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ABSTRACT 

Background: Intracerebral hemorrhage (ICH), the most fatal form of stroke, has an estimated 

heritability of 29%. Applying a meta-scoring approach, we developed a genomic risk score for 

ICH and determined its predictive power in comparison to standard clinical risk factors. 

Methods: Using a meta-analytic approach, we combined genome-wide association data from 

individuals of European ancestry for ICH and ICH-related traits in a meta-genomic risk score 

(metaGRS) consisting of 2.6 million variants. We tested associations with ICH and the predictive 

performance of the metaGRS in addition to clinical risk factors in a held-out validation dataset 

(842 cases and 796 controls). Furthermore, we tested associations with risk of incident ICH in 

the population-based UK Biobank cohort (486,784 individuals, 1,526 events, median follow-up 

11.3 years). 

Results: One SD increment in the metaGRS was significantly associated with 45% higher odds 

for ICH (OR 1.45; 95%CI: 1.30-1.63) in age- and sex-adjusted models and 31% higher odds for 

ICH (OR: 1.31, 95%CI: 1.16-1.48) in models further adjusted for clinical risk factors. The 

metaGRS identified individuals with almost 5-fold higher odds for ICH in the top score percentile 

(OR: 4.83, 95%CI: 1.56-21.2). Predictive models for ICH incorporating the metaGRS in addition 

to clinical predictors showed superior performance compared with clinical risk factors alone (c-

index: 0.695 vs. 0.686). The metaGRS showed similar associations for both lobar and non-lobar 

ICH, which were independent of the known APOE risk locus for lobar ICH. In the UK Biobank, 

the metaGRS was associated with higher risk of incident ICH (HR: 1.15, 95%CI: 1.09-1.21). The 

associations were significant within both a relatively high-risk population of users of 

antithrombotic medications, as well as among a relatively low-risk population with a good control 

of vascular risk factors and no use of anticoagulants. 

Conclusions: We developed and validated a genomic risk score that predicts lifetime risk of 

ICH beyond established clinical risk factors among individuals of European ancestry. Whether 
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implementation of the score in risk prognostication models for high-risk populations, such as 

patients under antithrombotic treatment, could improve clinical decision making should be 

explored in future studies. 

 

Key words: intracerebral hemorrhage, hemorrhagic stroke, genetics, genomic risk score 

 

Non-standard Abbreviations and Acronyms 

ICH intracerebral hemorrhage 

GWAS genome-wide association study 

GRS genomic risk score 

SNP single nucleotide polymorphism 

GOCHA Genetics of Cerebral Hemorrhage on Anticoagulation  

GERFHS Genetic and Environmental Risk Factors for Hemorrhagic Stroke 

EUR/ISGC European member sites contributing to the International Stroke Genetics Consortium  

UKBB UK Biobank 

QC quality control 

PC principal component 

HRC Haplotype Reference Consortium  

MAF minor allele frequency 

LD linkage disequilibrium 

AUC area under the receiving-operating characteristics curve  

CAD coronary artery disease 
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AIC Akaike Information Criterion  

HES hospital episode statistics  

SBP systolic blood pressure 

DBP diastolic blood pressure 

PP pulse pressure 

WMH white matter hyperintensities 

CKD chronic kidney disease 

eGFR estimated glomerular filtration rate 

UACR urine albumin-to-creatinine ratio 

TC total cholesterol 

TG triglycerides 

LDL low-density lipoprotein 

HDL high-density lipoprotein 

T2D type 2 diabetes mellitus 

HbA1c hemoglobin A1c 

BMI body mass index 

WHR waist-to-hip ratio 

SVS small vessel stroke 

EA educational attainment 
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INTRODUCTION 

Intracerebral hemorrhage (ICH) is the most devastating type of stroke. Although it accounts for 

10-20% of all acute cerebrovascular events, it is responsible for almost 50% of stroke-related 

morbidity and mortality.1 Given the lack of effective treatments and the devastating outcome of 

ICH, primary and secondary prevention is critical. As with many complex human diseases, ICH 

risk is comprised of both environmental and genetic factors. Early genome-wide association 

studies (GWAS) of ICH estimated a heritability of 29% and revealed a polygenic architecture,2, 3 

whereas large-scale GWAS for established risk factors for ICH, such as hypertension and 

smoking, have identified hundreds of associated genomic loci that cumulatively explain a large 

proportion of the variance of these traits.4-9 

Beyond defining heritability and providing insight into biological mechanisms, GWAS findings 

have begun to show promise for disease risk prediction. Genomic risk scores (GRS), 

biomarkers representing the aggregated effect of many genetic variants on a given trait, have 

been proposed as powerful tools for identifying individuals at high risk for complex traits, with a 

predictive performance at times comparable to that of rare monogenic mutations.10 A GRS for 

ICH could have clinical utility in decision making algorithms, such as for complementing risk-

benefit calculation tools in patients prescribed antithrombotic medications. Despite 

acknowledged limitations, pertaining mainly to translation of the accuracy of GRS findings from 

the cohort- to the individual-based level, as well as sex- and ancestry-specific predictive 

differences,11, 12 if constructed according to best practices,12-15 an ICH GRS could have 

important implications for patient selection for clinical trials. However, as opposed to other 

vascular diseases,10 efforts to construct a GRS for ICH lag behind, likely because of the lower 

statistical power in available datasets due to the relative rarity of the disease.  

