variants (𝑧ଵ,...,𝑧௞್
) with the smallest B𝐼𝐶 as the optimal super 

variant, where {𝑘௕  : 𝐵𝐼𝐶௞್
 ≤ 𝐵𝐼𝐶௜, 𝑖 = 1 ,.., 𝑘௕ିଵ,𝑘௕ାଵ,...,𝐾଴} 

 

Tuning. There is a negligible impact of tunning parameters, 𝐾଴ , learning rate, the number of 

layers and the number of nodes in each layer on model performance. Especially, the value 

of 𝐾଴  is critical for the success of our algorithm. The range of values to consider for the 𝐾଴  
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for each set is no more than the total number of SNPs in this set. Too large a 𝐾଴  would result 

in unnecessary computation burden, while too small a 𝐾଴  might produce a sub-optimal super 

variant. In this study, we choose 𝐾଴  to be 25 and use 128 and 64 nodes to each hidden layer 

of 2-hidden layers CAE with the Adam optimizer of learning rate of 0.001, which is tuned 

on an independent identically distributed dataset.  

 

Simulation framework 

 

For the simulated data set up, we use the genotype data on Chromosome 22 from the 

UK Biobank COVID-19 dataset because there is no significant signal identified on this 

chromosome in previous studies. We choose 10,000 patients at random.  For the first two 

cases, we randomly sample 500 SNPs from a single SNP set to form the synthetic genetic 

dataset. In the third case, we randomly select 30 SNP sets and 500 random SNPs from each 

set to create the whole synthetic genetic dataset. As a consequence, a super variant 

discovered by both DRAG and TARV is considered to be significant if the p-value is less 

than 0.05 (Case 1 and 2) and 0.05/30 (Case 3), respectively. The disease 𝑦 is generated 

from 𝑦௜  ∼ Bernoulli (pi), and  

Case 1:log ௣೔

ଵି௣೔
= 0.99[𝐼((𝑥௜_஻ଵ + 𝑥௜_஻ଷଵ𝑥௜_஻ହ + 𝑥௜_஻ଷ 𝑥௜_஻ଶ଴ଵ + 𝑥௜_஻ହ 𝑥௜_஻ଶ଴ଵ) > 0) + 𝐼(𝑥௜_஻ସଵଵ > 0) + 𝐼(𝑥௜_஻ସହ > 0)] 

Case 2:log
௣೔

ଵି௣೔
= 0.99[𝐼((𝑥௜_஻ଵ + 𝑥௜_஻ଷ 𝑥௜_஻ହଵ) > 0) + 𝐼((𝑥௜_஻ଵ + 𝑥௜_஻ଷଵ𝑥௜_஻ଶ଴ଵ) > 0) +I(𝑥௜_஻ହଵ > 0) + (𝑥௜_஻ଶ଴ଵ > 0)] 

Case 3:log ௣೔

ଵି௣೔
= 0.99[𝐼((𝑥௜_஻ଵ_ଵ + 𝑥௜_஻ଶ_ଷଵ𝑥௜_஻ଶ_ହଵ) > 0) + 𝐼((𝑥௜_஻ଵ_ଵ + 𝑥௜_஻ଶ_ଷଵ𝑥௜_஻ଷ_ଶ଴ଵ) > 0) +I(𝑥௜_஻ଶ_ହଵ > 0) + (𝑥௜_஻ଷ_ଶ଴ଵ > 0)] 

where 𝑥௜_஻௞is the kth SNP for subject 𝑖 for first two cases and 𝑥௜_஻௝௞  represents the kth SNP 

in SNP set j for subject 𝑖 for the last case, 1 ≤ 𝑖 ≤ 1,0000, 1 ≤ j ≤ 30, 1 ≤ k ≤ 500. Case 1 

includes individual effect expressed as B_411 and B_451. In addition, both cases consist of 

same interaction term of (B_31, B_201) a (B_31, B_51) and (B_51, B_201). There are a 

total of 6 true signals in Case 1 and 4 true signals in Case 2.  We consider an interaction term 

being identified if all true signal SNPs within the same set, such as the two SNPs B_31 and 

B_51 are identified for case 1 at the same time.  For brevity, Case 3 consists of 4 true signals 
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from three different SNP sets with two different structures, individual signal, interacting 

signal with group sizes 2.   