Recent advances in analytical approaches offer more efficient alternative methods for GRS 

construction that allow to utilize data from multiple GWAS in order to overcome power 
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limitations of genomic datasets of rare diseases.16, 17 Based on the assumption that the majority 

of genetic variants exert their effects on a given disease by affecting intermediate traits,  

constructing a GRS based on genomic data of traits in the causal pathway of the disease of 

interest can improve both power and prediction.16 In this study, we sought to investigate whether 

combining genetic liability for possible ICH risk factors and traits reflecting pathologies 

underlying ICH into a meta-Genomic Risk Score (metaGRS) could improve our ability to predict 

ICH events among individuals of European ancestry. To further explore the potential utility of 

such a genomic score for clinical risk prediction, we also assessed whether the metaGRS 

improves ICH risk prediction beyond established clinical risk factors. 

 

METHODS 

Data availability statement 

The data that support the findings of this study will be available from the corresponding author 

upon reasonable request. Single nucleotide polymorphism (SNP)-specific weights for the ICH 

metaGRS will be made publicly available at The Polygenic Score (PGS) Catalog 

(https://www.pgscatalog.org). 

 

Study design and participating studies 

As our primary data source, we used genotype and phenotype data from 1,861 ICH cases and 

1,722 ICH-free controls from three independent GWAS datasets: the North American (USA) 

multi-center Genetics of Cerebral Hemorrhage on Anticoagulation (GOCHA) study, a 

prospectively collected case-control study of European ancestry subjects aged > 55 years with 

primary ICH18; the European member sites contributing ICH cases and controls to the 

International Stroke Genetics Consortium (EUR/ISGC); and the Genetic and Environmental Risk 
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Factors for Hemorrhagic Stroke (GERFHS) study, a prospectively collected case-control study 

of subjects > 18 years of age with spontaneous ICH in the Greater Cincinnati region19. GOCHA 

and EUR/ISGC were used as the training datasets, whereas GERFHS was our primary 

validation dataset. Furthermore, we performed an external validation of the derived score for 

incident ICH events in the UK Biobank (UKBB) cohort, over a median follow-up of 11.3 years 

among 486,623 individuals aged 40-69 years at recruitment without a prior history of ICH.20 The 

Institutional Review Boards (IRB) of Massachusetts General Hospital, Mayo Clinic (FL), 

University of Virginia Health System, University of Florida College of Medicine, University of 

Michigan Health System, Beth Israel Deaconess Medical Center approved the GOCHA study.21 

IRBs of 16 hospital systems within a 50-mile radius from the University of Cincinnati approved 

the GERFHS study.19 The information used in the Hospital del Mar Intracerebral Hemorrhage 

(HM-ICH) study was collected from the prospective clinical protocols of the Hospital del Mar, 

which fulfilled the local ethical guidelines. The identities of the individual patients were kept 

anonymous. Therefore, patients signed no specific informed consent.22 For the Vall d’Hebron 

Hospital ICH (VVH-ICH) study, informed written consent was obtained from all subjects, and the 

local Ethics Committee approved the study.23 The ethics committee of the University Hospital, 

Krakow, Poland approved the Jagiellonian University Hemorrhagic Stroke (JUHS) Study.24 The 

Lund Stroke Register (LSR) study in Lund, Sweden was approved by the Lund University Ethics 

Committee. Informed consent was obtained from the prospectively included patients (or in some 

cases from next of kin).25 

 

Ascertainment of cases and controls 

Primary ICH cases in all studies were recruited through participating hospitals and were defined 

as a new and acute neurological deficit with confirmation through computed tomography or 

magnetic resonance imaging and without evidence of trauma, brain tumor, hemorrhagic 

transformation of a cerebral infarction, vascular malformation, or any other cause of secondary 
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ICH. ICH-free controls were recruited from the same populations through inpatient recruitment, 

ambulatory centers in the local communities, and random digit dialing in the same population or 

population-based cohorts. A detailed description of case and control ascertainment and 

inclusion and exclusion criteria for the participating studies is described in the Supplemental 

Material. Details about sample recruitment as well as about genotyping and quality control (QC) 

of the individuals in the three studies have been previously described.2, 26, 27 For the purposes of 

the current study, we excluded patients with missing data on ICH status, age, sex and principal 

components (PCs) reflecting ancestry. We included only primary ICH cases, after applying 

previously described methods of enrollment and inclusion/exclusion criteria.26  

 

Imputation of main GWAS datasets 

Samples in the training and validation GWAS datasets of ICH were separately imputed using 

the Haplotype Reference Consortium (HRC) reference panel on the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu). We retained only SNPs with minor allele frequency 

(MAF) >0.01 and high imputation quality (R2 >0.4). We excluded multi-allelic variants according 

to previously published methodologies.3 In the UKBB, we used the version 3 genotypes, which 

were genotyped on the UKB Axiom array and imputed to the HRC.28 To examine the metaGRS 

in the UKBB, we considered only genotyped or HRC-imputed SNPs with imputation INFO > 

0.01 and MAF >0.001. 

 

Trait-specific genomic risk scores (GRS) construction  

We used GOCHA (436 ICH cases and 405 controls) and EUR/ISGC (577 ICH cases and 523 

controls) as training datasets to develop GRS for 21 traits associated with ICH risk. We 

leveraged publicly available GWAS summary-level data from international consortia, as detailed 

in Supplementary Table 1.29-42 For all traits, we used data from European-only populations and 
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excluded duplicate and ambiguous AT/GC SNPs and SNPs with MAF≤1%. No GOCHA or 

EUR/ISGC cases or controls were included in the selected studies. For each trait, we generated 

a range of candidate GRS based on a combination of different r2 (0.1, 0.3, 0.5) and p-value 

thresholds (1x10-8 to 1) within each derivation dataset separately, using the association 

estimates (betas for each trait) as weights and a linkage disequilibrium (LD)-driven clumping 

procedure (European 1000 Genomes phase 3 was our reference LD panel).43, 44 Then, we 

merged the two training datasets and standardized (zero mean, unit standard deviation) the 

candidate GRS over the entire training set. Next, we selected the best-performing GRS for each 

trait (optimized GRS), based on the highest area under the receiving-operating characteristics 

curve (AUC) of a logistic regression model for ICH that included the candidate GRS, age, sex 

and the first two principal components of population structure as predictors. In case two or more 

models resulted in the same AUC, we chose the GRS with the largest effect size estimate for ICH 

risk, irrespective of directionality of effect (Supplementary Tables 2-22). This procedure resulted 

in a single optimized GRS representing each trait (Supplementary Table 23). 

 

Construction of the main ICH meta-Genomic Risk Score (metaGRS)  

In order to generate an ICH metaGRS, we followed a standard meta-analytic approach, creating 

a weighted average of the trait-specific optimized GRS (Supplementary Table 23).45, 46 Similar 

approaches have previously been used for ischemic stroke as well as for coronary artery 

disease (CAD).45, 46 We used GOCHA and EUR/ISGC to calculate logORs of the optimized GRS 

with ICH status (adjusted for age, sex, and two PCs) and pairwise Pearson correlations (ρ) 

between all GRS. Pooled logORs and correlations were generated after meta-analyzing under 

inverse-variance random-effects models across the two training datasets. We then used 

GERFHS (848 ICH cases and 794 ICH-free controls) as our validation dataset, where we 
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calculated the ICH metaGRS as a weighted average of the standardized scores using the 

following formula:45, 46  

ICH metaGRS� � 
���� � 
���� � � � 
������

�
�
� � 
�

� � � � 
�� 
� � 2
�
���,� � � �  2
�
����,�� �  2
�
����,��

 

where ��� , ��� , … , ����   are the 21 different optimized GRS for the �-th individual in the GERFHS 

validation dataset, respectively; 
�, 
�, … , 
�� are the meta-analyzed logORs of each score with 

ICH status in the training datasets; and ��,� are the meta-analyzed correlations between the �-th 

and j-th scores in the training datasets. 

 

Sensitivity analyses with alternative metaGRS 

To uncover any underlying structure of groups of GRS affecting ICH risk, we performed 

exploratory maximum-likelihood factor analysis on the correlation matrix generated from the 

meta-analyzed Pearson correlations among the optimized GRS in the training datasets. To 

derive the appropriate number of factors, we used the Optimal Coordinate method as a non-

graphical solution to the Cartell’s scree test.47 We applied varimax rotation to make the identified 

factors orthogonal, using a loading threshold of 0.4 for GRS inclusion.  

In order to explore how inclusion and weighting of different GRS affect ICH risk, we constructed 

different versions of the metaGRS in the primary validation dataset, based on complementary 

GRS selection and weighting procedures in the training datasets. (‘causal metaGRS’, ‘factor 

metaGRS’, ‘stepwise metaGRS’, ‘lasso metaGRS’). First, we generated a metaGRS restricted 

to GRS of traits with prior significant associations with ICH risk in published studies, through 

either Mendelian Randomization (MR) or GRS analyses (‘causal metaGRS’).48-52 Next, we 

generated a metaGRS that contained only the GRS with the highest loadings within each 

identified factor from our exploratory factor analysis (‘factor metaGRS’). For these two metaGRS 
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versions, the GRS weights corresponded to the univariate meta-analyzed logORs of the 

respective GRS in the training datasets. Then, using the R package ‘MASS’ 53, we employed 

stepwise logistic regression of ICH status on the 21 optimized GRS in the merged training 

datasets, using the Akaike Information Criterion (AIC) to identify the best-performing model 

containing the least number of GRS (‘stepwise metaGRS’). Additionally, we performed lasso 

regression using the R package ‘glmnet’ to model the associations between the 21 optimized 

GRS and ICH risk in the merged training datasets 54. Using 10-fold cross-validation in the 

merged training dataset, we estimated the value of lambda (coefficient shrinkage) that 

minimized the cross-validated prediction error rate (lambda = min), in order to find the most 

accurate model from the set of the 21 optimized GRS. Using this lambda value, we generated 

the next version of the metaGRS (‘lasso metaGRS’). For the last two metaGRS versions, the 

GRS weights corresponded to the adjusted and penalized logORs of the stepwise and lasso 

regressions, respectively, in the merged training datasets. All pairwise Pearson correlations 

among GRS for all metaGRS versions are estimates from random-effects meta-analysis across 

the training datasets. 

 

ICH metaGRS performance and clinical evaluation in GERFHS  

We explored the metaGRS performance in the validation dataset and its comparison with 

clinical predictors. The primary metaGRS and its alternative versions were entered as linear 

predictors (1-standard deviation (SD) increment) in logistic regression models for ICH in the 

primary validation dataset. We performed several complementary analyses to investigate the 

association between the metaGRS and ICH. First, we assessed the odds of ICH in 

progressively higher metaGRS distributions, relative to the remainder of the sample. Next, we 

split the validation dataset into similar-sized metaGRS percentile groups (0%-15%, 15%-30%, 

30%-45%, 55%-70%, 70%-85%, 85%-100%) and assessed the odds of ICH relative to the 
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middle decile of the distribution (45%-55% group). To investigate potential deviations from 

linearity, we assessed how the odds of ICH changes in 5%-metaGRS-percentile increments, 

relative to the lowest 0%-10% of the metaGRS distribution. All analyses were adjusted for age, 

sex, and two PCs.55  

In order to evaluate the potential clinical utility of the metaGRS, we first assessed whether the 

metaGRS is independently associated with ICH risk in a multivariable logistic regression model 

controlling for established clinical risk factors for ICH (BMI, history of ischemic stroke, 

hypertension, diabetes, high cholesterol, smoking history, alcohol use, anticoagulant medication 

use).56, 57 Four cases were excluded from this analysis – three had a previous ICH and one ICH 

case was a cavernoma. To restrict our clinical variables to those most strongly associated with 