 

Data availability 
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(https://www.ukbiobank.ac.uk). 
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Supplementary information 

Super 
Variants 

SNP Position Minor 
allele 

Major allele OR p-value Nearest gene Prior 

chr2_35 rs62130610 34226429 C A 1.184 4.41×10ିଶ LINC01317  
 

rs10495797 34117511 G A 1.069 1.30×10ିଵ LINC01317   
rs570706090 34981873 T TA 1.129 1.97×10ିଷ LINC01320 [1] 

chr4_24 rs4631028 23868735 T A 1.327 5.35×10ିଷ PPARGC1A  
 

rs6839807 23781974 T C 1.086 1.79×10ିଵ GBA3  
 

rs75544795 23461557 C T 1.105 1.59×10ିଵ GBA3  
 

rs10517008 23272197 C G 1.307 9.86×10ିହ GBA3  

chr4_170 4:169754442_CCCACCCTGCGGAG_C 169754442 C CCCACCCTGCGGAG 1.037 7.24×10ିଵ PALLD  
 

4:169326163_AT_A 169326163 A AT 1.123 1.01×10ିଶ DDX60L  
 

4:169513881_TA_T 169513881 T TA 1.145 2.00×10ିଷ PALLD  
 

rs6553042 169636877 A G 1.111 1.10×10ିଵ PALLD  

chr5_10 rs12517344 9455377 T A 1.143 2.52×10ିଵ SEMA5A  
 

rs72733036 9735819 G A 1.169 7.99×10ିସ LINC02112  
 

rs190052994 9001770 C A 1.354 1.88×10ିଶ LINC02199  
 

rs34723029 9189317 T C 1.071 3.51×10ିଵ SEMA5A   
rs72734818 9838544 T C 1.131 6.95×10ିଶ LINC02112  

 
5:9305797_GTA_G 9305797 G GTA 1.309 8.98×10ିଷ SEMA5A  

 
rs180899355 9584553 C T 1.343 1.13×10ିଷ TAS2R1  [1] 

ch5_138 rs200095891 137588969 GCC G 1.383 3.04×10ିଶ GFRA3  
 

rs17228325 137546642 A G 1.086 3.16×10ିଵ CDC23  
 

rs62381756 137315567 A T 1.129 1.58×10ିଵ FAM13B  
 

rs41294550 137911213 C G 1.178 1.06×10ିଵ HSPA9  
 

rs78295109 137990043 T C 0.959 6.41×10ିଵ HSPA9  
 

rs61537055 137076071 T C 1.163 1.34×10ିଵ KLHL3  
 

rs146667750 137116264 CAA C 1.047 5.31×10ିଵ HNRNPA0  
 

rs539251420 137388271 A C 1.206 5.94×10ିଶ LOC100130172  

ch6_54 6:53464104_GA_G 53464104 G GA 1.136 7.69×10ିଷ LOC101927136  

 rs143431923 53406014 CA C 1.740 1.05×10ିହ GCLC  
 

rs141615401 53247580 C T 1.083 5.84×10ିଵ ELOVL5  
 

rs11967823 53016850 G A 1.203 1.15×10ିଶ GCM1  
 

rs12197493 53236341 T C 1.048 3.72×10ିଵ ELOVL5  

ch6_163 rs77426763 162624682 C T 1.083 1.44×10ିଵ PRKN  
 

rs112013442 162825837 A G 1.133 9.61×10ିଶ PRKN  
 

rs13205685 162279763 A G 1.054 1.99×10ିଵ PRKN  
 

rs9365309 162043005 A G 1.121 2.60×10ିଶ PRKN  
 

rs73032254 162501137 C A 1.085 1.78×10ିଵ PRKN  
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ch7_43 rs73096390 42282365 T C 1.125 8.45×10ିଶ GLI3  
 