ICH, we performed backward elimination on the logistic regression model containing the clinical 

risk factors alone. Factors with p<0.1 were included in the final restricted clinical model.  To 

assess whether ICH risk modeling improves with the addition of genomic risk information, we 

calculated the AIC of the model containing only the clinical variables (‘All clinical’ model), the 

AIC of the model containing the clinical variables and the metaGRS (‘All clinical + metaGRS’ 

model), and compared the two nested models, utilizing the likelihood ratio test (LRT). These 

models also included age, sex, and 2 PCs as baseline predictors. In an alternative model, we 

explored whether the metaGRS is associated with ICH risk independently of APOE genotype, a 

known risk locus for lobar ICH.58, 59 APOE genotype was modeled as two variables, ε2 and ε4, 

coded for allele counts (0, 1, 2) in additive models referent to the wildtype ε3 allele.59 We 

explored potential interactions between the two APOE variables and the metaGRS. Finally, in 

order to evaluate and compare the predictive performances of the clinical variables with that of 

the metaGRS, we calculated the c-index and 95% confidence interval (CI) of models including 

the clinical risk factors separately, the ‘All-clinical’ model, and the ‘All-clinical + metaGRS’ 

model. The reference model contained only age, sex, and two PCs, and all models contained 

these variables as baseline predictors. 95% CIs were calculated after bootstrapping over 1,000 
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iterations in the derivation dataset. We generated percentile confidence intervals in 

bootstrapping. Similar analyses were performed for the different versions of the metaGRS. 

Complementary analyses were performed for patients with lobar and non-lobar ICH separately 

to assess whether the metaGRS was more predictive for specific subgroups of ICH patients.  

External validation of the metaGRS in UKBB  

Lastly, we sought to externally validate the metaGRS in the UKBB, after calculating the 

metaGRS per variant score. To examine the derived score in a population-based setting, we 

calculated the metaGRS for participants without a history of ICH in the UKBB and explored 

associations with incident ICH events over follow-up. To calculate the metaGRS for each 

participant in the UKBB we transformed the per-GRS logOR weights to a per-variant score via a 

weighted sum using the following formula:16 

metaGRS� � � ����
���� � � �  
�������
�

���

 

where 
�, … , 
��   are the standardized logORs (per-SD increment) of the 21 different optimized 

GRS for ICH in the training datasets (Supplementary Table 23), ���, … , ����  are the variant-

specific effect sizes (from the GWAS summary statistics) for the j-th variant in each of the 

optimized GRS (�� was set to 0 for variants not included in the respective GRS), and ��� is the 

imputed or genotyped dose for the �-th individual’s j-th variant in the UKBB dataset. This 

resulted in a total of 2.6 million SNPs to be included in the final metaGRS.  

The records of UKBB participants were linked with inpatient hospital episode statistics (HES), 

primary general practitioner data, and death registry for longitudinal follow-up. For the current 

study, we explored incident ICH, which was captured by the diagnostic algorithm for stroke in 

the UKB (detailed here: 

https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/alg_outcome_stroke.pdf) up to December 

2018. For events occurring after 2018 up to the end of follow-up (June 2020), we captured ICH 
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events by the respective ICD-9 and ICD-10 codes in HES or death registry data (ICD-9 431.X 

and ICD-10 I61). 

We next explored the effect of the metaGRS (per-SD increment) on incident ICH in a Cox 

proportional hazards model adjusted for age, sex, the first 10 PCs, genetic ancestry (White vs 

Other), kinship, and genotyping chip (UKB vs BiLEVE). We repeated this analysis in a high-risk 

group of individuals reporting use of antiplatelet and/or anticoagulant agents at baseline, as well 

as among a low-risk group with well-controlled vascular risk factors at baseline (blood pressure 

<140/90 mmHg, hemoglobin A1c <6.4%, no smoking, LDL-cholesterol <130 mg/dL, and no 

reported use of anticoagulant agents). Because several of the trait-specific GRS were 

constructed based partly on data derived from UKBB (Supplementary Table 1), we did not 

perform analyses including additional clinical predictors in order to avoid bias. To account for 

death as a potential competing risk, we applied the Fine-Gray subdistribution hazard 

approach.60  

The UK Biobank has approval from the Northwest Multi-Center Research Ethics Committee. All 

participants provided written informed consent. We accessed the data following approval of an 

application by the UK Biobank Ethics and Governance Council (application # 36993). 

Analyses were performed using R software version 3.6.1 (R Foundation for Statistical 

Computing)61 and SAS 9.4 (Cary, NC). Two-tailed p-values<0.05 were considered statistically 

significant.  

 

RESULTS 

Construction of a metaGRS for ICH in the training dataset 

A schematic of our study design is provided in Figure 1. Following quality checks, we 

developed 21 optimized GRS for ICH-associated traits on the basis of associations with ICH in 
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GOCHA and EUR/ISGC. The numbers of variants included in these GRS ranged from 213 to 

1,148,192 (Supplementary Table 23). There was a high degree of correlation among the 

different trait-specific GRS in the training datasets (Figure 2A). In an attempt to clarify the 

correlation structure between the trait-specific GRS, we applied the Optimal Coordinate solution, 

which resulted in five orthogonal factors explaining 38.4% of the variance in the GRS correlation 

matrix (Supplementary Figures 1-2, Supplementary Tables 24-25). Applying a loading 

threshold of >0.4 resulted in factor 1 broadly representing cardiometabolic factors [waist-hip 

ratio (WHR), body mass index (BMI), smoking, HbA1c, high density lipoprotein (HDL), urine 

albumin-to-creatinine ratio (UACR), educational attainment (EA)]; factor 2 representing blood 

pressure (BP) traits (systolic and diastolic BP); factor 3 representing lipid traits [total cholesterol 

(TC) and low-density lipoprotein (LDL)]; factor 4 representing sleep traits (sleep duration and 

insomnia); and factor 5 representing pulse pressure.  

Figure 2B depicts the association estimates of the optimized GRS in the meta-analysis of the 

two training datasets, which we then used as weights to construct the metaGRS for ICH in the 

validation set (Supplementary Table 23). To avoid over-fitting and explore whether our 

approach for constructing the primary metaGRS influences associations with ICH, we also 

constructed alternative versions of the metaGRS following different GRS inclusion and 

weighting procedures: a ‘Causal metaGRS’ included 8 GRS, a ‘Factor metaGRS’ included 6 

GRS, a ‘Stepwise metaGRS’ included 9 GRS with adjusted weights, and a ‘Lasso metaGRS’ 

included 20 GRS with penalized weights (Supplementary Figure 3, Supplementary Table 25). 

 

Associations between the metaGRS and ICH in the validation dataset 

We explored associations between the derived metaGRS and ICH risk in GERFHS. The 

demographic and clinical characteristics of ICH cases and ICH-free controls in GERFHS are 

presented in Table 1. After adjusting for age, sex, and two PCs, a one SD increase in the 
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metaGRS was associated with 45% higher odds of ICH (OR 1.45; 95% CI: 1.30-1.63; p=6.2x10-

11). Patients in higher thresholds of the metaGRS distribution were at progressively higher risk 

for ICH (Figure 3). Notably, patients in the top 2.5% and 1% had substantially increased odds of 

ICH, respectively, compared to the rest of sample (OR 3.72; 95% CI: 1.84-8.33; p=5.77x10-4, 

and OR 4.83; 95% CI: 1.56-21.2; p=0.01, respectively). We observed an expected gradual 

change in ICH odds when moving to either the higher or lower ends of the metaGRS distribution 

from the middle decile (Supplementary Figure 4). Modeling risk of ICH relative to the bottom 

10% of the metaGRS loading did not reveal any significant non-linear effects (Supplementary 

Figure 5).  

In sensitivity analyses comparing ICH odds between the primary and the alternative metaGRS, 

we overall found that the primary metaGRS achieved the best performance, indicating that 

information contained within GRS that were excluded from the restricted metaGRS versions 

contributed independently to ICH odds (Supplementary Figure 6). However, these metaGRS 

with penalized and adjusted weights still demonstrated significant associations with ICH risk, 

albeit with weaker effect size estimates and lower predictive performances (Supplementary 

Figure 6 and Supplementary Table 26). 

 

Predictive performance of metaGRS for ICH in comparison with clinical risk factors 

We next explored the performance of the metaGRS with established clinical risk factors for 

predicting ICH in GERFHS. We performed backward elimination to identify the optimal set of 

clinical risk factors to be included in the model and found history of ischemic stroke, 

hypertension, diabetes, high cholesterol, heavy alcohol use, anticoagulant use, and education 

less than high school to be most strongly associated with ICH risk (Supplementary Table 27). 

After adjusting for these clinical risk factors in a multivariable logistic regression model, the 

metaGRS continued to be independently associated with ICH risk (OR = 1.31 per one standard 
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deviation of the metaGRS; 95% CI 1.16 – 1.48 p < 0.0001). Adding the metaGRS to a model 

including the clinical risk factors significantly improved the model fit (AIC of clinical predictors = 

1989.65, AIC of clinical predictors + metaGRS = 1972.86, LRT = 4x10-5). 

Comparing the c-indices of models including individual clinical risk factors, the metaGRS 

showed comparable predictive performance to hypertension, and higher than the remaining 

clinical risk factors apart from education (Figure 4). Importantly, the c-index of a model including 

the entire set of clinical risk factors (C: 0.686, 95%CI: 0.663-0.718) increased after including the 

metaGRS in the model (C: 0.695, 95%CI: 0.673 – 0.727, Figure 4). Similar results were 

observed for the alternative metaGRS versions, which were each independently associated with 

ICH and contributed significantly to clinical risk models (Supplementary Figure 7 and 

Supplementary Table 28). 

Further, we explored whether the metaGRS is differentially associated with location-specific 

subtypes of ICH related to different underlying pathologies. Lobar and non-lobar characteristics 

as well as significant clinical predictors for location-specific ICH subtypes are presented in 

Supplementary Tables 29-32. We found higher odds of both non-lobar (OR 1.37; 95%CI: 1.18-

1.58; p=2.4x10-5) and lobar ICH (OR 1.32; 95%CI: 1.13-1.54; p=5x10-4) per one SD increment in 

metaGRS following adjustment for clinical risk factors (Table 2). Inclusion of the metaGRS to 

models already adjusted for the entire set of clinical risk factors led to significant decreases in 

AIC of the models for each subtype (Table 2).  