rs608045 42940405 G A 1.061 1.39×10ିଵ LINC01448  
 

rs78659910 42182080 C T 1.360 3.31×10ିଷ GLI3  
 

rs12539096 42492769 G A 1.163 1.84×10ିଶ GLI3  
 

rs62457857 42773707 A G 1.140 9.61×10ିଶ LINC01448  
 

rs112043733 42932691 A G 1.144 5.14×10ିଶ LINC01448  

ch7_151 rs76398985 150299940 G C 1.060 2.38×10ିଵ GIMAP4  
 

rs6943608 150827207 A G 1.219 4.80×10ି଺ AGAP3  
 

rs2052130 150548598 A G 1.144 1.91×10ିଶ TMEM176A  
 

7:150989011_CT_C 150989011 CT C 1.037 3.81×10ିଵ SMARCD3  
 

rs118033050 150586206 T G 1.094 2.14×10ିଵ AOC1  
 

rs12540488 150895164 C G 1.052 4.57×10ିଵ IQCA1L  

ch10_6 10:5701622_AC_A 5701622 A AC 1.065 1.74×10ିଵ ASB13  
 

rs3905460 5112190 G A 1.347 1.55×10ିଶ AKR1C3  
 

10:5007398_GTA_G 5007398 G GTA 1.231 6.18×10ିଶ AKR1C1  
 

rs61293789 5108313 T G 1.213 4.72×10ିସ AKR1C3  
 

rs7918112 5621174 G A 1.172 1.42×10ିଶ CALML3  

chr11_114 rs149645066 113585316 A G 1.148 4.46×10ିଵ TMPRSS5  
 

rs117517757 113791826 A C 1.122 9.82×10ିଶ HTR3B  
 

rs11214650 113408657 C T 1.134 2.12×10ିଶ DRD2  
 

rs17115095 113060660 C A 1.134 1.88×10ିଵ NCAM1  [1] 
 

rs73000932 113954513 A G 1.179 3.93×10ିସ ZBTB16 [2] 
 

rs4938008 113224127 T C 1.049 7.21×10ିଵ TTC12  
 

rs56363150 113447787 A G 0.715 5.48×10ିଷ DRD2  

chr13_92 13:91800545_TA_T 91800545 T TA 1.192 8.00×10ିସ LINC00379  
 

rs72638966 91763846 C G 1.258 1.44×10ିଵ LINC00380  
 

rs117152025 91991849 T C 1.145 1.11×10ିଵ LINC00379  
 

rs9523036 91313809 T C 1.034 5.86×10ିଵ LINC01049  
 

rs75068313 91477263 A C 0.999 9.92×10ିଵ LINC01049  
 

rs77578051 91314988 T C 1.183 1.31×10ିଶ LINC01049  
 

rs1325330 91048937 A C 1.031 6.18×10ିଵ MIR622  
 

rs112350997 91839578 G A 1.113 2.51×10ିଵ LINC00379  

chr16_57 rs13306676 56921829 T C 1.159 1.51×10ିଶ SLC12A3  
 

rs141590048 56648194 T C 1.305 1.22×10ିଶ MT2A  
 

rs77356445 56600763 T G 1.018 8.52×10ିଵ MT4  
 

rs146882751 56371699 T C 0.881 4.52×10ିଵ GNAO1  
 

rs7206202 56084079 C G 1.076 7.24×10ିଶ CES5A  
 

rs117501040 56238809 T C 0.979 8.66×10ିଵ GNAO1  
 

rs75985606 56102938 T C 1.075 3.62×10ିଵ CES5A  
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rs12596894 56840027 C T 1.110 5.70×10ିଶ NUP93  

 
rs12444694 56920104 A G 1.183 6.72×10ିଷ SLC12A3  

chr17_49 rs55649994 48355968 T C 1.193 2.27×10ିଶ TMEM92  
 

rs79806280 48005420 A G 1.071 5.07×10ିଵ TAC4  
 

rs35785126 48037287 G C 1.218 2.54×10ିଷ TAC4  
 

rs113706230 48281439 A G 1.104 3.95×10ିଵ COL1A1  
 

rs552888360 48685777 G GT 1.321 1.32×10ିଶ CACNA1G  

chr20_15 rs8123267 14169136 C T 1.126 1.59×10ିଵ MACROD2  
 

rs73096611 14467744 T C 1.177 2.13×10ିଵ MACROD2  
 

20:14358660_AT_A 14358660 A AT 1.042 6.79×10ିଵ MACROD2  
 

rs73093934 14981772 A T 1.141 3.74×10ିଵ MACROD2  
 

rs79453392 14413334 A G 1.194 1.21×10ିଵ MACROD2  
 

rs62207605 14302848 A T 1.092 7.79×10ିଶ MACROD2  
 

20:14325917_GTTATTA_G 14325917 G GTTATTA 1.413 2.33×10ିଶ MACROD2  
 

rs143540982 14089726 G A 1.236 1.78×10ିଶ MACROD2  

 
Table S1: Corresponding SNPs in verified super variants with DRAG. The chr i_j represents the super variant in the jth set 

of the ith chromosome; SNP, the rsID of the variant, where available; Prior, known from prior publications addressing 

common genetic variation linked to COVID-19; OR: odds ratio. 
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