When exploring in the same model the metaGRS and APOE genotype, a known risk locus for 

ICH, we found that both were independently associated with the odds of ICH (Supplementary 

Table 33). The metaGRS was associated with the odds of both lobar and non-lobar ICH when 

adjusting for APOE genotype, whereas the ε2 and the ε4 alleles of the APOE locus were 

associated only with the odds of lobar ICH. There was no evidence of an interaction between 

the two genomic markers (Supplementary Table 33). 
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Validation of the metaGRS in the UK Biobank population 

As a final step, we explored associations between the metaGRS and incident ICH risk in a 

general population sample. In the prospective population-based UKBB cohort, a total of 486,623 

participants without a history of ICH (mean age 56.5 ± 8.1 years, 54.2% females), were 

followed-up for a median of 11.3 years (IQR: 10.6-11.1 years). The baseline characteristics of 

the study participants are presented in Table 3. We again found the metaGRS to be associated 

with a higher risk of incident ICH (HR per SD increment: 1.15, 95%CI: 1.09-1.21, p=7x10-7) in a 

Cox proportional hazards model adjusted for age, sex, the first 10 PCs of population structure, 

kinship, genotyping chip, and genetic ancestry. Accounting for death as a competing risk with 

the subdistribution hazard approach also did not substantially alter the results (HR per SD 

increment of metaGRS: 1.14, 95%CI: 1.08-1.20, p=4x10-6).  Figure 5A presents the Kaplan-

Meier curves with age as the time variable for individuals at upper, median, and lower quantiles 

of the metaGRS. We explored whether the metaGRS retains association with incident ICH risk 

among groups of patients with different levels of baseline risk. Within both high-risk individuals 

using antithrombotic medications at baseline, as well as low-risk individuals with well-controlled 

vascular risk factors at baseline and no antithrombotic medications, the metaGRS retained 

association with incident ICH risk (Figures 5B and 5C). 

 

DISCUSSION 

We developed a genomic risk score for ICH in a training dataset of 1,013 cases and 928 

controls based on GWAS data for 21 ICH-related traits. We found the derived metaGRS to be 

significantly associated with the odds of ICH in an independent validation dataset of 842 ICH 

cases and 796 ICH-free controls. The metaGRS was independent of traditional clinical risk 

factors of ICH and improved model performance in prediction of ICH. Furthermore, the score 
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was significantly associated with incident ICH risk in a population-based cohort study of 480,000 

individuals followed-up for a median of 11 years (1,500 incident ICH events). Our results provide 

important insights into genomic prediction for ICH and could have implications for clinical 

practice. 

First, the metaGRS identified individuals at very high risk for ICH. For example, individuals at 

the top percentile had almost 5-fold increased odds for ICH, as compared to the rest of the 

population. While it remains to be clarified how these individuals would benefit from potential 

primary preventive interventions, this information could be useful both for screening for 

hypertension, the main clinical risk factor for ICH, and early initiation of antihypertensive 

treatment, as well as for decision making when considering initiation of antiplatelet or 

anticoagulation treatments that might increase ICH risk. These risk stratification strategies 

based on genomic information are increasingly important as millions of persons in the US and 

around the world have been genotyped by direct-to-consumer genotyping companies. 

Second, the metaGRS improved risk discrimination for ICH when compared to classical clinical 

predictors. Specifically, it was associated with ICH risk independently of vascular risk factors 

and was found to have a predictive value superior to all predictors except for education. The 

predictive power of the metaGRS was comparable to that of hypertension, the most well-

established clinical risk factor for ICH that explains the most variance in the trait.62 These 

findings support the incorporation of genetic information into clinical tools aiming to quantify ICH 

risk within specific patient subgroups. A post hoc analysis of trial data showed that among 

patients with atrial fibrillation and a CHA2-DS2-VASc score of 2, a high genomic risk score for 

ischemic stroke led to an absolute ischemic stroke risk equivalent to those with a higher score.63 

Whether integration of a genomic risk score for ICH in such analyses could lead to a more 

precise assessment of the risk-benefit ratio for specific patients remains to be determined. 

Along these lines, the several clinical trials currently evaluating anticoagulation as a secondary 
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prevention strategy after ICH constitute a unique opportunity for genomic-based risk-

stratification, as a portion of them have built-in biobanks that are collecting DNA samples. 

Third, despite its rarity (0.3% in the UKBB sample), we found the metaGRS to be significantly 

associated with prospective ICH risk in the general population. The metaGRS was associated 

with a higher risk of ICH even among individuals with evidence-based control of relevant risk 

factors, who were not actively smoking, had blood pressure of 140/90 mmHg or less, no 

evidence of diabetes, normal BMI, and who reported no use of anticoagulants. While such 

analyses are restricted by lack of power, our results suggest that for specific individuals with a 

high genetic risk, the recommended treatment targets for modifiable risk factors might not be 

sufficient for primary ICH prevention. The importance of this observation lies on the fact that the 

genomic information is available long before vascular risk factors are present and could thus be 

used for earlier risk stratification in otherwise low-risk individuals. Concomitantly, the metaGRS 

was also associated with a higher risk of ICH even among a high-risk group of individuals using 

antithrombotic medications, indicating its potential utility among a relevant group of patients for 

whom bedside calculation of ICH risk might be particularly relevant to clinical care. 

Our study has limitations. First, the sample sizes of the available genetic datasets for ICH are 

limited, as compared to other clinical endpoints. This introduces uncertainty to the association 

estimates between the genetic variants and ICH risk, which were used to construct the 

described metaGRS, and thus impacts negatively on its predictive performance. Indeed, when 

compared with metaGRS for other traits that have been developed in larger datasets, such as 

for coronary artery disease and ischemic stroke,16, 64 the association with incident ICH events is 

weaker. Second, ICH is a phenotypically heterogeneous disease, with the most common 

etiologies being hypertensive small vessel disease (typically in non-lobar locations) and cerebral 

amyloid angiopathy (typically in lobar locations). To maximize the power of our approach, we 

have pooled cases, which could have negatively impacted the predictive performance for 
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specific ICH etiologies. While our score was predictive for both non-lobar and lobar ICHs, 

developing etiology-specific scores might be of more relevance for specific clinical scenarios. 

Third, while the metaGRS showed significant associations with risk of incident ICH in the UKBB, 

we could not explore its effects in concert with other clinical predictors, because the metaGRS 

was generated using associations with these predictors in datasets including data from the 

UKBB. Therefore, independent validation either of a score trained in an entirely UK Biobank-

independent dataset or of the described metaGRS in another external cohort would be 

necessary. Fourth, the metaGRS was constructed solely on the basis of data from individuals of 

European genetic ancestry, and may thus not be applicable for individuals of other ancestries. 

Larger multi-ethnic GWAS studies of ICH currently underway will facilitate the generation of 

ancestry-specific GWAS datasets. Last, overarching limitations and challenges still exist on the 

generation and validation of GRS across disease states, which apply to our metaGRS as well. 

Some of them include the possible differences in sex-specific predictive performances, the 

translation of GRS estimates from the cohort- to the individual-specific level which has been 

suggested to introduce additional variability, as well as the heterogeneity of the different 

methods for GRS construction which could ultimately hinder clinical application.11, 12 Towards 

that end, efforts are currently underway to standardize and delineate procedures surrounding 

GRS construction and reporting, such that prediction models incorporating GRS-based 

estimations can be leveraged in a consistent and reproducible manner.65  

In conclusion, our study represents the first comprehensive attempt to develop and validate a 

genomic risk score for ICH. Our results demonstrate that the incorporation of genomic 

information in clinical prediction models for ICH could enhance predictive performance. As such, 

it lays the groundwork for future analyses in larger genetic datasets for ICH to optimally combine 

genomic information to maximize predictive benefit. Exploration of the performance of genomic 

risk scores for ICH in clinical trials of patients receiving antithrombotic medications could offer 
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useful insights in risk prediction of ICH in this high-risk population with potential relevance for 

clinical decision making. 
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TABLES 

Table 1. Clinical characteristics of the GERFHS validation dataset for intracerebral hemorrhage 

(ICH) cases and ICH-free controls. 

 
 Variable Controls N=796  Cases N=842  p-value 
Age: mean (SD) 68.4 (13.4) 69.2 (14.1) 0.2248 
Sex: female 400 (50.2) 417 (49.5) 0.7689 
Race: white 796 (100.0) 841 (99.9)  - 
Education: >high school 439 (55.2) 294 (35.2) <0.0001 
Hypertension   <0.0001 

Treated hypertension 393 (49.4) 403 (48.4)  
Untreated hypertension 29 (3.6) 159 (19.1)  

Diabetes mellitus 131 (16.5) 190 (22.6) 0.0019 
Hypercholesterolemia 407 (51.5) 366 (44.9) 0.008 
History of ischemic stroke 21 (2.6) 76 (9.0) <0.0001 
BMI: median (IQR) 27.1 (23.8, 31.0) 26.7 (22.9, 31.2) 0.1459 
Smoking   0.1477  

Never 373 (46.9) 365 (43.6)   
Former 325 (40.9) 345 (41.2)   
Current 97 (12.2) 128 (15.3)  

Heavy alcohol use 38 (4.8) 54 (6.8) 0.0812 
Anticoagulant medications 51 (6.4) 143 (17.0) <0.0001 
ICH location: lobar  334 (39.7) -  
 
 

The values correspond to N (%), except as otherwise stated. Two-sided p-values are presented 

as derived by chi-square test for independence in contingency tables, Mann-Whitney U test, as 

appropriate. 

GERFHS: Genetic and Environmental Risk Factors for Hemorrhagic Stroke, SD: standard 

deviation, IQR: interquartile range.  
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Table 2. Associations between the metaGRS (1-SD increment) with odds of lobar and non-lobar 

intracerebral hemorrhage (ICH) in the GERFHS validation dataset.  

 
 Lobar ICH (324 cases vs 794 controls) 
 OR (95% CI) P-value AICclin , AICclin+metaGRS, LRT 
All trait metaGRS 1.32 (1.13-1.54) 0.0005 1271.20, 1260.85, 0.001291245 

 Non-lobar ICH (446 cases vs 788 controls) 
 OR (95% CI) P-value AICclin , AICclin+metaGRS, LRT 
All-trait metaGRS 1.37 (1.18-1.58) 2.4x10-5 1465.15, 1449.95, 0.000096755 

 
 

Lobar ICH model is adjusted for age, sex, 2 principal components (PC), body mass index, 

history of ischemic stroke, anticoagulant medication use, and education less than high school. 

Non-lobar ICH model is adjusted for history of ischemic stroke, hypertension, diabetes, high 

cholesterol, heavy alcohol use, anticoagulant use, and education less than high school. 

AIC = Akaike information criterion. AICclin = AIC of model containing baseline (age, sex, 2 PCs) 

and ICH-subtype specific clinical predictors. AICclin+metaGRS = AIC of model containing baseline, 

sub-type specific clinical predictors and All-trait metaGRS. GERFHS: Genetic and 

Environmental Risk Factors for Hemorrhagic Stroke. LRT = likelihood ratio test. 
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Table 3. Baseline characteristics of the external UK Biobank dataset for individuals who 

developed incident intracerebral hemorrhage (ICH) over a median 11.3-year period of follow-up 

and ICH-free controls. 

 
  Controls 

n=485,099 
ICH cases 
n=1,524 

p-value 

Age: Mean (SD) 56.5 (8.1) 61.6 (6.7)  <2.2x10-16 
Sex: female 263,215 (54.3) 693 (45.5) 7.4x10-12 
Race: white 407,051 (83.9) 1,281 (84.1) 0.91  
Systolic blood pressure: Mean (SD) 140.9 (20.6) 151.3 (21.7)  <2.2x10-16 
Diastolic blood pressure: Mean (SD) 84.3 (11.3) 88.0 (12.4)  <2.2x10-16 
LDL-cholesterol: Mean (SD) 137.6 (33.6) 131.7 (34.4)  1.8x10-10 
HDL-cholesterol: Mean (SD) 56.0 (14.8) 54.8 (15.4) 0.005 
BMI: Mean (SD) 27.4 (4.8) 27.7 (5.1) 0.02 
HbA1c (%): Mean (SD) 5.45 (0.62) 5.60 (0.72)  6.0x10-14 
Smoking:   5.9x10-9  

Never 264,828 (54.8) 711 (46.9)   
Former 167,361 (34.6) 617 (40.7)   
Current 50,941 (10.5) 187 (12.3)  

Anticoagulant medications 5,123 (1.1) 73 (4.8)  <2.2x10-16 
Antiplatelet medications 68,735 (14.2) 411 (27.0)  <2.2x10-16 
Antihypertensive medications 100,608 (20.7) 592 (38.8) <2.2x10-16 
Antidiabetic medications 15,526 (3.2) 96 (6.3) 1.2x10-11  
Lipid-lowering medications 78,160 (16.1) 430 (28.2)  <2.2x10-16 
 
 

The values correspond to N (%), except if otherwise stated. Two-sided p-values are presented 

as derived by chi-square test for independence in contingency tables, t-test of Mann-Whitney U 

test, as appropriate.  

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.05.22274399doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.05.22274399
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34

FIGURES 

Figure 1. Study design. (Α) Individual genomic risk scores (GRS) were derived for 

intracerebral hemorrhage (ICH)-related traits from publicly available summary statistics. (B) The 

GRS were optimized in the combined training dataset of GOCHA and EUR/ISGC (1013 cases, 

928 controls). (C) MetaGRS parameters were determined on the basis of association with ICH 

in the training datasets. (D) The metaGRS was compiled in the GERFHS validation dataset (842 

cases and 796 controls) and associations with ICH were explored using logistic regression. (E) 

The metaGRS was externally validated in the general population-based UK Biobank cohort 

among 486,623 individuals without a history of ICH over a median follow-up period of 11.3 years 

(1,526 incident events) using Cox proportional hazards regression analyses. 
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SBP systolic blood pressure; DBP diastolic blood pressure; PP pulse pressure; WMH white 

matter hyperintensities; CKD chronic kidney disease; eGFR estimated glomerular filtration rate; 

UACR urine albumin-to-creatinine ratio; TC total cholesterol; TG triglycerides; LDL low-density 

lipoprotein; HDL high-density lipoprotein; T2D type 2 diabetes mellitus; HbA1c hemoglobin A1c; 

BMI body mass index; WHR waist-to-hip ratio; SVS small vessel stroke; GRS genomic risk 

score; GOCHA Genetics of Cerebral Hemorrhage on Anticoagulation; GERFHS Genetic and 

Environmental Risk Factors for Hemorrhagic Stroke; EUR/ISGC European member sites 

contributing to the International Stroke Genetics Consortium 
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Figure 2.  Individual genomic risk scores (GRS) for intracerebral hemorrhage (ICH)-

related traits. A. Pairwise Pearson correlations among trait-specific GRS in training datasets 

(1,013 cases, 928 controls). FDR-p ***<0.001, **<0.01, *<0.05. B. Associations between trait-

specific GRS (1 standard deviation increment) and ICH in training datasets (Odds Ratios, 

OR), as derived by logistic regression analyses adjusted for age, sex, and 2 principal 

components in training datasets (1,013 cases, 928 controls). Detailed estimates are presented 

in Supplementary table 23. 
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SBP systolic blood pressure; DBP diastolic blood pressure; PP pulse pressure; WMH white 

matter hyperintensities; CKD chronic kidney disease; eGFR estimated glomerular filtration rate; 

UACR urine albumin-to-creatinine ratio; TC total cholesterol; TG triglycerides; LDL low-density 

lipoprotein; HDL high-density lipoprotein; T2D type 2 diabetes mellitus; HbA1c hemoglobin A1c; 

BMI body mass index; WHR waist-to-hip ratio; SVS small vessel stroke; EA educational 

attainment; GRS genomic risk score.  
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OR: 1.67 [1.37-2.03]
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Figure 3. Odds for intracerebral hemorrhage (ICH) across the metaGRS distribution. 

Depicted is the metaGRS distribution (centered around a mean of 0 and a standard deviation of 

1) in the GERFHS validation dataset (848 cases and 794 controls) and the odds ratios (OR) for 

ICH per percentile group, relative the rest of the sample, as derived from logistic regression 

models adjusted for age, sex and the first 2 principal components of the population structure.  
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Figure 4. Performance of clinical risk factors, metaGRS, and their combination for 

predicting odds for intracerebral hemorrhage (ICH). Depicted are the c-indices derived from 

logistic regression models including age, sex, 2 principal components of population structure 

(baseline model, dotted line) and additionally in successive models the reported clinical 

variables (history of ischemic stroke, hypertension, diabetes, high cholesterol, heavy alcohol 

use, anticoagulant medication use, and education) and the metaGRS in the validation GERFHS 

dataset (842 cases, 796 controls). Percentile confidence intervals of the c-indices were 

calculated after bootstrapping over 1000 iterations.  
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Figure 5. MetaGRS and cumulative risk of incident intracerebral hemorrhage (ICH) in the 

population-based UK Biobank sample. The results are derived from (A) entire UK Biobank 

population, (B) users of antithrombotic medications at baseline, and (C) low-risk individuals with 

conventional vascular risk factors under control and no use of anticoagulant medications after 

excluding prevalent cases of ICH. Depicted are the Kaplan-Meier curves for different metaGRS 

quantiles, as well as the hazard ratios (HR) per standard deviation (SD) increment in metaGRS, 

as derived from Cox proportional hazards regression models adjusted for baseline age, sex, the 

first 10 principal components of the population structure, genetic ancestry, genotyping chip, and 

kinshi
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